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Abstract. Breadth-first search (BFS) is a basic graph exploration tech-
nique. We give the first external memory algorithm for sparse undi-
rected graphs with sublinear I/O. The best previous algorithm requires
Θ(n + n+m

D·B · logM/B
n+m

B
) I/Os on a graph with n nodes and m edges

and a machine with main-memory of size M , D parallel disks, and block

size B. We present a new approach which requires only O(

√
n·(n+m)

D·B +
n+m
D·B · logM/B

n+m
B

)I/Os. Hence, for m = O(n) and all realistic values of

logM/B
n+m

B
, it improves upon the I/O-performance of the best previous

algorithm by a factor Ω(
√

D · B). Our approach is fairly simple and we
conjecture it to be practical. We also give improved algorithms for undi-
rected single-source shortest-paths with small integer edge weights and
for semi-external BFS on directed Eulerian graphs.

1 Introduction

Breadth-First Search (BFS) is a basic graph-traversal method. It decomposes
the input graph G of n nodes and m edges into at most n levels where level i
comprises all nodes that can be reached from a designated source s via a path
of i edges. BFS is used as a subroutine in many graph algorithms; the paradigm
of breadth-first search also underlies shortest-paths computations. In this paper
we focus on BFS for general undirected graphs and sparse directed Eulerian
graphs (i.e., graphs with a cycle that traverses every edge of the graph precisely
once).

External-memory (EM) computation is concerned with problems that are
too large to fit into main memory (internal memory, IM). The central issue of
EM computation is that accessing the secondary memory takes several orders
of magnitude longer than performing an internal operation. We use the stan-
dard model of EM computation [16]. There is a main memory of size M and
an external memory consisting of D disks. Data is moved in blocks of size B
consecutive words. An I/O-operation can move up to D blocks, one from each
disk. For graphs with n nodes and m edges the semi-external memory (SEM)
setting assumes c · n ≤ M < m for some appropriate constant c ≥ 1.
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A number of basic computational problems can be solved I/O-efficiently. The
most prominent example is EM sorting [2, 15]: sorting x items of constant size
takes sort(x) = Θ( x

D·B · logM/B
x
B ) I/Os. BFS, however, seems to be hard for

external-memory computation (and also parallel computation). Even the best
SEM BFS algorithms known require Ω(n) I/Os.

Recall the standard O(n+m)-time internal-memory BFS algorithm. It visits
the vertices of the input graph G in a one-by-one fashion; appropriate candidate
nodes for the next vertex to be visited are kept in a FIFO queue Q. After
a vertex v is extracted fromQ, the adjacency list of v, i.e., the set of neighbors of v
in G, is examined in order to update Q: unvisited neighboring nodes are inserted
into Q. Running this algorithm in external memory will result in Θ(n + m)
I/Os. In this bound the Θ(n)-term results from the unstructured accesses to the
adjacency lists; the Θ(m)-term is caused by m unstructured queries to find out
whether neighboring nodes have already been unvisited.

The best EM BFS algorithm known (Munagala and Ranade [14]) overcomes
the latter problem; it requires Θ(n + sort(n + m)) I/Os on general undirected
graphs. Still, the Munagala/Ranade algorithm pays one I/O for each node.

In this paper we show how to overcome the first problem as well: the new

algorithm for undirected graphs needs just O(
√

n·(n+m)
D·B + sort(n +m)) I/Os.

Our approach is simple and has a chance to be practical. We also discuss exten-
sions to undirected single-source shortest-paths (SSSP) with small integer edge
weights and semi-external BFS on directed Eulerian graphs.

This paper is organized as follows. In Section 2 we review previous work and
put our work into context. In Section 3 we outline a randomized version of our
new approach. The details are the subject of Section 5. We start with a review
of the algorithm of Munagala and Ranade (Section 4) and then discuss our
improvement (Sections 5.1 and 5.2). Section 6 presents a deterministic version
of our new approach. In Section 7 we sketch an extension to some single-source
shortest-paths problem. Another modification yields an improved semi-external
BFS algorithm for sparse directed Eulerian graphs (Section 8). Finally, Section 9
provides some concluding remarks and open problems.

