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Abstract. Data sets in large applications are often too massive to �t com-

pletely inside the computer's internal memory. The resulting input/output

communication (or I/O) between fast internal memory and slower external

memory (such as disks) can be a major performance bottleneck. In this paper,

we survey the state of the art in the design and analysis of external memory

algorithms and data structures (which are sometimes referred to as \EM" or

\I/O" or \out-of-core" algorithms and data structures). EM algorithms and

data structures are often designed and analyzed using the parallel disk model

(PDM). The three machine-independent measures of performance in PDM are

the number of I/O operations, the CPU time, and the amount of disk space.

PDM allows for multiple disks (or disk arrays) and parallel CPUs, and it can

be generalized to handle tertiary storage and hierarchical memory.

We discuss several important paradigms for how to solve batched and

online problems e�ciently in external memory. Programming tools and en-

vironments are available for simplifying the programming task. The TPIE

system (Transparent Parallel I/O programming Environment) is both easy to

use and e�cient in terms of execution speed. We report on some experiments

using TPIE in the domain of spatial databases. The newly developed EM

algorithms and data structures that incorporate the paradigms we discuss are

signi�cantly faster than methods currently used in practice.

1. Introduction

The Input/Output communication (or simply I/O) between the fast internal
memory and the slow external memory (such as disk) can be a bottleneck in ap-
plications that process massive amounts of data [68]. One promising approach is
to design algorithms that bypass the virtual memory system and explicitly manage
their own I/O. We refer to such algorithms as external memory algorithms, or more
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simply EM algorithms. (The terms out-of-core algorithms and I/O algorithms are
also sometimes used.)

In this paper we survey several paradigms for solving problems e�ciently in
external memory. The problems we consider fall into two general categories:

1. Batched problems, in which no preprocessing is done and the entire �le of
data items must be processed, often in stream mode with one or more passes
over the data.

2. Online problems, in which computation is done in response to a continuous
series of query operations. A common technique for online problems is to
organize the data items via a hierarchical index, so that only a very small
portion of the data needs to be examined in response to each query. The data
being queried can be either static, which can be preprocessed for e�cient
query processing, or dynamic, where the queries are intermixed with updates
such as insertions and deletions.

We base our approach on the parallel disk model (PDM) described in the next
section. PDM provides an elegant and reasonably accurate model for analyzing
the relative performance of EM algorithms and data structures. The three main
performance measures of PDM are number of I/O operations, disk space usage,
and CPU time. For reasons of brevity, we focus on the �rst two measures. Most of
the algorithms we discuss are also e�cient in terms of CPU time.

In Section 3, we look at the canonical batched EM problem of external sorting
and the related problems of permuting and Fast Fourier Transform. The two im-
portant paradigms of distribution and merging account for all well-known external
sorting algorithms. We provide fundamental lower bounds on the number of I/Os
needed to perform sorting and several other batched problems in external memory.

We brie
y discuss grid and linear algebra batched computations in Section 4.
In Section 5 we mention several e�ective paradigms for batched EM problems in
computational geometry. The paradigms include distribution sweep (for spatial join
and �nding all nearest neighbors), persistent B-trees (batched point location and
graph drawing), batched �ltering (for 3-D convex hulls and batched point location),
external fractional cascading (for red-blue line segment intersection), online �ltering
(for cooperative search in fractionally cascaded data structures), external marriage-
before-conquest (for output-sensitive convex hulls), and randomized incremental
construction with gradations (for line segment intersections and other geometric
problems). In Section 6 we look at EM algorithms for combinatorial problems on
graphs. In many cases, I/O-e�cient algorithms can be obtained by using sorting
to simulate some well-known parallel algorithms.

In Sections 7 and 8 we consider spatial data structures in the online setting.
Section 7 begins with a discussion of B-trees, the most important dynamic online
EM data structure. B-trees are the method of choice for dictionary operations and
one-dimensional range queries. Weight-balanced B-trees provide a uniform mech-
anism for dynamically rebuilding substructures, and level-balanced B-trees permit
maintenance of parent pointers. They are useful for building interval trees and
doing dynamic point location in external memory. The bu�er tree is a so-called
\batched dynamic" version of the B-tree for e�cient implementation of search trees
and priority queues in EM sweep line applications, We also consider multidimen-
sional extensions of the B-tree. R-trees and variants work well in practice for
several multidimensional spatial applications such as range searching and spatial
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Figure 1. Platter of a magnetic disk drive.

joins. In Section 8, we discuss specialized spatial structures for online multidimen-
sional range search, some of which yield optimal bounds for di�erent cases of 2-D
range searching. Nonlinear disk space is required in order to achieve optimal query
performance for general 2-D range searching. In contrast, R-trees use linear space,
but have bad worst-case performance.

Data structures for sorting, searching, and �nding matches in strings are the
focus of Section 9. In Section 10 we discuss programming environments and tools
that facilitate high-level development of e�cient EM algorithms. In Section 11, we
demonstrate for two problems arising in spatial databases that signi�cant speedups
can be obtained in practice by use of e�cient EM techniques. We use the TPIE
system (Transparent Parallel I/O programming Environment) covered in Section 10
for the implementations. In Section 12 we discuss EM algorithms that adapt opti-
mally to dynamically changing memory allocations. We conclude with some �nal
remarks and observations in Section 13.

2. Parallel Disk Model (PDM)

External memory algorithms explicitly control data placement and movement,
and thus it is important for algorithm designers to have a simple but reasonably
accurate model of the memory system's characteristics. Magnetic disks consist of
one or more rotating platters and one read/write head per platter surface. The data
are stored in concentric circles on the platters called tracks, as shown in Figure 1.
To read or write a data item at a certain address on disk, the read/write head must
mechanically seek to the correct track and then wait for the desired address to pass
by. The seek time to move from one random track to another is often on the order
of 5{10 milliseconds, and the average rotational latency, which is the time for half
a revolution, has the same order of magnitude. In order to amortize this delay, it
pays to transfer a large collection of contiguous data items, called a block. Similar
considerations apply to all levels of the memory hierarchy.

Even if an application can structure its pattern of memory accesses to exploit
locality and take full advantage of disk block transfer, there is still a substantial ac-
cess gap between internal memory performance and external memory performance.
In fact the access gap is growing, since the speed of memory chips is increasing
more quickly than disk bandwidth. Use of parallel processors further widens the
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Figure 2. Parallel disk model: (a) P = 1, (b) P = D.

gap. Storage systems such as RAID are being developed that deploy multiple disks
to get additional bandwidth [41, 76].

In the next section, we describe the high-level parallel disk model (PDM), which
we use in this paper for the design and analysis of algorithms and data structures.
In Section 2.2, we list four fundamental I/O bounds that pertain to most of the
problems considered in this paper. Practical considerations of PDM and alternative
memory models are discussed in Sections 2.3 and 2.4.

2.1. PDM and Problem Parameters. We can capture the main properties
of magnetic disks and multiple disk systems by the commonly used parallel disk

model (PDM) introduced by Vitter and Shriver [138]:

N = problem size (in units of data items);

M = internal memory size (in units of data items);

B = block transfer size (in units of data items);

D = # independent disk drives;

P = # CPUs;

where M < N , and 1 � DB � M=2. In a single I/O, each of the D disks can
simultaneously transfer a block of B contiguous data items. If P � D, each of
the P processors can drive about D=P disks; if D < P , each disk is shared by
about P=D processors. The internal memory size is M=P per processor, and the
P processors are connected by an interconnection network. One desired property
for the network is the capability to sort the M data items in the collective main
memories of the processors in parallel in optimal O

�
(M=P ) logM

�
time.1 The

special cases of PDM for P = 1 and P = D are pictured in Figure 2.
Queries are naturally associated with online computations, but they can also be

done in batched mode. For example, in the batched orthogonal 2-D range searching
problem discussed in Section 5, we are given a set of N points in the plane and a
set of Q queries in the form of rectangles, and the problem is to report the points

1We use the notation log n to denote the binary (base 2) logarithm log2 n. For bases other

than 2, the base will be speci�ed explicitly.
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D0 D1 D2 D3 D4

stripe 0 0 1 2 3 4 5 6 7 8 9

stripe 1 10 11 12 13 14 15 16 17 18 19

stripe 2 20 21 22 23 24 25 26 27 28 29

stripe 3 30 31 32 33 34 35 36 37 38 39

Figure 3. Initial data layout on the disks, for D = 5 disks and
block size B = 2. The input data items are initially striped block-
by-block across the disks. For example, data items 16 and 17 are
stored in the second block (i.e., in stripe 1) of disk D3.

lying in each of the Q query rectangles. In both the batched and online settings,
the number of items reported in response to each query may vary. We thus need
to de�ne two more performance parameters:

Q = # queries (for a batched problem);

Z = query output size (in units of data items):

It is convenient to refer to some of the above PDM parameters in units of disk
blocks rather than in units of data items. We de�ne the lower-case notation

n =
N

B
; m =

M

B
; q =

Q

B
; z =

Z

B
(2.1)

to be the problem input size, internal memory size, query speci�cation size, and
query output size, respectively, in units of disk blocks. We assume that the input
data are initially \striped" across the D disks, in units of blocks, as illustrated in
Figure 3, and we require the output data to be similarly striped. Striped format
allows a �le of N data items to be read or written in O(N=DB) = O(n=D) I/Os,
which is optimal.

