
Cache Oblivious Distribution Sweeping

Gerth Stølting Brodal�,�� and Rolf Fagerberg�

BRICS� � �, Department of Computer Science, University of Aarhus, Ny Munkegade,
DK-8000 Århus C, Denmark. {gerth,rolf}@brics.dk

Abstract. We adapt the distribution sweeping method to the cache
oblivious model. Distribution sweeping is the name used for a general
approach for divide-and-conquer algorithms where the combination of
solved subproblems can be viewed as a merging process of streams. We
demonstrate by a series of algorithms for specific problems the feasibility
of the method in a cache oblivious setting. The problems all come from
computational geometry, and are: orthogonal line segment intersection
reporting, the all nearest neighbors problem, the 3D maxima problem,
computing the measure of a set of axis-parallel rectangles, computing the
visibility of a set of line segments from a point, batched orthogonal range
queries, and reporting pairwise intersections of axis-parallel rectangles.
Our basic building block is a simplified version of the cache oblivious
sorting algorithm Funnelsort of Frigo et al., which is of independent
interest.

1 Introduction

Modern computers contain a hierarchy of memory levels, with each level acting as
a cache for the next. Typical components of the memory hierarchy are: registers,
level 1 cache, level 2 cache, main memory, and disk. The time for accessing a level
in the memory hierarchy increases from one cycle for registers and level 1 cache
to figures around 10, 100, and 100,000 cycles for level 2 cache, main memory, and
disk, respectively [15, p. 471], making the cost of a memory access depend highly
on what is the current lowest memory level containing the element accessed. The
evolution in CPU speed and memory access time indicates that these differences
are likely to increase in the future [15, pp. 7 and 429].

As a consequence, the memory access pattern of an algorithm has become a
key component in determining its running time in practice. Since classic asymp-
totic analysis of algorithms in the RAMmodel is unable to capture this, a number
of more elaborate models for analysis have been proposed. The most widely used
of these is the I/O model of Aggarwal and Vitter [1], which assumes a memory
hierarchy containing two levels, the lower level having size M and the transfer
� Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).

�� Supported by the Carlsberg Foundation (contract number ANS-0257/20).
� � � Basic Research in Computer Science, www.brics.dk, funded by the Danish National

Research Foundation.

P. Widmayer et al. (Eds.): ICALP 2002, LNCS 2380, pp. 426–438, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

Cache Oblivious Distribution Sweeping 427

between the two levels taking place in blocks of B elements. The cost of the
computation in the I/O model is the number of blocks transferred. The model is
adequate when the memory transfer between two levels of the memory hierarchy
dominates the running time, which is often the case when the size of the data
significantly exceeds the size of main memory, as the access time is very large for
disks compared to the remaining levels of the memory hierarchy. By now, a large
number of results for the I/O model exists—see e.g. the survey by Vitter [18]. A
significant part of these results are for problems within computational geometry.

Recently, the concept of cache oblivious algorithms has been introduced by
Frigo et al. [12]. In essence, this designates algorithms optimized in the I/O
model, except that one optimizes to a block size B and a memory size M which
are unknown. I/Os are assumed to be performed automatically by an off-line
optimal cache replacement strategy. This seemingly simple change has signifi-
cant consequences: since the analysis holds for any block and memory size, it
holds for all levels of the memory hierarchy. In other words, by optimizing an
algorithm to one unknown level of the memory hierarchy, it is optimized to each
level automatically. Furthermore, the characteristics of the memory hierarchy
do not need to be known, and do not need to be hardwired into the algorithm
for the analysis to hold. This increases the portability of implementations of
the algorithm, which is important in many situations, including production of
software libraries and code delivered over the web. For further details on the
concept of cache obliviousness, see [12].

Frigo et al. introduced the concept of cache oblivious algorithms and pre-
sented optimal cache oblivious algorithms for matrix transposition, FFT, and
sorting [12]. Bender et al. [6], gave a proposal for cache oblivious search trees with
search cost matching that of standard (cache aware) B-trees [4]. Simpler cache
oblivious search trees with complexities matching that of [6] were presented in [7,
10]. Cache-oblivious data structures based on on exponential structures are pre-
sented in [5]. Recently, a cache-oblivious priority queue has been developed [2],
which in turn gives rise to several cache-oblivious graph algorithms.