2 Previous Work and New Results

Previous Work. I/O-efficient algorithms for graph-traversal have been consid-
ered in, e.g., [1, 3, 4, 7, 8, 9, 10, 11, 12, 13, 14]. In the following we will only
discuss results related to BFS. The currently fastest BFS algorithm for general
undirected graphs [14] requires Θ(n+sort(m)) I/Os. The best bound known for
directed EM BFS is O(min{n+ n

M · m
D·B , (n+ m

D·B ) · log2 n
D·B }) I/Os [7, 8, 9].

This also yields an O(n+ m
D·B )-I/O algorithm for SEM BFS.

Faster algorithms are only known for special types of graphs: O(sort(n))
I/Os are sufficient to solve EM BFS on trees [7], grid graphs [5], outer-planar
graphs [10], and graphs of bounded tree width [11]. Slightly sublinear I/O was
known for undirected graphs with bounded maximum node degree d: the al-
gorithm [13] needs O( n

γ·logd(D·B) + sort(n · (D · B)γ)) I/Os and O(n · (D · B)γ)
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external space for an arbitrary parameter 0 < γ ≤ 1/2. Maheshwari and Zeh [12]
proposed I/O-optimal algorithms for a number of problems on planar graphs; in
particular, they show how to compute BFS on planar graphs using O(sort(n))
I/Os.

SSSP can be seen as the weighted version of BFS. Consequently, all known
EM SSSP algorithms do not perform better than the respective EM BFS al-
gorithms. The best known lower bound for BFS is Ω(min{n, sort(n)} + n+m

D·B )
I/Os. It follows from the respective lower bound for the list-ranking problem [8].

New Results. We present a new EM BFS algorithm for undirected graphs. It

comes in two versions (randomized and deterministic) and requires O(
√

n·(n+m)
D·B

+ sort(n +m)) I/Os (expected or worst-case, respectively). For sparse graphs

with m = O(n) and realistic machine parameters, the O(
√

n·(n+m)
D·B )-term in the

I/O-bound will be dominant. In that case our approach improves upon the I/O-
performance of the best previous algorithm [14] by a factor of Ω(

√
D ·B). More

generally, the new algorithm is asymptotically superior to the old algorithm for
m = o( D·B·n

logM/B n/B ); on denser graphs both approaches need O(sort(n+m)) I/Os.
A simple extension of our new BFS algorithm solves the SSSP problem on

undirected graphs with integer edge-weights in {1, . . . ,W} for small W : it re-

quires O(
√

W ·n·(n+m)
D·B +W · sort(n +m)) I/Os. After another modification we

obtain an improved algorithm for SEM BFS on sparse directed Eulerian graphs:
it achieves O( n+m

(D·B)1/3 +sort(n+m) · log n) I/Os. A performance comparison for
our BFS algorithms is depicted in Figure 1.
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Fig. 1. Comparison: I/O-performance of the new BFS algorithms
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3 High-Level Description of the New BFS Algorithm

Our algorithm refines the algorithm of Munagala and Ranade [14] which con-
structs the BFS tree level-by-level. It operates in two phases. In a first phase
it preprocesses the graph and in the second phase it performs BFS using the
information gathered in the first phase.

The preprocessing partitions the graph into disjoint subgraphs Si, 0 ≤ i ≤ K
with small average internal shortest-path distances. It also partitions the ad-
jacency lists accordingly, i.e., it constructs an external file F = F0F1 . . .Fi . . .
FK−1 where Fi contains the adjacency lists of all nodes in Si. The randomized
partition is created by choosing seed nodes independently and uniformly at ran-
dom with probability µ and running a BFS starting from all seed nodes. Then
the expected number of seed nodes is K = O(µ · n) and the expected shortest-
path distance between any two nodes of a subgraph is at most O(1/µ). The
expected I/O-bound for constructing the partition is O( n+m