2.2. Fundamental Bounds and Objectives. The primary measures of per-
formance in PDM are

1. the number of I/O operations performed,
2. the amount of disk space used, and
3. the internal (parallel) computation time.

For reasons of brevity we will focus in this paper on only the �rst two measures.
Most of the algorithms we mention run in optimal CPU time, at least for the single-
processor case. Ideally algorithms and data structures should use linear space,
which means O(N=B) = O(n) disk blocks of storage.

The I/O performance of many algorithms and data structures can be expressed
in terms of the bounds for the following four fundamental operations:

1. Scanning (or streaming or touching) a �le of N data items, which takes
�(N=DB) = �(n=D) I/Os.

2. Sorting N items, which can be done using �
�
(N=DB) logM=B(N=B)

�
=

�
�
(n=D) logm n

�
I/Os.

3. Online search among N items, which takes �(logDB N) I/Os.
4. Reporting the answers to a query in blocked fashion onto external memory,

which takes �
�dZ=DBe� = �

�dz=De� I/Os.
The �rst two of these I/O bounds|scanning and sorting|apply to batched prob-
lems. As mentioned earlier, some batched problems also involve queries, in which
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case the I/O bound for query reporting is relevant. The last two I/O bounds|
online search and query reporting|apply to online problems. We typically assume
for online problems that there is only one disk, namely, D = 1, in which case the
bounds for online search and query reporting become simply �(logB N) and �(z);
multiple disks can generally be used in an optimal way for online problems via the
disk striping technique explained in Section 3.

For many of the batched problems we consider, such as sorting, FFTs, triangu-
lation, and computing convex hulls, there are algorithms to solve the corresponding
internal memory versions of the problems in O(N logN) CPU time. But if we de-
ploy such an algorithm naively in an external memory setting (using virtual memory
to handle page management), it may require �(N logn) I/Os, which is excessive.
Similarly, in the online setting, many problems can be solved in O(logN+Z) query
time when they �t in internal memory, but the same data structure in an external
memory setting may require �(logN + Z) I/Os per query.

We would like instead to achieve the I/O bounds O
�
(n=D) logm n

�
in the

batched example and O(logDB N + z=D) for the online case. At the risk of
oversimplifying, we can paraphrase the goal of EM algorithm design in the fol-
lowing syntactic way: to derive e�cient algorithms so that the N and Z terms
in the I/O bounds of the naive algorithms are replaced by n=D and z=D, and
so that the base of the logarithm terms is not 2 but instead m (in the case of
batched problems) or DB (in the case of online problems). The relative speedup
in I/O performance can be very signi�cant, both theoretically and in practice.
For example, for batched problems, the I/O performance improvement can be
a factor of (N log n)=(n=D) logm n = DB logm, which is very large, even for
D = 1. For online problems, the performance improvement can be a factor of
(logN + Z)=(logDB N +z=D), which is at least (logN)= logDB N = logDB, which
is signi�cant in practice, and it can be as much as Z=(z=D) = DB for large Z.

The I/O bound �(N=DB) = �(n=D) for the trivial batched problem of scan-
ning is considered to be a linear number of I/Os in the PDM model. An interesting
feature of the PDM model is that almost all nontrivial batched problems require a
nonlinear number of I/Os, even those that can be solved easily in linear CPU time
in the (internal memory) RAM model. Examples we will discuss later include per-
muting, transposing a matrix, and several combinatorial graph problems. Sorting
is equivalent in I/O complexity to several of these problems.

Often in practice, the nonlinear logm n term in the sorting bound and the
logDB N term in the searching bound are small constants. For example, in units
of items, we could have N = 1010, M = 107, B = 104, and D = 1, in which
case we get n = 106, m = 103, and logm n = 2. If memory is shared with other
processes, the logm n term will be somewhat larger. In online applications, a smaller
B value, such as B = 102, is more appropriate, as explained in the next section;
the corresponding value of logDB N for the example would be 5.

It still makes sense to identify terms like logm n and logDB N and not hide
them within the big-oh factors, since the terms can make a signi�cant di�erence in
practice. (Of course, it is equally important to consider any other constants hidden
in big-oh notations!) A nonlinear bound O

�
(n=D) logm n

�
usually indicates that

multiple or extra passes over the data are required. In truly massive problems, the
data will reside on tertiary storage. As we mention brie
y in Section 2.4, PDM
algorithms can often be generalized in a recursive framework to handle multiple
levels of memory. A multilevel algorithm developed from a PDM algorithm that
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does n=D I/Os is likely to run at least an order of magnitude faster in hierarchical
memory than a multilevel algorithm generated from a PDM algorithm that does
(n=D) logm n I/Os [139].

2.3. Practical Modeling Considerations. Track size is a parameter of the
disk hardware and cannot be altered; for most disks it is in the range 50{100
kilobytes. For batched applications, the block transfer size B in PDM should be
chosen to be a signi�cant fraction of the track size or a small multiple of the track
size, so as to better amortize seek time. For online applications, a smaller B value
is appropriate; the minimum block transfer size imposed by many systems is 8
kilobytes.

PDM is a good generic programming model that facilitates elegant design of
I/O-e�cient algorithms, especially when used in conjunction with the programming
tools discussed in Section 10. More complex and precise disk models have been
developed, such as the ones by Ruemmler and Wilkes [112], Shriver et al. [119],
Barve et al. [28], and Farach et al. [60]. They distinguish between sequential reads
and random reads and consider the e�ects on throughput of features such as disk
bu�er caches and shared buses, which can reduce the time per I/O by eliminating
or hiding the seek time. In practice, the e�ects of more complex models can be
realized or approximated by PDM with an appropriate choice of parameters. The
bottom line is that programs that perform well in terms of PDM will generally
perform well when implemented on real systems.

2.4. Other Memory Models. The study of problem complexity and algo-
rithm analysis when using external memory devices began more than 40 years ago
with Demuth's Ph.D. thesis on sorting [55, 88]. In the early 1970s, Knuth [88]
did an extensive study of sorting using magnetic tapes and (to a lesser extent)
magnetic disks. At about the same time, Floyd [64, 88] considered a disk model
akin to PDM for D = 1, P = 1, B = M=2 = �(Nc), for constant c > 0, and
developed optimal upper and lower I/O bounds for sorting and matrix transpo-
sition. Hong and Kung [78] developed a pebbling model of I/O for straightline
computations, and Savage and Vitter [117] extended the model to deal with block
transfer. Aggarwal and Vitter [11] generalized Floyd's I/O model to allow simul-
taneous block transfers, but the model was unrealistic in that the simultaneous
transfers were allowed to take place on a single disk. They developed matching
upper and lower I/O bounds for all parameter values for a host of problems. Since
the PDM model can be thought of as a more restrictive (and more realistic) ver-
sion of Aggarwal and Vitter's model, their lower bounds apply as well to PDM.
Modi�ed versions of PDM that integrate various aspects of parallel computation
are developed in [54, 96, 122]. Surveys of I/O models and algorithms appear
in [16, 120]. Models of \active disks" augmented with processing capabilities to
reduce data tra�c to the host, especially during scanning applications, are given
in [2, 110].

The same type of bottleneck that occurs between internal memory and external
disk storage can also occur at other levels of the memory hierarchy, such as between
registers and data cache, between data cache and level 2 cache, between level 2 cache
and DRAM, and between disk storage and tertiary devices. The PDM model can
be generalized to model the hierarchy of memories ranging from registers at the
small end to tertiary storage at the large end. Optimal algorithms for PDM often
generalize in a recursive fashion to yield optimal algorithms in the hierarchical
memory models. However, the match between theory and practice is harder to
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establish with hierarchical models; the simpler models are less practical, and the
more practical models can be cumbersome to use.

For reasons of brevity and emphasis, we do not consider such hierarchical mod-
els in this paper. We refer the reader to the following references: Aggarwal et al. [8]
de�ne an elegant hierarchical memory model, and Aggarwal et al. [9] augment it
with block transfer capability. Alpern et al. [13] model levels of memory in which
the memory size, block size, and bandwidth grow at uniform rates. Vitter and
Shriver [139] and Vitter and Nodine [137] discuss parallel versions and variants of
the hierarchical models. The parallel model of Li et al. [96] also applies to hierar-
chical memory. Savage [116] gives a hierarchical pebbling version of [117]. Carter
and Gatlin [37] de�ne pebbling models of nonassociative direct-mapped caches.