We consider cache oblivious algorithms within the field of computational ge-
ometry. Existing algorithms may have straightforward cache oblivious implemen-
tation—this is for example the case for the algorithm know as Graham’s scan [14]
for computing the convex hull of a point set [11]. This algorithm first sorts the
points, and then scans them while maintaining a stack containing the points on
the convex hull of the points visited so far. Since the sorting step can be done
by the Funnelsort algorithm of Frigo et al. [12] and a simple array is an efficient
cache oblivious implementation of a stack, we immediately get a cache oblivious
convex hull algorithm performing optimal O(Sort(N)) I/Os, where Sort(N) is
the optimal number of I/Os required for sorting. In this paper, we devise non-
trivial cache oblivious algorithms for a number of problems within computational
geometry.

In Section 2 we first present a version of the cache oblivious sorting algorithm
Funnelsort of Frigo et al., which will be the basic component of our cache oblivi-
ous algorithms and which seems of independent interest due to its simplicity. In

428 G.S. Brodal and R. Fagerberg

Section 3 we develop cache oblivious algorithms based on Lazy Funnelsort for
a sequence of problems in computational geometry. Common to these problems
is that there exist external memory algorithms for these problems based on the
distribution sweeping approach of Goodrich et al. [13].

Goodrich et al. introduced distribution sweeping as a general approach for de-
veloping external memory algorithms for problems which in internal memory can
be solved by a divide-and-conquer algorithm based on a plane sweep. Through
a sequence of examples they demonstrated the validity of their approach. The
examples mentioned in [13, Section 2] are: orthogonal line segment intersection
reporting, the all nearest neighbors problem [19], the 3D maxima problem [16],
computing the measure of a set of axis-parallel rectangles [8], computing the
visibility of a set of line segments from a point [3], batched orthogonal range
queries, and reporting pairwise intersections of axis-parallel rectangles.

We investigate if the distribution sweeping approach can be adapted to the
cache oblivious model, and answer this in the affirmative by developing optimal
cache oblivious algorithms for each of the above mentioned problems. Theo-
rem 1 summarizes our results. These bounds are known to be optimal in the I/O
model [13] and therefore are also optimal in the cache oblivious model.

Due to lack of space, we in this paper only give the details of two of the
algorithms, and refer to [9] for the rest.

Theorem 1. In the cache oblivious model the 3D maxima problem on a set of
points, computing the measure of a set of axis-parallel rectangles, the all nearest
neighbors problem, and computing the visibility of a set of non-intersecting line
segments from a point can be solved using optimal O(Sort(N)) I/Os, and the
orthogonal line segment intersection reporting problem, batched orthogonal range
queries, and reporting pairwise intersections of axis-parallel rectangles can be
solved using optimal O(Sort(N) + T

B) I/Os, where N is the input size, T the
output size, and Sort(N) the number of I/Os required to sort N elements.

Goodrich et al. described distribution sweeping as a top-down approach. We
instead describe it bottom-up, which facilitates our use of Funnelsort as a basic
building block. The basic idea of the distribution sweeping approach is to sort
the geometric objects, e.g. points and endpoints of line segments, w.r.t. one
dimension and then apply a divide-and-conquer approach on this dimension
where solutions to adjacent strips are merged to a solution for the union of
the strips. This merging may be viewed as a sweep of the strips along another
dimension. The details of the merging step is unique for each specific problem
to be solved, but the overall structure of the method resembles Mergesort.

We note that the general method is not confined to problems within com-
putational geometry—rather, any divide-and-conquer algorithm that combines
solutions to subproblems in a merge-like fashion seems like a candidate for using
the method, provided that the divide phase of the algorithm can be done as a
separate preprocessing step by e.g. sorting. For such an algorithm, the applica-
bility of the method in a cache oblivious setting is linked to the degree of locality
of the information needed in each merge step, a point we elaborate on in the
beginning of Sect. 3.

Cache Oblivious Distribution Sweeping 429

Preliminaries. By a binary tree we denote a rooted tree where nodes are either
internal and have two children, or are leaves and have no children. The size |T |
of a tree T is its number of leaves. The depth d(v) of a node v is the number
of nodes (including v) on the path from v to the root. By level i in the tree we
denote all nodes of depth i. We use logx y as a shorthand for max{1, logx y}.