µ·D·B + sort(n+m)).
In the second phase we perform BFS as described by Munagala and Ranade

with one crucial difference. We maintain an external fileH (= hot adjacency lists)
which is essentially the union of all Fi such that the current level of the BFS-tree
contains a node in Si. Thus it suffices to scan H (i.e., to access the disk blocks of
H in consecutive fashion) in order to construct the next level of the tree. Each
subfile Fi is added to H at most once; this involves at most O(K +sort(n+m))
I/Os in total. We prove that after an adjacency list was copied to H, it will be
used only for O(1/µ) steps on the average; afterwards the respective list can be
discarded from H. We obtain a bound of O(µ · n+ n+m

µ·D·B + sort(n+m)) on the

expected number of I/Os for the second phase. Choosing µ = min{1,
√

n+m
n·D·B}

gives our bound.

4 The Algorithm of Munagala and Ranade

We review the BFS algorithm of Munagala and Ranade [14], MR BFS for
short. We restrict attention to computing the BFS level of each node v, i.e.,
the minimum number of edges needed to reach v from the source. For undi-
rected graphs, the respective BFS tree or the BFS numbers can be obtained
efficiently: in [7] it is shown that each of the following transformations can be
done using O(sort(n+m)) I/Os: BFS Numbers → BFS Tree → BFS Levels →
BFS Numbers.

Let L(t) denote the set of nodes in BFS level t, and let A(t) := N(L(t−1)) be
the multi-set of neighbors of nodes in L(t− 1). MR BFS builds L(t) as follows:
A(t) is created by |L(t−1)| accesses to the adjacency lists of all nodes in L(t−1).
This causes O(|L(t − 1)| + |A(t)|/(D · B)) I/Os. Observe that O(1 + x/(DB))
I/Os are needed to read a list of length x. Then the algorithm removes duplicates
from A(t). This can be done by sorting A(t) according to the node indices,
followed by a scan and compaction phase; hence, the duplicate elimination takes
O(sort(|A(t)|) I/Os. The resulting set A′(t) is still sorted.
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Now MR BFS computes L(t) := A′(t) \ {L(t− 1) ∪ L(t− 2)}. Filtering out
the nodes already contained in the sorted lists L(t − 1) or L(t − 2) is possible
by parallel scanning. Therefore, this step can be done using O((|A(t)| + |L(t−
1)|+ |L(t− 2)|)/(D · B)) I/Os. Since ∑

t |A(t)| = O(m) and ∑
t |L(t)| = O(n),

MR BFS requires O(n + sort(n + m)) I/Os. The Θ(n) I/Os result from the
unstructured accesses to the n adjacency lists.

The correctness of this BFS algorithm crucially depends on the input graph
being undirected: assume inductively that levels L(0), . . . , L(t− 1) have already
been computed correctly and consider a neighbor v of a node u ∈ L(t−1). Then
the distance from the source node s to v is at least t− 2 because otherwise the
distance of u would be less than t− 1. Thus v ∈ L(t− 2) ∪ L(t− 1) ∪ L(t) and
hence it is correct to assign precisely the nodes in A′(t) \ {L(t− 1) ∪ L(t− 2)}
to L(t).

Theorem 1 ([14]). Undirected BFS requires O(n+ sort(n+m)) I/Os.

5 The New Approach

We show how to speed-up the Munagala/Ranade approach (MR BFS) of the
previous section. We refer to the resulting algorithm as Fast BFS. We may
assume w.l.o.g. that the input graph is connected (otherwise we may run the
randomized O(sort(n+m))-I/O connected-components algorithm of [1] and only
keep the nodes and edges of the component Cs that contains the source node;
all nodes outside of Cs will be assigned BFS-level infinity, and the BFS compu-
tation continues with Cs). We begin with the randomized preprocessing part of
Fast BFS:

5.1 Partitioning a Graph into Small Distance Subgraphs

As a first step, Fast BFS restructures the adjacency lists of the graph represen-
tation: it grows disjoint connected subgraphs Si from randomly selected nodes si

and stores the adjacency lists of the nodes in Si in an external file F . The node si

is called the master node of subgraph Si. A node is selected to be a master with
probability µ = min{1,

√
n+m
n·D·B}. This choice of µ minimizes the total cost of

the algorithm as we will see later. Additionally, we make sure that the source
node s of the graph will be the master of partition S0. Let K be the number of
master nodes. Then E[K] = 1 + µn.