3. External Sorting and Related Problems

The problem of external sorting (or sorting in external memory) is a central
problem in the �eld of EM algorithms, partly because sorting and sorting-like op-
erations account for a signi�cant percentage of computer use [88], and also because
sorting is an important paradigm in the design of e�cient EM algorithms. With
some technical quali�cations, many problems that can be solved easily in linear
time in internal memory, such as permuting, list ranking, expression tree evalua-
tion, and �nding connected components in a sparse graph, require the same number
of I/Os in PDM as does sorting.

Theorem 3.1 ([11, 106]). The average-case and worst-case number of I/Os

required for sorting N data items using D disks is

�
� n
D

logm n
�
= �

�
n

D

logn

logm

�
:(3.1)

It is conceptually much simpler to program for the single-disk case (D = 1)
than for the multiple-disk case. Disk striping is a paradigm that can ease the
programming task with multiple disks. I/Os are permitted only on entire stripes,
one at a time. For example, in the data layout in Figure 3, data items 20{29 can
be accessed in a single I/O step because their blocks are grouped into the same
stripe. The net e�ect of striping is that the D disks behave as a single logical disk,
but with a larger logical block size DB.

Let us consider what happens if we use the technique of disk striping in con-
junction with an optimal sorting algorithm for one disk. The optimal number of
I/Os using one disk is

�

�
n
logn

logm

�
= �

�
N

B

log(N=B)

log(M=B)

�
:(3.2)

The e�ect of disk striping with D disks is to replace B by DB in (3.2), which yields
the I/O bound

�

�
N

DB

log(N=DB)

log(M=DB)

�
= �

�
n

D

log(n=D)

log(m=D)

�
:(3.3)

The striping I/O bound (3.3) is larger than the optimal bound (3.1) by a multiplica-
tive factor of about (logm)= log(m=D), which is signi�cant when D is on the order
of m, causing the log(m=D) term in the denominator to be very small. In order to
attain the optimal sorting bound (3.1) theoretically, we must be able to control the
disks independently, so that each disk can access a di�erent stripe in the same I/O
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step. Sorting via disk striping is often more e�cient in practice than more compli-
cated techniques that utilize independent disks, since the (logm)= log(m=D) factor
may be dwarfed by the additional overhead of using the disks independently [134].

In Sections 3.1 and 3.2, we consider some recently developed external sorting
algorithms based upon the distribution and merge paradigms. The SRM method,
which uses a randomized merge technique, outperforms disk striping in practice
for reasonable values of D (see Section 3.2). In Sections 3.3 and 3.4, we consider
the related problems of permuting and Fast Fourier Transform. All the methods
we cover, with the exception of Greed Sort in Section 3.2, access the disks inde-
pendently during parallel read operations, but parallel writes are done in a striped
manner, which facilitates the writing of parity error correction information. (We
refer the reader to [41, 76] for a discussion of error correction issues.) In Sec-
tion 3.5, we discuss some fundamental lower bounds on the number of I/Os needed
to perform sorting and other batched problems in external memory.

3.1. Sorting by Distribution: Simultaneous Online Load Balancings.

Distribution sort is a recursive process in which the data items to be sorted are
partitioned by a set of S � 1 partitioning elements into S buckets. All the items
in one bucket precede all the items in the next bucket. The individual buckets are
then sorted recursively and concatenated together to form a single totally sorted
list.

The S � 1 partitioning elements should be chosen so that the buckets are of
roughly equal size. When that is the case, the bucket sizes decrease by a �(S) factor
from one level of recursion to the next, and there are O(logS n) levels of recursion.
During each level of recursion, the data are streamed through internal memory,
and the S buckets are written to the disks in an online manner as the streaming
proceeds. A double bu�er of size 2B is allocated to each of the S buckets. When
one half of the double bu�er �lls, its block is written to disk in the next I/O, and
the other half is used to store the incoming items. Therefore, the maximum number
of buckets (and partitioning elements) is S = �(M=B) = �(m), and the resulting
number of levels of recursion is �(logm n).

It seems di�cult to �nd S = �(m) partitioning elements using �(n=D)
I/Os and guarantee that the bucket sizes are within a constant factor of one an-
other. E�cient deterministic methods exist for choosing S =

p
m partitioning

elements [105, 138], which has the e�ect of doubling the number of levels of recur-
sion. Probabilistic methods based upon random sampling can be found in [61].

In order to meet the sorting bound (3.1), the formation of the buckets at each
level of recursion must be done in O(n=D) I/Os, which is easy to do for the single-
disk case. In the more general multiple-disk case, each read step and each write
step during the bucket formation must involve on the average �(D) blocks. The
�le of items being partitioned was itself one of the buckets formed in the previous
level of recursion. In order to read that �le e�ciently, its blocks must be spread
uniformly among the disks, so that no one disk is a bottleneck. The challenge
in distribution sort is to write the blocks of the buckets to the disks in an online
manner and achieve a global load balance by the end of the partitioning, so that
the bucket can be read e�ciently during the next level of the recursion.

Partial striping is an e�ective technique for reducing the amount of information
that must be stored in internal memory in order to manage the disks. The disks are
grouped into clusters of size C and data are written in \logical blocks" of size CB,
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one per cluster. Choosing C =
p
D won't change the optimal sorting time by more

than a constant factor, but as pointed out earlier, full striping (in which C = D)
can be nonoptimal.

Vitter and Shriver [138] use two randomized online techniques during the parti-
tioning so that with high probability each bucket is well balanced across theD disks.
(Partial striping is used so that the pointers needed to keep track of the layout of the
buckets on the disks can �t in internal memory.) The �rst technique is used when
the size N of the �le to partition is su�ciently large or whenM=DB = 
(logD), so
that the number �(n=S) of blocks in each bucket is 
(D logD). Each parallel write
operation writes its D blocks in random order to a disk stripe, with all D! orders
equally likely. At the end of the partitioning, with high probability each block is
evenly distributed among the disks. This situation is analogous to a hashing sce-
nario in which the number of inserted items is larger by at least a logarithmic factor
than the number of bins in the hash table, thereby causing items to be spread fairly
evenly, so that the expected maximum bin size is within a constant factor of the
expected bin size [136].

If the number of blocks per bucket is not 
(D logD), however, the technique
breaks down and the distribution of each bucket among the disks tends to be uneven.
For these smaller values of N , Vitter and Shriver use a di�erent technique: In one
pass, the �le is read, one memoryload at a time. Each memoryload is randomly
permuted and written back to the disks in the new order. In a second pass, the
�le is accessed one memoryload at a time in a \diagonally striped" manner. They
show that with very high probability each individual \diagonal stripe" contributes
about the same number of items to each bucket, so the blocks of the buckets in
each memoryload can be assigned to the disks in a balanced round robin manner
using an optimal number of I/Os.

An even better way to do distribution sort, and deterministically at that, is the
BalanceSort method developed by Nodine and Vitter [105]. During the partitioning
process, the algorithm keeps track of how evenly each bucket has been distributed
so far among the disks. For each 1 � b � S and 1 � d � D, let numb be the total
number of items in bucket b processed so far during the partitioning and let numb(d)
be the number of those items written to disk d; that is, numb =

P
1�d�D numb(d).

The algorithm is able to write at least half of any given memoryload to the disks
and still maintain the invariant for each bucket b that the bD=2c largest values of
numb(1), numb(2), : : : , numb(D) di�er by at most 1, and hence each numb(d) is
at most about twice the ideal value numb=D.

An alternative sorting technique, with higher overhead, is to use the bu�er
tree data structure [14] described in Section 7.2, which was developed for batched
dynamic applications.

DeWitt et al. [56] present a randomized distribution sort algorithm in a similar
model to handle the case when sorting can be done in two passes. They use a
sampling technique to �nd the partitioning elements and route the items in each
bucket to a particular processor. The buckets are sorted individually in the second
pass.

Matias et al. [99] develop optimal in-place distribution sort algorithms for one
disk as a function of the number K of distinct key values. The corresponding I/O
bound is O

�
n logmminfK;ng�. Their technique can be extended within the same

I/O bounds to merge sort.
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Distribution sort algorithms may have an advantage over the merge approaches
presented in the next section in that they typically make better use of lower levels
of cache in the memory hierarchy of real systems. Such an intuition comes from
analysis of distribution sort and merge sort algorithms on models of hierarchical
memory, such as the RUMH model of Vitter and Nodine [137].

3.2. Sorting by Merging. The merge paradigm is somewhat orthogonal to
the distribution paradigm discussed in Section 3.1. A typical merge sort algorithm
works as follows: In the \run formation" phase, the n blocks of data are streamed
into memory, one memoryload at a time; each memoryload is sorted into a single
\run", which is then output to stripes on disk. At the end of the run formation
phase, there are N=M = n=m (sorted) runs, each striped across the disks. (In
actual implementations, the \replacement-selection" technique can be used to get
runs of 2M data items, on the average, when M � B [88].)