2 Lazy Funnelsort

Frigo et al. in [12] gave an optimal cache oblivious sorting algorithm called Fun-
nelsort, which may be seen as a cache oblivious version of Mergesort. In this
section, we present a new version of the algorithm, termed Lazy Funnelsort. The
benefit of the new version is twofold. First, its description, analysis, and imple-
mentation are, we feel, simpler than the original—features which are important
for a problem as basic as sorting. Second, this simplicity facilitates the changes
to the algorithm needed for our cache oblivious algorithms for problems in com-
putational geometry. We also generalize Funnelsort slightly by introducing a
parameter d which allows a trade-off between the constants in the time bound
for Funnelsort and the strength of the “tall cache assumption” [12]. The choice
d = 3 corresponds to the description in [12].

Central to Funnelsort is the concept of a k-merger, which for each invocation
merges the next kd elements from k sorted streams of elements. As a k-merger
takes up space super-linear in k, it is not feasible to merge all N elements by
an N -merger. Instead, Funnelsort recursively produces N1/d sorted streams of
size N1−1/d and then merges these using an N1/d-merger. In [12], a k-merger is
defined recursively in terms of k1/2-mergers and buffers, and the invocation of a
k-merger involves a scheduling of its sub-mergers, driven by a check for fullness
of all of its buffers at appropriate intervals.

Our modification lies in relaxing the requirement that all buffers of a merger
should be checked (and, if necessary, filled) at the same time. Rather, a buffer
is simply filled when it runs empty. This change allows us to “fold out” the
recursive definition of a k-merger to a tree of binary mergers with buffers on
the edges, and, more importantly, to define the merging algorithm in a k-merger
directly in terms of nodes of this tree.

We define a k-merger as a perfectly balanced binary tree with k leaves. Each
leaf contains a sorted input stream, and each internal node contains a standard
binary merger. The output of the root is the output stream of the entire k-
merger. Each edge between two internal nodes contains a buffer, which is the
output stream of the merger in the lower node and is one of the two input
streams of the merger in the upper node. The sizes of the buffers are defined
recursively: Let D0 = �log(k)/2� denote the number of the middle level in the
tree, let the top tree be the subtree consisting of all nodes of depth at most D0,
and let the subtrees rooted by nodes at depth D0 + 1 be the bottom trees. The
edges between nodes at depth D0 and depth D0 + 1 have associated buffers of
size

⌈
kd/2

⌉
, and the sizes of the remaining buffers is defined by recursion on the

430 G.S. Brodal and R. Fagerberg

top tree and the bottom trees. For consistency, we think of the output stream
of the root of the k-merger as a buffer of size kd.

A k-merger, including the buffers associated with its middle edges, is laid out
in memory in contiguous locations. This statement holds recursively for the top
tree and for the bottom trees of the k-merger. In effect, a k-merger is the same
as the van Emde Boas layout of a binary tree [17], except that edges now are
buffers and take up more than constant space.

Procedure Fill(v)
while v’s output buffer is not full

if left input buffer empty
Fill(left child of v)

if right input buffer empty
Fill(right child of v)

perform one merge step

Fig. 1. The merging algorithm

In Figure 1 our algorithm is shown for the binary merge process in each
internal node of a k-merger. The last line means moving the smallest of the two
elements in the fronts of the input buffers to the rear of the output buffer. The
entire k-merger is simply invoked by a call Fill(r) on the root r of the merger.
This will output kd merged elements to the output buffer of the merger.

Concerning implementation details, we note that the input buffers of the
merger may run empty during the merging. Exhausting of input elements should
be propagated upward in the merger, marking a buffer as exhausted when both
of its corresponding input buffers are exhausted. We also note that buffers are
emptied completely before they are filled, so they need not be implemented as
circular arrays, in contrast to [12].

Lemma 1. Let d ≥ 2. The size of a k-merger (excluding its output buffer) is
bounded by c · k(d+1)/2 for a constant c ≥ 1. Assuming B(d+1)/(d−1) ≤ M/2c, a
k-merger performs O(kd

B logM (kd) + k) I/O’s during an invocation.