The partitioning is generated “in parallel”: in each round, each master node si

tries to capture all unvisited neighbors of its current sub-graph Si. If several
master nodes want to include a certain node v into their partitions then an
arbitrary master node among them succeeds.

At the beginning of a phase, the adjacency lists of the nodes lying on the
boundaries of the current partitions are active; they carry the label of their
master node. A scan through the set of adjacency lists removes these labeled
lists, appends them in no particular order to the file F , and forms a set of
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requests for the involved target nodes. Subsequently, the requests are sorted.
A parallel scan of the sorted requests and the shrunken representation for the
unvisited parts of the graph allows us to identify and label the new boundary
nodes (and their adjacency lists). Each adjacency list is active during at most
one phase. The partitioning procedure stops once there are no active adjacency
lists left. The expected I/O-performance of the preprocessing step depends on
the speed with which the graph representation shrinks during the partitioning
process.

Lemma 1. Let v ∈ G be an arbitrary node; then v is assigned to some subgraph
(and hence is removed from the graph representation) after an expected number
of at most 1/µ rounds.

Proof: Consider a shortest path P = 〈s, uj , . . . , u2, u1, v〉 from the source node s
to v in G. Let k, 1 ≤ k ≤ j, be the smallest index such that uk is a master node.
Then v is assigned to a subgraph in or before the k-th round. Due to the random
selection of master nodes, we have E[k] ≤ 1/µ.

Corollary 1. Consider an arbitrary node v ∈ Si and let si be the master node
of the subgraph Si. The expected shortest-path distance between v and si in Si is
at most 1/µ.

By Lemma 1, the expected total amount of data being processed during the
partitioning is bounded by X := O(∑v∈V 1/µ ·(1+degree(v))) = O((n+m)/µ).
However, sorting only occurs for active adjacency lists. Thus the preprocessing
requires O((n +m)/(µ ·D · B) + sort(n+m)) expected I/Os.

After the partitioning phase each node knows the (index of the) subgraph to
which it belongs. With a constant number of sort and scan operations we can
partition the adjacency lists into the format F0F1 . . .Fi . . .F|S|−1, where Fi con-
tains the adjacency lists of the nodes in partition Si; an entry (v, w,S(w), fS(w))
from the list of v ∈ Fi stands for the edge (v, w) and provides the additional
information that w belongs to subgraph S(w) whose subfile FS(w) starts at po-
sition fS(w) within F . The edge entries of each Fi are lexicographically sorted.
In total, F occupies O((n+m)/B) blocks of external storage (spread over the D
disks in round-robin fashion). F consists of K subfiles with E[K] = 1+µ ·n. The
size of the subfiles may vary widely. Some spread out over several disk blocks
and some may share the same disk block. The following lemma summarizes the
discussion.

Lemma 2. The randomized preprocessing of Fast BFS requires O( n+m
µ·D·B +

sort(n+m)) expected I/Os.

5.2 The BFS Phase

We construct the BFS levels one by one as in the algorithm of Munagala and
Ranade (MR BFS). The novel feature of our algorithm is the use of a sorted
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external file H. We initialize H with F0. Thus, in particular, H contains the
adjacency list of the source node s of level L(0). The nodes of each created BFS
level will also carry identifiers for the subfiles Fi of their respective subgraphs Si.