After the initial runs are formed, the merging phase begins. In each pass of
the merging phase, groups of R runs are merged together. During each merge, one
block from each run resides in internal memory. When the data items of a block
expire, the next block for that run is input. Double bu�ering is used to keep the
disks busy. Hence, at most R = �(m) runs can be merged at a time; the resulting
number of passes is O(logm n).

To achieve the optimal sorting bound (3.1), each merging pass must be done
in O(n=D) I/Os, which is easy to do for the single-disk case. In the more general
multiple-disk case, each parallel read operation during the merging must on the
average bring in the next �(D) blocks needed for the merging. The challenge is to
ensure that those blocks reside on di�erent disks so that they can be read in a single
I/O (or a small constant number of I/Os). The di�culty lies in the fact that the
runs being merged were themselves formed during the previous merge pass. Their
blocks were written to the disks in the previous pass without knowledge of how
they would interact with other runs in later merges.

A perfect solution, in which the next D blocks needed for the merge are guar-
anteed to be on distinct disks, can be devised for the binary merging case R = 2
based upon the Gilbreath principle [67, 88]: The �rst run is striped in ascending
order by disk number, and the other run is striped in descending order. Regard-
less of how the items in the two runs interleave during the merge, it is always the
case that the next D blocks needed for the output can be accessed via a single
I/O operation, and thus the amount of internal memory bu�er space needed for
binary merging can be kept to a minimum. Unfortunately there is no analog to the
Gilbreath principle for R > 2, and as we have seen above, we need the value of R
to be large in order to get an optimal sorting algorithm.

The Greed Sort method of Nodine and Vitter [106] was the �rst optimal de-
terministic EM algorithm for sorting with multiple disks. It handles the case R > 2
by relaxing the condition on the merging process. In each step, the following two
blocks from each disk are brought into internal memory: the block b1 with the
smallest data item value and the block b2 whose largest item value is smallest. If
b1 = b2, only one block is read into memory, and it is added to the next output
stripe. Otherwise, the two blocks b1 and b2 are merged in memory; the smaller B
items are written to the output stripe, and the remaining items are written back
to the disk. The resulting run that is produced is only an \approximately" merged
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D = 5 D = 10 D = 50

k = 5 0:56 0:47 0:37

k = 10 0:61 0:52 0:40

k = 50 0:71 0:63 0:51

Table 1. The ratio of the number of I/Os used by simple ran-
domized merge sort (SRM) to the number of I/Os used by merge
sort with disk striping, during a merge of kD runs. The �gures
were obtained by simulation; they back up the (more pessimistic)
analytic upper bound in [27].

run, but its saving grace is that no two inverted items are too far apart. A �nal ap-
plication of Columnsort [94] in conjunction with partial striping su�ces to restore
total order.

An optimal deterministic merge sort, with somewhat higher constant factors
than those of the distribution sort algorithms, was developed by Aggarwal and Plax-
ton [10], based upon the Sharesort hypercube sorting algorithm [53]. To guarantee
even distribution during the merging, it employs two high-level merging schemes in
which the scheduling is almost oblivious.

The most practical method for sorting is the simple randomized merge sort
(SRM) algorithm of Barve et al. [27] (referred to as \randomized striping" by
Knuth [88]). Each run is striped across the disks, but with a random starting point
(the only place in the algorithm where randomness is utilized). During the merging
process, the next block needed from each disk is read into memory, and if there is not
enough room, the least needed blocks are \
ushed" (without any I/Os required) to
free up space. The expected performance of SRM is not optimal for some parameter
values, but it signi�cantly outperforms the use of disk striping for reasonable values
of the parameters, as shown in Table 1. Barve et al. [27] derive an upper bound on
the I/O performance; the precise analysis is an interesting open problem [88]. Work
is beginning on applying the SRM bu�er management techniques to distribution
sort. The hope is to get better overall sorting performance by means of improved
cache utilization, based upon the intuition mentioned at the end of the previous
section.

3.3. Permuting and Transposition. Permuting is the special case of sorting
in which the key values of the N data items form a permutation of f1, 2, : : : , Ng.

Theorem 3.2 ([11]). The average-case and worst-case number of I/Os re-

quired for permuting N data items using D disks is

�

�
min

�
N

D
;
n

D
logm n

��
:(3.4)

The I/O bound (3.4) for permuting can be realized by using one of the sorting
algorithms from Section 3 except in the extreme case B logm = o(logn), in which
case it is faster to move the data items one by one in a non-blocked way. The one-
by-one method is trivial if D = 1, but with multiple disks there may be bottlenecks
on individual disks; one solution for doing the permuting in O(N=D) I/Os is to
apply the randomized balancing strategies of [138].
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Matrix transposition is the special case of permuting in which the permutation
can be represented as a transposition of a matrix from row-major order into column-
major order.

Theorem 3.3 ([11]). The number of I/Os required using D disks to transpose

a p� q matrix from row-major order to column-major order is

�
� n
D

logmminfM;p; q; ng
�
;(3.5)

where N = pq and n = N=B.

When B is large compared with M , matrix transposition can be as hard as
general sorting, but for smaller B, the special structure of the transposition permu-
tation makes transposition easier. In particular, the matrix can be broken up into
square submatrices of B2 elements such that each submatrix contains B blocks of
the matrix in row-major order and also B blocks of the matrix in column-major
order. Thus, if B2 < M , the transpositions can be done in a simple one-pass
operation by transposing the submatrices one-at-a-time in internal memory.

Matrix transposition is a special case of a more general class of permutations
called bit-permute/complement (BPC) permutations, which in turn is a subset of the
class of bit-matrix-multiply/complement (BMMC) permutations. BMMC permuta-
tions are de�ned by a logN � logN nonsingular 0-1 matrix A and a (logN)-length
0-1 vector c. An item with binary address x is mapped by the permutation to the
binary address given by Ax� c. BPC permutations are the special case of BMMC
permutations in which A is a permutation matrix, that is, each row and each col-
umn of A contain a single 1. BPC permutations include matrix transposition,
bit-reversal permutations (which arise in the FFT), vector-reversal permutations,
hypercube permutations, and matrix reblocking. Cormen et al. [50] characterize
the optimal number of I/Os needed to perform any given BMMC permutation solely
as a function of the associated matrix A, and they give an optimal algorithm for
implementing it.

Theorem 3.4 ([50]). The number of I/Os required using D disks to perform

the BMMC permutation de�ned by matrix A and vector c is

�

�
n

D

�
1 +

rank(
)

logm

��
;(3.6)

where 
 is the lower-left logn� logB submatrix of A.

An interesting theoretical question is whether there is a simple characterization
(as a function of the input) of the I/O cost for a general permutation.

3.4. Fast Fourier Transform. Computing the Fast Fourier Transform
(FFT) in external memory consists of a series of I/Os that permit each computation
implied by the FFT directed graph (or butter
y) to be done while its arguments
are in internal memory. A permutation network computation consists of a �xed
pattern of I/Os such that any of the N ! possible permutations can be realized; data
items can only be reordered when they are in internal memory. A permutation
network can be realized by a series of three FFTs [145].

Theorem 3.5. With D disks, the number of I/Os required for computing the

N-input FFT digraph or an N-input permutation network is given by the same

bound (3:1) as for sorting.
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Cormen and Nicol [49] give some practical implementations for one-dimensional
FFTs based upon the optimal PDM algorithm of [138]. The algorithms for FFT
are faster and simpler than for sorting because the computation is nonadaptive in
nature, and thus the communication pattern is oblivious.

3.5. Lower Bounds on I/O. In this section we prove the lower bounds from
Theorems 3.1{3.5 and mention some related I/O lower bounds for batched problems
in computational geometry and graphs.

The most trivial batched problem is that of scanning (or streaming or touching)
a �le of N data items, which can be done in a linear number O(N=DB) = O(n=D)
of I/Os. Permuting is one of several simple problems that can be done in linear
CPU time in the (internal memory) RAM model, but require a nonlinear number of
I/Os in PDM because of the locality constraints imposed by the block parameter B.

The following proof of the permutation lower bound (3.4) of Theorem 3.2 is
due to Aggarwal and Vitter [11]. The idea of the proof is to measure, for each
t � 0, the number of distinct orderings that are realizable by at least one sequence
of t I/Os. The value of t for which the number of distinct orderings �rst exceeds
N !=2 is a lower bound on the average number of I/Os (and hence the worst-case
number of I/Os) needed for permuting.