Proof. The space is given by the recursion formula S(k) = k1/2 · kd/2 +
(k1/2 + 1) · S(k1/2), which has a solution as stated.

For the I/O bound, we consider the recursive definition of buffer sizes in a
k-merger, and follow the recursion until the space bound for the subtree (top
tree or bottom tree) to recurse on is less than M/2, i.e. until k̄(d+1)/2 ≤ M/2c,
where k̄ is the number of leaves of the subtree. As k̄ is the first such value,
we know that (k̄2)(d+1)/2 = k̄d+1 > M/2c. The buffers whose sizes will be
determined during this partial recursion we denote large buffers. Removing the

Cache Oblivious Distribution Sweeping 431

edges containing large buffers will partition the tree of the merger into a set of
connected subtrees, which we denote base trees. By the tall cache assumption,
a base tree and one block for each of the k̄ buffers in its edges to leaves can be
contained in memory, as k̄ ·B ≤ (M/2c)2/(d+1) · (M/2c)(d−1)/(d+1) ≤ M/2c.

If the k-merger itself is a base tree, the merger and one block for each input
stream will fit in memory, and the number of I/Os for outputting the kd elements
during an invocation is O(kd/B + k), as claimed. Otherwise, consider a call
Fill(v) to the root v of a base tree. This call will output Ω(k̄d) elements to
the output buffer of v. Loading the base tree and one block for each of the
k̄ buffers just below the base tree into memory will incur O(k̄(d+1)/2/B + k̄)
I/Os. This is O(1/B) I/Os per element output, since k̄d+1 > M/2c implies
k̄d−1 > (M/2c)(d−1)/(d+1) ≥ B and hence k̄ ≤ k̄d/B. During the call Fill(v),
the buffers just below the base tree may run empty, which will trigger calls to
the nodes below these buffers. Such a call may evict the base tree from memory,
leading to its reloading when the call finishes. However, a buffer of size Ω(k̄d)
has been filled during this call, so the same calculation as above shows that
the reloading of the base tree incurs O(1/B) I/Os per element inserted into the
buffer. The last time a buffer is filled, it may not be filled completely due to
exhaustion. This happens only once for each buffer, so we can instead charge
O(1/B) I/Os to each position in the buffer in the argument above. As the large
buffers are part of the space used by the entire k-merger, and as this space is
sublinear in the output of the k-merger, this is O(1/B) I/O per element merged.

In summary, charging an element O(1/B) I/Os each time it is inserted into
a large buffer will account for the I/Os performed. As F = (M/2c)1/(d+1) is
the minimal number of leaves for a base tree, each element can be inserted in
at most logF k = O(d logM k) = O(logM kd) large buffers, including the output
buffer of the k-merger. From this the stated I/O bound follows. 	

Theorem 2. Under the assumptions in Lemma 1, Lazy Funnelsort uses
O(dN

B logM N) I/Os to sort N elements.

Proof. The algorithm recursively sorts N1/d segments of size N1−1/d of the input
and then merges these using an N1/d-merger. When the size of a segment in a
recursive call gets belowM/2, the blocks in this segment only needs to be loaded
once into memory during the sorting of the segment, as the space consumption
of a merger is linearly bounded in its output. For the k-mergers used at the
remaining higher levels in the recursion tree, we have kd ≥ M/2c ≥ B(d+1)/(d−1),
which implies kd−1 ≥ B(d+1)/d > B and hence kd/B > k. By Lemma 1, the
number of I/Os during a merge involving n′ elements is O(logM (n′)/B) per
element. Hence, the total number of I/Os per element is

O

(
1
B

(
1 +

∞∑
i=0

logM N (1−1/d)i

))
= O (d logM (N)/B) .

	

432 G.S. Brodal and R. Fagerberg

3 Distribution Sweeping

Before going into the details for the various geometric problems, we below sum-
marize the main technical differences between applying the distribution sweeping
approach in the I/O model and in the cache oblivious model.

– In the I/O model, distribution sweeping uses Θ(M/B)-ary merging. For
cache oblivious algorithms, we do not know the parameters M and B, and
instead use on binary merging. This is a simplification of the approach.