When creating level L(t) based on L(t−1) and L(t−2), Fast BFS does not
access single adjacency lists like MR BFS does. Instead, it performs a parallel
scan of the sorted lists L(t−1) and H. While doing so, it extracts the adjacency
lists of all nodes vj ∈ L(t− 1) that can be found in H. Let V1 ⊆ L(t− 1) be the
set of nodes whose adjacency lists could be obtained in that way. In a second
step, Fast BFS extracts from L(t − 1) the partition identifiers of those nodes
in V2 := L(t− 1) \ V1. After sorting these identifiers and eliminating duplicates,
Fast BFS knows which subfiles Fi of F contain the missing adjacency lists. The
respective subfiles are concatenated into a temporary file F ′ and then sorted.
Afterwards the missing adjacency lists for the nodes in V2 can be extracted with
a simple scan-step from the sorted F ′ and the remaining adjacency lists can be
merged with the sorted set H in one pass.

After the adjacency lists of the nodes in L(t − 1) have been obtained, the
set N(L(t− 1)) of neighbor nodes can be generated with a simple scan. At this
point the augmented format of the adjacency lists is used in order to attach
the partition information to each node in N(L(t−1)). Subsequently, Fast BFS
proceeds likeMR BFS: it removes duplicates from N(L(t−1)) and also discards
those nodes that have already been assigned to BFS levels L(t − 1) and L(t −
2). The remaining nodes constitute L(t). The constructed levels are written to
external memory as a consecutive stream of data, thus occupying O(n/(D ·B))
blocks striped over the D disks.

Since Fast BFS is simply a refined implementation ofMR BFS, correctness
is preserved. We only have to reconsider the I/O-bounds:

Lemma 3. The BFS-phase of Fast BFS requires O(µ ·n+ n+m
µ·D·B +sort(n+m))

expected I/0s.

Proof: Apart from the preprocessing of Fast BFS (Lemma 2) we mainly have
to deal with the amount of I/Os needed to maintain the data structure H. For
the construction of BFS level L(t), the contents of the sorted sets H, L(t − 2),
and L(t−1) will be scanned a constant number of times. The first D ·B blocks of
H, L(t−2), and L(t−1) are always kept in main memory. Hence, scanning these
data items does not necessarily cause I/O for each level. External memory access
is only needed if the data volume is Ω(D ·B). In that case, however, the number
of I/Os needed to scan x data items over the whole execution of Fast BFS is
bounded by O(x/(D ·B)).

Unstructured I/O happens when H is filled by merging subfiles Fi with the
current contents of H. For a certain BFS level, data from several subfiles Fi may
be added to H. However, the data of each single Fi will be merged with H at
most once. Hence, the number of I/Os needed to perform the mergings can be
split between (a) the adjacency lists being loaded from F and (b) those already
being in H. The I/O bound for part (a) is O(∑i(1 +

|Fi|
D·B · logM/B

n+m
B )) =

O(K + sort(n+m)) I/Os, and E[K] = 1 + µ · n.
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With respect to (b) we observe first that the adjacency list Av of an arbitrary
node v ∈ Si stays in H for an expected number at most of 2/µ rounds. This
follows from the fact that the expected shortest-path distance between any two
nodes of a subgraph is at most 2/µ: let L(t′) be the BFS level for which Fi (and
hence Av) was merged with H. Consequently, there must be a node v′ ∈ Si that
belongs to BFS level L(t′). Let si be the master node of subgraph Si and let
d(x, y) denote the number of edges on the shortest path between the nodes x
and y in Si. Since the graph is undirected, the BFS level of v will lie between
L(t′) and L(t′ + d(v′, si) + d(si, v)). As soon as v becomes assigned to a BFS
level, Av is discarded from H. By Corollary 1, E[d(v′, si) + d(si, v)] ≤ 2/µ. In
other words, each adjacency list is part of H for expected O(2/µ) BFS-levels.
Thus, the expected total data volume for (b) is bounded by O((n+m)/µ). This
results in O((n + m)/(µ · D · B)) expected I/Os for scanning H during merge
operations. By the same argumentation, each adjacency list in H takes part
in at most O(1/µ) scan-steps for the generation of N(L(·)) and L(·). Similar to
MR BFS, scanning and sorting all BFS levels and sets N(L(·)) takes O(sort(n+
m)) I/Os.