We assume for the moment that there is only one disk, D = 1. Let us consider
how the number of realizable orderings can change when we read a given disk block
into internal memory. There are at most B data items in the block, and they can
intersperse among the M items in internal memory in at most

�
M
B

�
ways, so the

number of realizable orderings increases by a factor of
�
M
B

�
. If the block has never

before resided in internal memory, the number of realizable orderings increases by
an extra B! factor, since the items in the block can be permuted among themselves.
(This extra contribution of B! can only happen once for each of the N=B original
blocks.) The e�ect of writing the disk block is considerably less than that of reading
it. There are at most n+ t � N logN ways to choose which disk block is involved
in the I/O. (We allow the algorithm to use an arbitrary amount of disk space.)
Hence, the number of distinct orderings that can be realized by some sequence of t
I/Os is at most

(B!)N=B
�
N(logN)

�
M

B

��t
:(3.7)

Setting the expression in (3.7) to be at least N !=2, and simplifying by taking the
logarithm, we get

N logB + t

�
logN +B log

M

B

�
= 
(N logN):(3.8)

We get the lower bound for the case D = 1 by solving for t. The general lower
bound (3.4) follows by dividing by D.

Permuting is a special case of sorting, and hence, the permuting lower bound
applies also to sorting. In the unlikely case that B logm = o(logn), the permuting
bound is only 
(N=D), and we must resort to the comparison model to get the
full lower bound (3.1) of Theorem 3.1 [11]. Arge et al. [19] show for the com-
parison model that any problem with an 
(N logN) lower bound in the RAM
model requires 
(n logm n) I/Os in PDM. However, in the typical case in which
B logm = 
(log n), the comparison model is not needed to prove the sorting lower
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bound; the di�culty of sorting in that case arises not from determining the order
of the data but from permuting (or routing) the data.

The proof used above for permuting also works for permutation networks, in
which the communication pattern is oblivious. Since the choice of disk block is �xed
for each t, there is no N logN term as there is in (3.7), and correspondingly there
is no additive logN term in the inner expression as there is in (3.8). Hence, when
we solve for t, we get the lower bound (3.1) rather than (3.4). The lower bound
follows directly from the counting argument; unlike the sorting derivation, it does
not require the comparison model for the case B logm = o(logn). The lower bound
also applies directly to FFTs, since permutation networks can be formed from three
FFTs in sequence. The transposition lower bound involves a potential argument
based upon a togetherness relation [11]. A related argument demonstrates the
optimality of the algorithm in [99] for sorting N items with K distinct key values.

Chiang et al. [43], Arge [15], Arge and Miltersen [20], and Kameshwar and
Ranade [83] give models and lower bound reductions for several computational
geometry and graph problems. Problems like list ranking and expression tree eval-
uation have the same nonlinear I/O lower bound as permuting. Other problems like
connected components, biconnected components, and minimum spanning trees of
sparse graphs with E edges and V vertices require as many I/Os as E=V instances
of sorting V items. This situation is in contrast with the RAM model, in which
the same problems can all be done in linear CPU time. (The known linear-time
RAM algorithm for minimum spanning tree is randomized.) In some cases, there is
a gap between the best known upper and lower bounds, which we discuss further in
Section 6. The geometry problems discussed in Section 5 are equivalent to sorting
in both the internal memory and PDM models.

The lower bounds mentioned above assume that the data items are in some
sense \indivisible", in that they are not split up and reassembled in some magic
way to get the desired output. It is conjectured that the sorting lower bound (3.1)
remains valid even if the indivisibility assumption is lifted. However, for an arti�cial
problem related to transposition, Adler [3] showed that removing the indivisibility
assumption can lead to faster algorithms. A similar result is shown by Arge and
Miltersen [20] for the decision problem of determining if N data item values are
distinct. Whether or not the conjecture is true is a challenging theoretical problem.

4. Matrix and Grid Computations

Dense matrices are generally represented in memory in row-major or column-
major order. Matrix transposition, which is the special case of sorting that involves
conversion of a matrix from one representation to the other, was discussed in Sec-
tion 3.3. For certain operations such as matrix addition, both representations work
well. However, for standard matrix multiplication (using only semiring operations)
and LU decomposition, a better representation is to block the matrix into squarep
B �

p
B submatrices, which gives the upper bound of the following theorem:

Theorem 4.1 ([78, 117, 138, 144]). The number of I/Os required for stan-

dard matrix multiplication of two k�k matrices or to compute the LU factorization

of a k � k matrix is �
�
k3=minfk;

p
M gDB�.

Hong and Kung [78] and Nodine et al. [104] give optimal EM algorithms for
iterative grid computations, and Leiserson et al. [95] reduce the number of I/Os
of naive multigrid implementations by a �(M1=5) factor. Gupta et al. [73] show
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how to derive e�cient EM algorithms automatically for computations expressed in
tensor form.

If a k � k matrix A is sparse, that is, if the number Nz of nonzero elements
in A is much smaller than k2, then it may be more e�cient to store only the
nonzero elements. Each nonzero element Ai;j is represented by the triple (i; j; Ai;j).
Unlike the dense case, in which transposition can be easier than sorting (e.g., see
Theorem 3.3 when B2 �M), transposition of sparse matrices is as hard as sorting:

Theorem 4.2. For a matrix stored in sparse format and containing Nz = nzB

nonzero elements, the number of I/Os required to convert the matrix from row-major

order to column-major order, and vice-versa, is

�
�nz
D

logm nz

�
:(4.1)

The lower bound follows by reduction from sorting. If the ith item in the input
of the sorting instance has key value x 6= 0, there is a nonzero element in matrix
position (i; x).

We defer further discussion of numerical EM algorithms and refer the reader
to Toledo's survey in this volume [127]. Some issues regarding programming envi-
ronments are discussed in [48] and Section 10.

5. Batched Problems in Computational Geometry
2

Problems involving massive amounts of geometric data are ubiquitous in spatial
databases [93, 113, 114], geographic information systems (GIS) [93, 113, 130],
constraint logic programming [84, 85], object-oriented databases [147], statistics,
virtual reality systems, and computer graphics [65]. NASA's Earth Observing
System project, the core part of the Earth Science Enterprise (formerly Mission
to Planet Earth), produces petabytes (1015 bytes) of raster data per year [58]!
Microsoft's TerraServer online database of satellite images is over one terabyte in
size [125]. A major challenge is to develop mechanisms for processing the data, or
else much of it will be useless.

For systems of this size to be e�cient, we need fast EM algorithms and data
structures for basic problems in computational geometry. Luckily, many problems
on geometric objects can be reduced to a small core of problems, such as comput-
ing intersections, convex hulls, or nearest neighbors. Useful paradigms have been
developed for solving these problems in external memory.

Theorem 5.1. The following batched problems and several related problems

involving N input items, Q queries, and Z output items can be solved using

O
�
(n+ q) logm n+ z

�
(5.1)

I/Os (where Q and Z are set to 0 if they are not relevant for the particular problem):

1. Computing the pairwise intersections of N orthogonal segments in the plane,

2. Answering Q orthogonal 2-D range queries on N points in the plane (i.e.,

�nding all the points within the Q query rectangles),

3. Computing the pairwise intersections of N segments in the plane,

2For brevity, in the remainder of this paper we deal only with the single-disk case D = 1.

The single-disk I/O bounds for the batched problems can often be cut by a factor of �(D) for the

case D > 1 by using the load balancing techniques of Section 3. In practice, disk striping may be

su�cient. For online problems, disk striping will convert optimal bounds for the case D = 1 into

optimal bounds for D > 1.
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4. Finding all intersections between N nonintersecting red line segments and

N nonintersecting blue line segments in the plane.

5. Constructing the 2-D and 3-D convex hull of N points,

6. Voronoi diagram and Triangulation of N points in the plane,

7. Performing Q point location queries in a planar subdivision of size N ,

8. Finding all nearest neighbors for a set of N points in the plane,

9. Finding the pairwise intersections of N orthogonal rectangles in the plane,

10. Computing the measure of the union of N orthogonal rectangles in the plane,

11. Computing the visibility of N segments in the plane from a point,

12. Performing Q ray-shooting queries in 2-D Constructive Solid Geometry

(CSG) models of size N ,

Goodrich et al. [69], Zhu [149], Arge et al. [24], Arge et al. [22], and Crauser
et al. [51, 52] develop EM algorithms for those problems using the following EM
paradigms for batched problems:

Distribution sweeping: a generalization of the distribution paradigm of Sec-
tion 3 for externalizing plane sweep algorithms;

Persistent B-trees: an o�ine method for constructing an optimal-space per-
sistent version of the B-tree data structure (see Section 7.1), yielding a
factor of B improvement over the generic persistence techniques of Driscoll
et al. [57].

Batched �ltering: a general method for performing simultaneous external
memory searches in data structures that can be modeled as planar layered
directed acyclic graphs and in external fractionally cascaded data structures;
it is useful for 3-D convex hulls and batched point location.

External fractional cascading: an EM analog to fractional cascading on a seg-
ment tree.

Online �ltering: a technique based upon the work of Tamassia and Vitter [124]
for online queries in data structures with fractional cascading.

External marriage-before-conquest: an EM analog to the well-known technique
of Kirkpatrick and Seidel [87] for performing output-sensitive convex hull
constructions.

Randomized incremental construction with gradations: a localized version of
the incremental construction paradigm of Clarkson and Shor [46].