– In the I/O model, an entire merging process is completed before another
merging process is started. In the cache oblivious model, we are building on
(Lazy) Funnelsort, so this does not hold. Rather, a scheduling of the vari-
ous merging processes takes place, and the intermediate outputs of merging
processes are stored in buffers of limited size and used as input for other
merging processes. This is a complication of the approach.

To illustrate the latter point, we note that in the distribution sweeping algo-
rithms for batched orthogonal range queries, for orthogonal line segment inter-
section reporting, and for finding pairwise rectangle intersections, the merging
process at a node needs to access the already merged part like a stack when
generating the required output. In the I/O model this is not a problem, since
there is always only one output stream present. In the cache oblivious model,
the access to already merged parts is a fundamental obstacle, since this informa-
tion may already have been removed by the merger at the parent node. Similar
complications arise in the algorithm for all nearest neighbors. The solutions to
these problems form a major part of the contribution of this paper.

On the other hand, for the 3D maxima problem and for computing the mea-
sure of a set of axis-parallel rectangles, this problem does not show up. The only
difference from the merging performed in Lazy Funnelsort is that each input and
output element is labeled with constant additional information, and that com-
puting the labeling of an output element requires information of constant size to
be maintained at the nodes of the merging process. For computing the visibility
of a set of line segments from a point the situation is basically the same, except
that some input points to a node in the merging process are removed during the
merging.

Due to lack of space we only give the algorithms for batched orthogonal range
queries and the all nearest neighbors problem, and refer to [9] for the rest.

3.1 Batched Orthogonal Range Queries

Problem 1. Given N points in the plane and K axis-parallel rectangles, report
for each rectangle R all points which are contained in R.

The basic distribution sweeping algorithm for range queries proceeds as fol-
lows. First all N points and the 2K upper left and upper right rectangle corners
are sorted on the first coordinate. Each corner point contains a full description

Cache Oblivious Distribution Sweeping 433

of the rectangle. After having sorted the points we use a divide-and-conquer
approach on the first coordinate, where we merge the sequences of points from
two adjacent strips A and B to the sequence of points in the strip A ∪ B. All
sequences are sorted on the second coordinate, and the merging is performed
as a bottom-up sweep of the strip A ∪ B. The property maintained is that if a
rectangle corner is output for a strip, then we have reported all points in the
strip that are contained in the rectangle.

While merging strips A and B, two lists LA and LB of points are generated:
LA (LB) contains the input points from A (B), which are by now below the
sweep line. If the next point p is an input point from A (B), we insert p into
LA (LB) and output p. If p is a rectangle corner from A, and p is the upper
left corner of a rectangle R that spans B completely in the first dimension, then
the points in LB ∩ R are reported by scanning LB until the first point below
the rectangle is found (if R only spans B partly, then the upper right corner of
R is contained in B, i.e. LB ∩ R has already been reported). On the RAM this
immediately gives an O(N logN) time algorithm. The space usage is O(N), since
it is sufficient to store the L lists for the single merging process in progress. In
the I/O model, a merging degree of Θ(M

B) gives an O(Sort(N)) time algorithm
with a space usage of O(N

B) blocks.
Unfortunately, this approach does not immediately give an optimal cache

oblivious algorithm. One problem is that the interleaved scheduling of the merge
processes at nodes in a k-merger seems to force us to use Θ(n log n) space for
storing each input point in an L list at each level in the worst case. This space
consumption is sub-optimal, and is also a problem in the proof of Theorem 2,
where we for the case N ≤ M/2 use that the space is linearly bounded.

We solve this problem in three phases: First we calculate for each node of a k-
merger how many points will actually be reported against some query rectangle—
without maintaining the L lists. By a simple change in the algorithm, we can
then reduce the space needed at a node to be bounded by the reporting done at
the node. Finally, we reduce the space consumption to O(N

B) blocks by changing
the scheduling of the merging processes such that we force the entire merging
process at certain nodes to complete before returning to the parent node.