Combining Lemmas 2 and 3 and making the right choice of µ yields:

Theorem 2. External memory BFS on arbitrary undirected graphs can be solved

using O(
√

n·(n+m)
D·B + sort(n+m)) expected I/Os.

Proof: By our lemmas the expected number of I/0s is bounded by O(µ · n +
n+m
µ·D·B + sort(n +m)). The expression is minimized for µ2 · n · D · B = n +m.
Choosing µ = min{1,√n ·D ·B/(n+m)} the stated bound follows.

6 The Deterministic Variant

In order to obtain the result of Theorem 2 in the worst case, too, it is sufficient
to modify the preprocessing phase of Section 5.1 as follows: instead of growing
subgraphs around randomly selected master nodes, the deterministic variant
extracts the subfiles Fi from an Euler Tour around the spanning tree for the
connected component Cs that contains the source node s. Observe that Cs can
be obtained with the deterministic connected-components algorithm of [14] using
O((1+ log log(D ·B ·n/m)) · sort(n+m)) I/Os. The same amount of I/O suffices
to compute a (minimum) spanning tree Ts for Cs [3].

After Ts has been built, the preprocessing constructs an Euler Tour around Ts

using a constant number of sort- and scan-steps [8]. Then the tour is broken at the
source node s; the elements of the resulting list can be stored in consecutive order
using the deterministic list-ranking algorithm of [8]. This causesO(sort(n)) I/Os.
Subsequently, the Euler Tour can be chopped into pieces of size 1/µ with a simple
scan step. These Euler Tour pieces account for subgraphs Si with the property
that the distance between any two nodes of Si in G is at most 1/µ− 1. Observe
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that a node v of degree d may be part of Θ(d) different subgraphs Si. However,
with a constant number of sorting steps it is possible to remove duplicates and
hence make sure that each node of Cs is part of exactly one subgraph Si, for
example of the one with the smallest index; in particular, s ∈ S0. Eventually,
the reduced subgraphs Si are used to create the reordered adjacency-list files Fi;
this is done as in the old preprocessing and takes another O(sort(n+m)) I/Os.

The BFS-phase of the algorithm remains unchanged; the modified prepro-
cessing, however, guarantees that each adjacency list will be part of the external
set H for at most 1/µ BFS levels: if a subfile Fi is merged with H for BFS level
L(t), then the BFS level of any node v in Si is at most L(t) + 1/µ − 1. The
bound on the total number of I/Os follows from the fact that O((1 + log log(D ·
B · n/m)) · sort(n+m)) = O(

√
n·(n+m)

D·B + sort(n+m)) .

Theorem 3. There is a deterministic algorithm that solves external memory

BFS on undirected graphs using O(
√

n·(n+m)
D·B + sort(n+m)) I/Os.

7 Extension to Some SSSP Problem

We sketch how to modify Fast BFS in order to solve the Single-Source Shortest-
Paths (SSSP) problem on undirected graphs with integer edge-weights in
{1, . . . ,W} for smallW . Due to the “BFS-bottleneck” all previous algorithms for

SSSP required Ω(n) I/Os. Our extension of Fast BFS needs O(
√

W ·n·(n+m)
D·B +

W · sort(n + m)) I/Os. Thus, for sparse graphs and constant W the resulting
algorithm Fast SSSP requires O( n√

D·B + sort(n)) I/Os.
For integer weights in {1, . . . ,W}, the maximum shortest-path distance of

an arbitrary reachable node from the source node s is bounded by W · (n− 1).
Fast SSSP subsequently identifies the set of nodes with shortest-path distances
1, 2, . . ., denoted by levels L(1), L(2), . . . ; for W > 1 some levels will be empty.
During the construction of level L(t), Fast SSSP keeps the first D ·B blocks of
each level L(t−W − 1), . . . , L(t+W − 1) in main memory. The neighbor nodes
N(L(t− 1)) of L(t− 1) are put to L(t), . . . , L(t+W − 1) according to the edge
weights. After discarding duplicates from the tentative set L(t), it is checked
against L(t−W − 1), . . . , L(t− 1) in order to remove previously labeled nodes
from L(t). For the whole algorithm this causes at most O(W · sort(n+m)) I/Os.