The distribution sweep paradigm is fundamental to sweep line processes. For
example, we can compute the pairwise intersections of N orthogonal segments in
the plane by the following recursive distribution sweep: At each level of recursion,
the plane is partitioned into �(m) vertical strips, each containing �(N=m) of the
segments' endpoints. We sweep a horizontal line from top to bottom to process the
N segments. When a vertical segment is encountered by the sweep line, the segment
is inserted into the appropriate strip. When a horizontal segment h is encountered
by the sweep line, we report h's intersections with all the \active" vertical segments
in the strips that are spanned completely by h. (A vertical segment is \active" if
it is intersected by the current sweep line; vertical segments that are found to be
no longer active are deleted from the strips.) The remaining end portions of h
(which partially span a strip) are passed recursively to the next level, along with
the vertical segments. After the initial sorting preprocessing, each of the O(logm n)
levels of recursion requires O(n) I/Os, yielding the desired bound (5.1). Arge et
al. [22] develop a uni�ed approach to distribution sweep in higher dimensions.
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A central operation in spatial databases is spatial join. A common preprocess-
ing step is to �nd the pairwise intersections of the bounding boxes of the objects
involved in the spatial join. The problem of intersecting orthogonal rectangles can
be solved by combining the previous algorithm for orthogonal segments with one
for range searching. A uni�ed approach, extendible to higher dimensions, is taken
by Arge et al. [22] using distribution sweep. The objects that are stored in the
data structure in this case are rectangles, not vertical segments. The branching
factor is chosen to be �(

p
m ) rather than �(m). Each rectangle is associated with

the largest contiguous range of vertical strips that it spans. Each of the possible
�
��p

m
2

��
= �(m) contiguous ranges is called a multislab. (The branching factor

was chosen to be �(
p
m ) rather than �(m) so as to accommodate a bu�er in in-

ternal memory for each multislab; the height of the tree remains O(logm n).) The
resulting algorithm outperforms other techniques; empirical timings are given in
Section 11.

Arge et al. [24] give an algorithm for �nding all intersections among N line
segments, but the output component of the I/O bound is slightly nonoptimal:
z logm n rather than z. Crauser et al. [51, 52] use an incremental randomized
construction to attain the optimal I/O bound (5.1) for line segment intersection
and other problems. They also show how to compute the trapezoidal decomposition
for intersecting segments.

6. Batched Problems on Graphs

The �rst work on EM graph algorithms was by Ullman and Yannakakis [128]
for the problem of transitive closure. Chiang et al. [43] consider a variety of graph
problems, several of which have upper and lower I/O bounds related to permuting.
One key idea Chiang et al. exploit is that e�cient EM algorithms can often be
developed by a sequential simulation of a parallel algorithm for the same problem.
Sorting is done periodically to reblock the data. In list ranking, which is used
as a subroutine in the solution of several other graph problems, the number of
working processors in the parallel algorithm decreases geometrically with time, so
the number of I/Os for the entire simulation is proportional to the number of I/Os
used in the �rst phase, which is given by the sorting bound �(n logm n). Dehne
et al. [54] and Sibeyn and Kaufmann [122] show how to get e�cient I/O bounds
by exploiting coarse-grained parallel algorithms, under certain assumptions on the
parameters of the PDM model (such as assuming that logm n � 2 and that the
total disk space usage is O(n)) so that the periodic sortings can be done in a linear
number of I/Os.

For list ranking, the optimality of the EM algorithm in [43] assumes thatp
m logm = 
(logn), which is usually true. That assumption can be removed by

use of the bu�er tree data structure [14] (see Section 7.2). A practical, randomized
implementation of list ranking appears in [121]. Recent work on other EM graph
algorithms appears in [1, 15, 71, 83, 91]. The problem of how to store graphs
on disks for e�cient traversal is discussed in [6, 103]. EM problems that arise in
data mining and On-Line Analytical Processing include constructing classi�cation
trees [142] and computing wavelet decompositions and histograms [140, 141].

The I/O complexity of several of the basic graph problems considered in
[43, 83, 128] remain open, including connected components, topological sort-
ing, shortest paths, breadth-�rst search, and depth-�rst search. For example, for
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a graph with V = vB vertices and E = eB edges, the best-known EM algo-
rithms for breadth-�rst search, depth-�rst search, and transitive closure require
�(e logm v + V ), �(ve=m + V ), and �(V v

p
e=m ) I/Os, respectively. Connected

components can be determined in O
�
e(logm v) logmaxf2; log(vB=e)g� I/Os deter-

ministically and in only O(e logm v) I/Os probabilistically.
In order for the parallel simulation technique to yield an e�cient EM algorithm,

the parallel algorithm must not use too many processors, preferably at most N .
Unfortunately, the polylog-time algorithms for problems like depth-�rst search and
shortest paths use a polynomial number of processors. The interesting connection
between the parallel domain and the EM domain suggests that there may be rela-
tionships between computational complexity classes related to parallel computing
(such as P-complete problems) and those related to I/O e�ciency.

7. Spatial Data Structures

We now turn our attention to some online spatial data structures for massive
data applications. For purposes of exposition, we consider dictionary lookup and
orthogonal range search as the canonical query operations. That is, we want data
structures that can support insert, delete, lookup, and orthogonal range query.
Given a value x, the lookup operation returns the item(s), if any, in the structure
with key value x. A range query, for a given d-dimensional rectangle, returns all
the points in the interior of the rectangle.

Spatial data structures tend to be of two types: space-driven or data-driven.
Quad trees, grid �les, and hashing are space-driven since they are based upon a
partitioning of the embedding space, whereas methods like R-trees and kd-trees
are organized by partitioning the data items themselves. We discuss primarily the
latter type in this section.

7.1. B-trees and Variants. Tree-based data structures arise naturally in
the dynamic online setting, in which the data can be updated and queries must be
processed immediately. Binary trees have a host of applications in the RAM model.
In order to exploit block transfer, trees in external memory generally use a block
for each node, which can store �(B) pointers and data values. A tree of degree Bc

with n leaf nodes has d 1
c
logB Ne levels. The well-known B-tree due to Bayer and

McCreight [30, 47, 88] is a balanced multiway tree with height roughly logB N and
with node degree �(B). (The root node is allowed to have smaller degree.) B-trees
support dynamic dictionary operations and one-dimensional range search optimally
in linear space, O(logB N + z) I/Os per query, and O(logB N) I/Os per insert or
delete. When a node over
ows during an insertion, it splits into two half-full nodes,
and if the splitting causes the parent node to over
ow, the parent node splits, and
so on. Splittings can thus propagate up to the root. Deletions are handled in a
symmetric way by merging nodes.

In the B+-tree variant, pictured in Figure 4, all the items are stored in the
leaves, and the leaves are linked together in symmetric order to facilitate range
queries and sequential access. The internal nodes store only key values and point-
ers and thus can have a higher branching factor. In the popular variant of B+-trees
called B*-trees, splitting can usually be postponed when a node over
ows, by in-
stead \sharing" the node's data with one of its adjacent siblings. The node needs
to be split only if the sibling is also full; when that happens, the node splits into
two, and its data and those of its full sibling are evenly redistributed, making each
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Level 2

Level 1

Leaves

Figure 4. B+-tree multiway search tree. Each internal and leaf
node corresponds to a disk block. All the items are stored in the
leaves. The internal nodes store only key values and pointers, �(B)
of them per node. Although not indicated here, the leaf blocks are
linked together sequentially.

of the three nodes about 2=3 full. This local optimization reduces how often new
nodes must be created, and it increases the relative storage utilization. When no
sharing is done (as in B+-trees), Yao [146] shows that nodes are roughly ln 2 � 69%
full on the average, assuming random insertions. With sharing (as in B*-trees), the
average storage utilization increases to about 2 ln(3=2) � 81% [26, 92]. Storage
utilization can be increased further by sharing among several siblings, but insertions
and deletions get more complicated.

Persistent versions of B-trees have been developed by Becker et al. [31] and
Varman and Verma [131]. Lomet and Salzberg [98] explore mechanisms to add
concurrency and recovery to B-trees.

Arge and Vitter [25] give a useful variant of B-trees called weight-balanced B-

trees with the property that the number of data items in any subtree of height h
is �(ah), for some �xed parameter a of order B. (By contrast, the sizes of subtrees
at level h in a regular B-tree can di�er by a multiplicative factor that is exponential
in h.) When a node on level h gets rebalanced, no further rebalancing is needed
until its subtree is updated 
(ah) times. This feature can support applications in
which the cost to rebalance a node is O(w), allowing the rebalancing to be done in
an amortized (and often worst-case) way with O(1) I/Os. Weight-balanced B-trees
were originally conceived as part of optimal dynamic data structures for stabbing
queries and segment trees in external memory, which we discuss in Section 8, but
they also have applications to the internal memory RAM model [25, 71]. For
example, by setting a to a constant, we get a simple, worst-case implementation
of interval trees in internal memory. They also serve as a simpler and worst-case
alternative to the data structure in [143] for augmenting one-dimensional data
structures with range restriction capabilities.