In the following we consider a k-merger where the k input streams are avail-
able in k arrays holding a total of N points, and where k = N1/d. In the first
phase we do no reporting, but only compute how much reporting will happen at
each of the k− 1 nodes. We do so by considering a slightly different distribution
sweeping algorithm. We now consider all N input points and all 4K corners of
the rectangles. When merging the points from two strips A and B, we main-
tain the number a (b) of rectangles intersecting the current sweep line that span
strip A (B) completely and have two corners in B (A). We also maintain the
number of points rA (rB) in A (B) below the sweep line which cause at least one
reporting at the node when applying the above algorithm. Whenever the next
point is the lower left (right) corner of a rectangle spanning B (A) completely,
b (a) is increased. Similarly we decrease the counter when a corresponding top-
most corner is the next point. If the next point is an input point from A (B),

434 G.S. Brodal and R. Fagerberg

we increase rA (rB) by one if and only if a (b) is nonzero. Since the information
needed at each node is constant, we can apply the Lazy Funnelsort scheduling
and the analysis from Lemma 1 for this first phase.

By including the lower rectangle corner points in the basic reporting algo-
rithm, we can simultaneously with inserting points into LA and LB keep track
of a and b, and avoid inserting a point from A (B) into LA (B) if the point will
not be reported, i.e. if a (b) is zero. This implies that all points inserted into LA

and LB will be reported at least once, so the space O(rA + rB) required for La

and Lb is bounded by the amount of reporting generated at the node.
Finally, to achieve space linear in the total input N of the k-merger, we will

avoid allocating the L lists for all nodes simultaneously if this will require more
than linear space. The reporting generated by a k-merger will be partitioned into
iterations, each of which (except the last) will generate Ω(N) reporting using
space O(N). The details are as follows. First we apply the above algorithm for
computing the rA and rB values of each node of the k-merger. In each iteration
we identify (using a post-order traversal principle) a node v in the k-merger
where the sum of the rA and rB values at the descendants is at least N , and at
most 3N (note: for each node we have rA + rB ≤ N). If no such node exists, we
let v be the root. We first allocate an array of size 3N to hold all the LA and LB

lists for the descendants of v. We now complete the entire merging process at
node v, by repeatedly applying Fill(v) until the input buffers of v are exhausted.
We move the content of the output buffer of v to a temporary array of size N ,
and when the merging at v finished we move the output to a global array of
size N which holds the final merged lists of several nodes simultaneously. If the
k input streams have size N1, . . . , Nk, and node v spans streams i..j, the merged
output of v is stored at positions 1 +

∑i−1
�=1Ni and onward. When the merging

of v is finished, we set rA and rB of all descendants of v to zero.
For the analysis, we follow the proof of Lemma 1. We first note that by

construction, we use space Θ(N) and in each iteration (except the last) generate
Ω(N) reporting. If N ≤ M/2c, all computation will be done in internal memory,
when the input streams first have been loaded into memory, i.e. the number of
I/Os used is O(N

B +
T
B). For the case N > M/2c, i.e. k < N

B , we observe that each
base tree invoked only needs to store O(1) blocks from the head of each L list in
the nodes of the base tree. Writing a point to an L list can then be charged to
the later reporting of the point. Reading the first blocks of the L lists in a base
tree has the same cost as reading the first blocks of each of the input streams to
the base tree. We conclude that the I/Os needed to handle the L lists can either
be charged to the reporting or to the reading of the input streams of a base tree.
The total number of I/Os used in an iteration is O(k+ N

B +
T ′
B), where T

′ is the
amount of reporting, plus the number of I/Os used to move points from a base
tree to the base next. Over all iterations, the latter number of I/Os is at most
O(N

B logM N). We conclude that the k-merger in total uses O(N
B logM N + T

B)
I/Os and uses O(N

B) blocks of space. Analogous to the proof of Theorem 2 it
follows that the entire algorithm uses O(dN

B logM N + T
B) I/Os.

Cache Oblivious Distribution Sweeping 435

3.2 All Nearest Neighbors

Problem 2. Given N points in the plane, compute for each point which other
point is the closest.

We solve the problem in two phases. After the first phase, each point p will
be annotated by another point p1 which is at least as close to p as the closest
among all points lying below p. The point p1 itself does not need to lie below p.
If no points exist below p, the annotation may be empty. The second phase is
symmetric, with above substituted for below, and will not be described further.
The final result for a point p is the closest of p1 and the corresponding annotation
from the second phase.