Using the randomized preprocessing of Fast BFS, the expected length of
stay for an arbitrary adjacency list inH is multiplied by a factor of at mostW (as
compared to Fast BFS): the expected shortest-path distance between any two
nodes u, v ∈ Si is at mostW ·E[d(u, si)+d(si, v)] ≤ 2·W/µ. Hence, the expected
number of I/Os to handleH is at mostO(W/µ·(n+m)/(D ·B)+W ·sort(n+m)).

The choice µ = min{1,
√

W ·(n+m)
n·D·B } balances the costs of the various phases and

the stated bound results.
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8 Semi-External BFS on Directed Eulerian Graphs

The analysis for Fast BFS as presented in the previous sections does not trans-
fer to directed graphs. There are two main reasons: (i) In order to detect pre-
viously labeled nodes during the construction of BFS level L(t) it is usually
not sufficient to check just L(t − 1) and L(t − 2); a node in A′(t) may already
have appeared before in any level L(0), . . . , L(t − 1). (ii) Unless a subgraph Si

is strongly connected it is not guaranteed that once a node v ∈ Si is found to
be part of BFS level L(t), all other nodes v′ ∈ Si will belong to BFS some levels
L(t′) having t′ < t + |Si|; in other words, adjacency lists for nodes in Si may
stay (too) long in the data structure H.

Problem (i) can be circumvented in the SEM setting by keeping a lookup ta-
ble in internal memory. Unfortunately, we do not have a general solution for (ii).
Still we obtain an improved I/O-bound for SEM BFS on sparse directed Eule-
rian graphs1. The preprocessing is quite similar to the deterministic undirected
variant of Section 6. However, instead of grouping the adjacency lists based on
an Euler Tour around a spanning tree, we partition them concerning an Euler
Circuit for the whole graph:

The PRAM algorithm of [6] yields an Euler Circuit inO(log n) time; it applies
O(n+m) processors and uses O(n+m) space. Hence, this parallel algorithm can
be converted into an EM algorithm which requiresO(log n·sort(n+m)) I/Os [8].
Let 〈v0, v1, . . . , vm−1, vm〉 denote the order of the nodes on an Euler Circuit forG,
starting from one occurrence of the source node, i.e., v0 = s. Let the subgraph Si

contain the nodes of the multi-set {vi·(D·B)1/3 , . . . , v(i+1)·(D·B)1/3−1}. As in the
deterministic preprocessing for the undirected case (Section 6), a node v may
be part of several subgraphs Si; therefore, v’s adjacency list will only be kept in
exactly one subfile Fi. We impose another additional restriction: the subfiles Fi

only store adjacency lists of nodes having outdegree at most (D · B)1/3; these
nodes will be called light, nodes with outdegree larger than (D ·B)1/3 are called
heavy. The adjacency lists for heavy nodes are kept in a standard representation
for adjacency lists.

The BFS-phase of the directed SEM version differs from the fully-external
undirected approach in two aspects: (i) The BFS level L(t) is constructed as
A′(t) \ {L(0) ∪ L(1) ∪ . . . ∪ L(t − 1)}, where L(0), L(1), . . . , L(t − 1) are kept
in internal memory. (ii) The adjacency list of each heavy node v is accessed
separately using O(1 + outdegree(v)/(D ·B)) I/Os at the time the lists needs to
be read. Adjacency lists of heavy nodes are not inserted into the data structure
H. Each such adjacency list will be accessed at most once. As there are at most
m/(D · B)1/3 heavy nodes this accounts for O(m/(D · B)1/3) extra I/Os.

Theorem 4. Semi-external memory BFS on directed Eulerian graphs requires
O( n+m

(D·B)1/3 + sort(n+m) · logn) I/Os in the worst case.