Agarwal et al. [4] develop an interesting variant of B-trees, called level-balanced

B-trees, that maintain parent pointers. A straightforward modi�cation of conven-
tional B-trees would require �(B logB N) I/Os per split to maintain parent parents.
Instead, level-balanced B-trees support insert, delete, merge, and split operations
in O

�
(1 + (b=B)(logm n) logbN

�
I/Os amortized, for any 2 � b � B=2, which is

bounded by O
�
(logB N)2

�
. Agarwal et al. [4] use level-balanced B-trees in a data

structure for point location in monotone subdivisions, which supports queries and
(amortized) updates in O

�
(logB N)2

�
I/Os. They also use it to dynamically main-

tain planar st-graphs using O
�
(1 + (b=B)(logm n) logbN

�
I/Os (amortized) per up-

date, so that reachability queries can be answered in O(logB N) I/Os (worst-case).
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It is open as to whether these results can be improved. One question is how to
deal with non-monotone subdivisions. Another question is whether level-balanced
B-trees can be implemented in O(logB N) I/Os per update. Such an improvement
would immediately give an optimal dynamic structure for reachability queries in
planar st-graphs.

7.2. Bu�er Trees. Many batched problems in computational geometry can
be solved by plane sweep techniques. For example, in Section 5 we showed how to
compute orthogonal segment intersections by keeping track of the vertical segments
hit by a horizontal sweep line. If we use a B-tree to store the hit vertical segments,
each insertion and query uses O(logB N) I/Os, resulting in a huge I/O bound of
O(N logB N), which can be more than B times larger than the desired bound of
O(n logm n). One solution suggested in [135] is to use a binary tree in which items
are pushed lazily down the tree in blocks of B items at a time. The binary nature
of the tree results in a data structure of height � logn, yielding a total I/O bound
of O(n log n), which is still nonoptimal by a signi�cant logm factor.

Arge [14] developed the elegant bu�er tree data structure to support batched
dynamic operations such as in the sweep line example, where the queries do not
have to be answered right away or in any particular order. The bu�er tree is a
balanced multiway tree, but with degree �(m), except possibly for the root. Its
key distinguishing feature is that each node has a bu�er that can store M items
(i.e., m blocks of items). Items in a node are not pushed down to the children
until the bu�er �lls. Emptying the bu�er requires O(m) I/Os, which amortizes the
cost of distributing the items to the �(m) children. Each item incurs an amor-
tized cost of O(m=M) = O(1=B) I/Os per level. Queries and updates thus take
O
�
(1=B) logm n

�
I/Os amortized. Bu�er trees can be used as a subroutine in the

standard sweep line algorithm in order to get an optimal EM algorithm for orthog-
onal segment intersection. Arge showed how to extend bu�er trees to implement
segment trees [33] in external memory in a batched dynamic setting by reducing
the node degrees to �(

p
m ) and by introducing multislabs in each node.

Bu�er trees have an ever-expanding list of applications. They provide, for
example, a natural amortized implementation of priority queues for use in applica-
tions like discrete event simulation, sweeping, and list ranking. Brodal and Kata-
jainen [35] provide a worst-case optimal priority queue, in the sense that every
sequence of B insert and delete min operations requires only O(logm n) I/Os.

7.3. Multidimensional Spatial Structures. Grossi and Italiano [72] con-
struct a multidimensional version of B-trees, called cross trees, that combine the
data-driven partitioning of weight-balanced B-trees at the upper levels of the tree
with the space-driven partitioning of methods like quad trees at the lower lev-
els of the tree. For d > 1, d-dimensional orthogonal range queries can be done
in O(n1�1=d + z) I/Os, and inserts and deletes take O(logB N) I/Os. The data
structure uses linear space and also supports the dynamic operations of split and
concatenate in O(n1�1=d) I/Os.

One way to get multidimensional EM data structures is to augment known
internal memory structures, such as quad trees and kd-trees, with block access
capabilities. Examples include grid �les [77, 90, 101], kd-B-trees [111], buddy
trees [118], and hB-trees [59, 97]. Another technique is to \linearize" the mul-
tidimensional space by imposing a total ordering on it (a so-called space-�lling
curve), and then the total order is used to organize the points into a B-tree. All
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the methods described in this paragraph use linear space, and they work well in
certain situations; however, their worst-case range query performance is no better
than that of cross trees, and for some methods, like grid �les, queries can require
�(n) I/Os, even if there are no points satisfying the query. We refer the reader
to [7, 66, 102] for a broad survey of these methods. Space-�lling curves arise again
in connection with R-trees, which we describe in the next section.

7.4. R-trees. The R-tree of Guttman [74] and its many variants are an ele-
gant multidimensional generalization of the B-tree for storing a variety of geometric
objects, such as points, segments, polygons, and polyhedra. Internal nodes have
degree �(B) (except possibly the root), and leaves store �(B) items. Each node
in the tree has associated with it a bounding box (or bounding polygon) of all the
elements in its subtree. A big di�erence between R-trees and B-trees is that in
R-trees the bounding boxes of sibling nodes are allowed overlap. If an R-tree is
being used for point location, for example, a point may lie within the bounding box
of several children of the current node in the search. In that case, the search must
proceed to all such children.

Several heuristics for where to insert new items into an R-tree and how to
rebalance it are surveyed in [7, 66, 70]. The methods perform well in many prac-
tical cases, especially in low dimensions, but they have poor worst-case bounds.
An interesting open problem is whether nontrivial bounds can be proven for the
\typical-case" behavior of R-trees for problems such as range searching and point
location. Similar questions apply to the methods discussed in the previous section.

The R*-tree variant of Beckmann et al. [32] seems to give best overall query
performance. Precomputing an R*-tree by repeated insertions, however, is ex-
tremely slow. A faster alternative is to use the Hilbert R-tree of Kamel and Falout-
sos [80, 81]. Each item is labeled with the position of its center on the Hilbert
space-�lling curve, and a B-tree is built in a bottom-up manner on the totally or-
dered labels. Bulk loading a Hilbert R-tree is therefore easy once the center points
are presorted, but the quality of the Hilbert R-tree in terms of query performance is
not as good as that of an R*-tree, especially for higher-dimensional data [34, 82].

Arge et al. [18] and van den Bercken et al. [129] have independently devised
fast bulk loading methods for R*-trees that are based upon bu�er trees. The former
method is especially e�cient and can even support dynamic batched updates and
queries. Experiments with this technique are discussed in Section 11.

8. Online Multidimensional Range Searching

Multidimensional range search is a fundamental primitive in several online geo-
metric applications, and it provides indexing support for new constraint data mod-
els and object-oriented data models. (See [85] for background.) We have already
discussed multidimensional range searching in a batched setting in Section 5. In
this section we concentrate on the important online case.

For many types of range searching problems, it is very di�cult to develop theo-
retically optimal algorithms. We have seen some linear-space online data structures
in Sections 7.3 and 7.4, but their query performance is not optimal. Many open
problems remain. The primary theoretical challenges are three-fold:

1. to get a combined search and output cost for queries of O(logB N + z) I/Os,
2. to use only a linear amount of disk storage space, and
3. to support dynamic updates in O(logB N) I/Os.
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To develop optimal data structures for queries, it is helpful to combine to-
gether the I/O cost O(logB N) of the search component with the I/O cost O(z)
for reporting the output, as in criterion 1, rather than to consider the search cost
separately from the output cost, because when one cost is much larger than the
other, the query algorithm has the extra freedom to follow a �ltering paradigm [38],
in which both the search component and the output reporting are allowed to use
the larger number of I/Os. Subramanian and Ramaswamy [123] prove the lower
bound that no EM data structure for 2-D range searching can achieve criterion 1
using less than O

�
n(logn)= log(logB N + 1)

�
disk blocks, even if we relax 1 to allow

O
�
(logB N)c + z

�
I/Os per query, for any constant c. The result holds for an EM

version of the pointer machine model, based upon the approach of Chazelle [39] for
the internal memory model.

Hellerstein et al. [75] consider a generalization of the layout-based lower bound
argument of Kanellakis et al. [85] for studying the tradeo� between disk space
usage and query performance. An \e�cient" data structure is expected to contain
the Z output points to a query compactly within O

�dZ=Be� = O
�dze� blocks. One

shortcoming of the model is that it considers only data layout and ignores the search
component of queries, and thus it rules out a �ltering approach. For example, it
is reasonable for any query algorithm to perform at least logB N I/Os, so if the
output size Z is at most B, an algorithm may still be able to satisfy criterion 1
even if the output is contained within O(logB N) blocks rather than O(z) = O(1)
blocks. One �x is to consider only output sizes Z larger than (logB N)B, but then
the problem of how to �nd the relevant blocks is ignored. Despite this shortcoming,
the model is elegant and provides insight into the complexity of blocking data in
external memory. Further results in this model appear in [23, 89, 115].