In the first phase, we sort the points on the first dimension and apply a divide-
and-conquer approach from [19] on this dimension. For each vertical strip S, we
will produce a stream containing the points in S in decreasing order w.r.t. the
second dimension, with each point annotated by some other point p1 from S (or
having empty annotation). The divide-and-conquer approach will be patterned
after Lazy Funnelsort, and for streams analogous to output streams of k-mergers,
the annotation will fulfill an invariant as above, namely that p1 is at least as
close as the closest among the points from S lying below p (for streams internal
to k-mergers, this invariant will not hold).

The base case is a strip containing a single point with empty annotation. For
a strip being the union of two strips A and B, we merge the streams for A and
B by a downward plane sweep, during which we maintain two active sets SA

and SB of copies of points from A and B, respectively. For clarity, we in the
discussion below refer to such a copy as an element x, and reserve the term
point p for the original points in the streams being merged.

These active sets are updated each time the sweepline passes a point p. The
maintenance of the sets are based on the following definition: Let c denote the
intersection of the horizontal sweepline and the vertical line separating A and B,
let p be a point from S, let p1 be the point with which p is annotated, and let d
denote Euclidean distance. By U(p) we denote the condition d(p, p1) ≤ d(p, c),
where d(p, p1) is taken as infinity if p has empty annotation. If U(p) holds and
p is in A (B), then no point in B (A) lying below the sweepline can be closer
to p than p1.

We now describe how the active sets are updated when the sweepline passes
a point p ∈ A. The case p ∈ B is symmetric. We first calculate the distance
d(p, x) for all elements x in SA ∪ SB . If this is smaller than the distance of the
current annotation of x (or p, or both), we update the annotation of x (or p, or
both). A copy of the point p is now added to SA if condition U(p) does not hold.
In all cases, p is inserted in the output stream of the merge process. Finally, if
for any x in SA ∪ SB condition U(x) is now true, we remove x from its active
set. When the sweepline passes the last point of S, we remove any remaining
elements in SA and SB .

By induction on the number of points passed by the sweepline, all elements
of SA are annotated by a point at least as close as any other element currently

436 G.S. Brodal and R. Fagerberg

in SA. Also, U(x) is false for all x ∈ SA. As observed in [19], this implies that for
any two elements x1 and x2 from SA, the longest side of the triangle �x1cx2 is
the side x1x2, so by the law of cosines, the angle � x1cx2 is at least π/3. Therefore
SA can contain at most two elements, since the existence of three elements x1,
x2, and x3 would imply an angle � xicxj of at least 2π/3 between two of these.
By the same argument we also have |SB | ≤ 2 at all times.

Let I(p,X) denote the condition that the annotation of p is a point at least as
close as the closest point among the points lying below p in the stripX. Clearly, if
a point p ∈ A is passed by the sweepline without having a copy inserted into SA,
we know that I(p,B) holds. If a copy x of p is inserted into SA, it follows by
induction on the number of points passed by the sweepline that I(x,B) holds
when x is removed from SA. Similar statements with A and B interchanged also
hold.

As said, our divide-and-conquer algorithm for phase one is analogous to Lazy
Funnelsort, except that the merge process in a binary node of a k-merger will
be the sweep line process described above. We allocate O(1) extra space at
each node to store the at most four copies contained in the two active sets of
the merge process. We will maintain the following invariant: when a k-merger
spanning a strip S finishes its merge process, condition I(p, S) holds for all
points p in output stream of the k-merger. Correctness of the algorithm follows
immediately from this invariant. From the statements in the previous paragraph
we see that the invariant is maintained if we ensure that when a k-merger finishes,
the annotations of points p in its output stream have been updated to be at least
as close as the annotations of all copies of p removed from active sets during the
invocation of the k-merger.

To ensure this, we keep the copies of a point p in a doubly linked list along
the path toward the root of the k-merger. The list contains all copies currently
contained in active sets, and has p itself as the last element. Note that in a
k-merger, the merge processes at nodes are interleaved—part of the output of
one process is used as input for another before the first process has finished—so
the length of this list can in the worst case be the height of the k-merger.

Consider a merge step in a node v in a k-merger which moves a point p from
an input buffer of v to its output buffer. During the step, several types of updates
of the linked list may be needed:

1. If p is currently contained in a list, the forward pointer of the next-to-last
element needs to be updated to p’s new position.