1 An Euler Circuit of a graph is a cycle that traverses every edge of the graph precisely
once. A graph containing an Euler Circuit is called Eulerian. If a directed graph
is connected then it is Eulerian provided that, for every vertex v, indegree(v) =
outdegree(v).
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Proof: As already discussed before the modified preprocessing can be done using
O(sort(n+m) · logn) I/Os. The amount of data kept in each Fi is bounded by
O((D · B)2/3). Hence, accessing and merging all the m/(D · B)1/3 subfiles Fi

into H during the BFS-phase takes O(m/(D ·B)1/3 + sort(m)) I/Os (excluding
I/Os to scan data already stored in H).

A subfile Fi is called regular if none of its adjacency lists stays in H for
more than 2 · (D · B)1/3 successive BFS levels; otherwise, Fi is called delayed.
The total amount of data kept and scanned in H from regular subfiles is at
most O(m/(D · B)1/3 · (D · B)2/3 · (D ·B)1/3) = O(m · (D · B)2/3). This causes
O(m/(D ·B)1/3) I/Os.

Now we turn to the delayed subfiles: let D := {Fi0 ,Fi1 , . . . ,Fik
}, k ≤ m/(D ·

B)1/3, be the set of all delayed subfiles, where ij < ij+1. Furthermore, let tij

be the time (BFS level) when Fij is loaded into H; similarly let t′ij
be the time

(BFS level) after which all data from Fij has been removed from H again.
Recall that the source node s is the first node on the Euler Circuit 〈v0, v1, . . . ,

vm−1, vm, v0〉. Hence, node vi has BFS level at most i. Furthermore, if vi belongs
to BFS level x ≤ i then the successive node vi+1 on the Euler Circuit has BFS
level at most x + 1. As Fi0 contains (a subset of) the adjacency lists of the
light nodes in the multi-set {vi0·(D·B)1/3 , . . . , v(i0+1)·(D·B)1/3−1}, we find t′i0 ≤
(i0 + 1) · (D · B)1/3. More generally, t′ij

≤ tij−1 + (ij − ij−1 + 1) · (D ·B)1/3.
The formula captures the following observation: once all data of Fi has been

loaded into H, the data of Fi+l will have been completely processed after the
next (l + 1) · (D · B)1/3 BFS levels the latest. As each Fi contains at most
O((D ·B)2/3) data, the total amount of data scanned in H from delayed Fi is at
most Z =

∑k
j=0(t

′
ij
− tij ) · (D ·B)2/3 ≤ (i0+1) · (D ·B)+∑k

j=1(tij−1 − tij +(ij −
ij−1+1) · (D ·B)1/3) · (D ·B)2/3. The latter sum telescopes, and Z is easily seen
to be bounded by tk · (D ·B)2/3+(ik+k+1) · (D ·B). Using k, ik ≤ m/(D ·B)1/3

and tk ≤ n this implies another O((n+m)/(D ·B)1/3) I/Os.

Theorem 4 still holds under the weaker memory condition M = Ω(n/(D ·
B)2/3): instead of maintaining an IM boolean array for all n nodes it is sufficient
to remember subsets of size Θ(M) and adapt the adjacency lists in EM whenever
the IM data structure is full [8]. This can happen at most O((D ·B)2/3) times;
each EM adaption of the lists can be done using O((n+m)/(D · B)) I/Os.

Theorem 4 also holds for graphs that are nearly Eulerian, i.e.,
∑

v |indegree(v)
− outdegree(v)| = O(m/n): a simple preprocessing can connect nodes with un-
balanced degrees via paths of n dummy nodes. The resulting graph G′ is Eule-
rian, has size O(n+m), and the BFS levels of reachable nodes from the original
graph will remain unchanged.

9 Conclusions

We have provided a new BFS algorithm for external memory. For general undi-
rected sparse graphs it is much better than any previous approach. It may fa-
cilitate I/O-efficient solutions for other graph problems like demonstrated for
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some SSSP problem. However, it is unclear whether similar I/O-performance
can be achieved on arbitrary directed graphs. Furthermore, it is an interest-
ing open question whether there is a stronger lower-bound for external-memory
BFS. Finally, finding an algorithm for depth-first search with comparable I/O-
performance would be important.
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