2. A copy x of p may be inserted in an active set of v. If p is currently not in
a list, a new list containing x and p is made. Otherwise, x is inserted before
p in p’s list.

3. Elements of active sets of v may be removed from the sets. Each such element
x should be deleted from its linked list.

This updating is part of the algorithm. Additionally, in the third case the an-
notation of x is propagated to the next element y in the list, i.e. the annotation
of y is set to the closest of the annotations of x and y. This ensures the invariant
discussed above.

Cache Oblivious Distribution Sweeping 437

What remains is to analyze the I/O complexity of the algorithm. As the space
usage of a node in a k-merger is still O(1), the analysis of Lazy Funnelsort is
still valid, except that we need to account for the I/Os incurred during updates
of the linked lists. In the full version of the paper [9], we prove that the I/Os
for these updates is also bounded by the number of I/Os performed by the Lazy
Funnelsort.

References

1. A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related
problems. Communications of the ACM, 31(9):1116–1127, Sept. 1988.

2. L. Arge, M. A. Bender, E. D. Demaine, B. Holland-Minkley, and J. I. Munro.
Cache-oblivious priority queue and graph algorithm applications. In Proc. 34th
Ann. ACM Symp. on Theory of Computing. ACM Press, 2002. To appear.

3. M. J. Atallah and J.-J. Tsay. On the parallel-decomposability of geometric prob-
lems. Algorithmica, 8:209–231, 1992.

4. R. Bayer and E. McCreight. Organization and maintenance of large ordered in-
dexes. Acta Informatica, 1:173–189, 1972.

5. M. A. Bender, R. Cole, and R. Raman. Exponential structures for efficient cache-
oblivious algorithms. In Proc. 29th International Colloquium on Automata, Lan-
guages, and Programming (ICALP), 2002. These proceedings.

6. M. A. Bender, E. Demaine, and M. Farach-Colton. Cache-oblivious B-trees. In
Proc. 41st Ann. Symp. on Foundations of Computer Science, pages 399–409, 2000.

7. M. A. Bender, Z. Duan, J. Iacono, and J. Wu. A locality-preserving cache-oblivious
dynamic dictionary. In Proc. 13th Ann. ACM-SIAM Symp. on Discrete Algorithms,
pages 29–39, 2002.

8. J. L. Bentley. Algorithms for Klee’s rectangle problems. Carnegie-Mellon Uni-
versity, Pittsburgh, Penn., Department of Computer Science, unpublished notes,
1977.

9. G. S. Brodal and R. Fagerberg. Cache oblivious distribution sweeping. Technical
Report RS-02-18, BRICS, Dept. of Computer Science, University of Aarhus, 2002.

10. G. S. Brodal, R. Fagerberg, and R. Jacob. Cache oblivious search trees via bi-
nary trees of small height. In Proc. 13th Ann. ACM-SIAM Symp. on Discrete
Algorithms, pages 39–48, 2002.

11. M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer Verlag, Berlin, 1997.

12. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious
algorithms. In 40th Annual Symposium on Foundations of Computer Science,
pages 285–297, 1999.

13. M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory
computational geometry. In Proc. 34th Ann. Symp. on Foundations of Computer
Science, pages 714–723, 1993.

14. R. L. Graham. An efficient algorithm for determining the convex hull of a finite
planar set. Inf. Process. Lett., 1:132–133, 1972.

15. J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann, second edition, 1996.

16. H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of a set of
vectores. Journal of the ACM, 22(4):469–476, Oct. 1975.

438 G.S. Brodal and R. Fagerberg

17. H. Prokop. Cache-oblivious algorithms. Master’s thesis, Massachusetts Institute
of Technology, June 1999.

18. J. S. Vitter. External memory algorithms and data structures: Dealing with mas-
sive data. ACM Computing Surveys, 33(2):209–271, June 2001.

19. D. E. Willard and Y. C. Wee. Quasi-valid range querying and its implications for
nearest neighbor problems. In Proceedings of the Fourth Annual Symposium on
Computational Geometry, pages 34–43. ACM Press, 1988.

	Introduction
	Lazy Funnelsort
	Distribution Sweeping
	Batched Orthogonal Range Queries
	All Nearest Neighbors