When the data structure is restricted to contain only a single copy of each
item, Kanth and Singh [86] show for a restricted class of index-based trees that
d-dimensional range queries in the worst case require 
(n1�1=d+ z) I/Os, and they
provide a data structure with a matching bound. Another approach to achieve the
same bound is the cross tree data structure [72] mentioned in Section 7.3, which in
addition supports the operations of split and concatenate.

The lower bounds mentioned above for 2-D range search apply to general rect-
angular queries. A natural question to ask is whether there are data structures that
can meet criteria 1{3 for interesting special cases of 2-D orthogonal range searching.
Fortunately, the answer is yes.

To be precise, we de�ne a (s1; s2; : : : ; sd)-sided range query in d-dimensional
space, where each si 2 f1; 2g, to be an orthogonal range query with si �nite limits
in the xi dimension. For example, the 2-D range query [3; 5]�[4;1) is a (2; 1)-sided
range query, since there are two �nite limits in the x1 dimension (namely, 3 � x1 and
x1 � 5) but only one �nite limit in the x2 dimension (namely, x2 � 4). A general
2-D range query is a (2; 2)-sided query. (See Figure 5.) In the two-dimensional
cases studied in [23, 85, 109, 123], the authors use the terms \two-sided", \three-
sided", and \four-sided" range query to mean what we call (1; 1)-sided, (2; 1)-sided,
and (2; 2)-sided queries, respectively.

Arge and Vitter [25] design an EM interval tree data structure based upon
the weight-balanced B-tree that meets all three criteria. It uses linear disk space
and does queries in O(logB N + z) I/Os and updates in O(logB N) I/Os. It solves
the problems of stabbing queries and dynamic interval management, utilizing the
optimal static structure of Kanellakis et al. [85]. Stabbing queries are equivalent
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Figure 5. Di�erent types of 2-D range queries: (a) Diagonal cor-
ner (1; 1)-sided query, (b) (1; 1)-sided query, (c) (2; 1)-sided query,
(d) general (2; 2)-sided query.

to (1; 1)-sided range queries where the corner point is on the diagonal. Other
applications arise in graphics and GIS. For example, Chiang and Silva [44] apply
the EM interval tree structure to extract at query time the boundary components
of the isosurface (or contour) of a surface. A data structure for a related problem,
which in addition has optimal output complexity, appears in [6]. The interval tree
approach also yields dynamic EM segment trees with optimal query and update
bound and O(n logB N)-block space usage.

For nonrestricted (1; 1)-sided and (2; 1)-sided 2-D range queries, Ramaswamy
and Subramanian [109] introduce the notion of path caching to develop EM data
structures that meet criterion 1 but have higher storage overheads and amortized
and/or nonoptimal update bounds. Subramanian and Ramaswamy [123] present
the P-range tree data structure for (2; 1)-sided queries, which uses optimal linear
disk space and has nearly optimal query and amortized update bounds. They get
a static data structure for general (2; 2)-sided 2-D range searching with the same
query bound by applying a �ltering technique of Chazelle [38]: The outer level of the
structure is a (logB N +1)-way one-dimensional search tree; each (2; 2)-sided query
is reduced to two (2; 1)-sided queries, a stabbing query, and logB N list traversals.
The disk space usage is O

�
n(logn)= log(logB N + 1)

�
, as required by the pointer

machine lower bound. The structure could be modi�ed to perform updates, by
application of a weight-balanced B-tree and the dynamization techniques of [23],
but the resulting update time would be amortized and nonoptimal, as a consequence
of the use of the (2; 1)-sided data structure.

Arge et al [23] apply notions of persistence to get a simple and opti-
mal static data structure for (2; 1)-sided range queries; it supports queries in
O(logB N + z) I/Os and uses linear disk space. They get a fully dynamic data struc-
ture for (2; 1)-sided queries with the same optimal query and space bounds and with
optimal update bound O(logB N), by combining the static structure with an exter-
nal priority search tree based upon weight-balanced B-trees. The structure can be
generalized using the technique of [38] to handle (2; 2)-sided queries with optimal
query bound O(logB N), optimal disk space usage O

�
n(logn)= log(logB N + 1)

�
,

and update bound O
�
(logB N)(logn)= log(logB N + 1)

�
.

One intuition from [75] is that less disk space is needed to e�ciently answer
2-D queries when the queries have bounded aspect ratio (i.e., when the ratio of the
longest side length to the shortest side length of the query rectangle is bounded). An
interesting question is whether R-trees and the linear-space structures of Sections
7.3 and 7.4 can be shown to perform provably well for such queries.
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For other types of range searching, such as in higher dimensions and for
nonorthogonal queries, di�erent �ltering techniques are needed. So far, relatively
little work has been done. Vengro� and Vitter [133] develop the �rst theoreti-
cally near-optimal EM data structure for static three-dimensional orthogonal range
searching. They create a hierarchical partitioning in which all the items that dom-
inate a query point are densely contained in a set of blocks. With some recent
modi�cations by the author, queries can be done in O(logB N + z) I/Os, which is
optimal, and the space usage is O

�
n(logn)k

�
(log(logB N + 1))k

�
disk blocks to sup-

port 3-D range queries in which k of the dimensions (0 � k � 3) have �nite ranges.
The space bounds are optimal for (1; 1; 1)-sided queries (i.e., k = 0) and (2; 1; 1)-
sided queries (i.e., k = 1). The result also provides optimal O(logN + Z)-time
query performance in the RAM model using linear space for answering (1; 1; 1)-
sided queries, improving upon the result in [40]. Agarwal et al. [5] give optimal
bounds for static halfspace range searching in two dimensions and some variants in
higher dimensions. The number of I/Os needed to build the 3-D and halfspace data
structures is rather large (more than orderN). Still, the structures shed useful light
on the complexity of range searching. An open problem is to design e�cient con-
struction and update algorithms and to improve upon the constant factors. Some
other types of range searching, such as simplex range searching, have not yet been
investigated in the external memory setting.

Callahan et al. [36] develop dynamic EM data structures for several online
problems such as �nding an approximately nearest neighbor and maintaining the
closest pair of vertices. Numerous other data structures have been developed for
range queries and related problems on spatial data. We refer to [7, 66, 102] for a
broad survey.

9. String Processing

Digital trie-based structures, in which branching decisions at each node are
made based upon the values of particular bits in strings, are e�ective for string
processing in internal memory. In EM applications, what is needed is a multiway
digital structure. Unfortunately, if the strings are long, there is no space to store
them completely in each node, and if pointers to strings are stored in each node,
the number of I/Os per node access will be large.

Ferragina and Grossi [62, 63] develop an elegant generalization of the B-tree for
storing strings, called the String B-tree or simply SB-tree. An SB-tree di�ers from a
conventional B-tree in the way that each �(B)-way branching node is represented.
In a conventional B-tree, �(B) unit-sized keys are stored in each internal node to
guide the searching, and thus the entire node �ts in one or two blocks. However,
strings can be arbitrarily long, so there may not be enough space to store �(B)
strings per node. Pointers to �(B) strings could be stored instead in each node,
but access to the strings during search would require more than a constant number
of I/Os per node.

Ferragina and Grossi's solution for how to represent each node of the SB-tree is
based upon a variant of the Patricia trie character-based data structure [88, 100]
along the lines of Ajtai et al. [12]. The Patricia trie achieves B-way branching with
a total storage of O(B) characters. Each of its internal nodes stores an index (a
number from 0 to N) and a one-character label for each of its outgoing edges. For
example, in the example in Figure 6, the right child of the root has index 4 and
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Figure 6. Patricia trie representation of a single node of an SB-
tree, with branching factor B = 8. The seven strings used for
partitioning are pictured at the leaves; in the actual data structure,
pointers to the strings, not the strings themselves, are stored at the
leaves. The pointers to the B children of the SB-tree node are also
stored at the leaves.

characters \a" and \b", which means that the node's left subtrie consists of strings
whose �fth character (character 4) is \a", and its right subtrie consists of strings
whose �fth character is \b". The preceding (four) characters in all the strings
in the node's subtrie are identically \bcbc". To �nd which of the B branches to
take for a search string, a binary search is done in the Patricia trie; each binary
branching decision is based upon the character indexed at that node. For search
string \bcbabcba", a binary search on the trie in Figure 6 traverses the far-right
path of the Patricia trie, examining character positions 0, 4, and 6.

Unfortunately, the leaf node that is eventually reached (in our example, the
leaf at the far right, corresponding to \bcbcbbba") is not in general at the correct
branching point, since only certain character !la positions in the string were exam-
ined during the search. The key idea to �x this situation is to sequentially compare
the search string with the string associated with the leaf, and if they di�er, the in-
dex where they di�er can be found. In the example, the search string \bcbabcba"
di�ers from \bcbcbbba" in the fourth character (character 3), and the search string
therefore is lexicographically smaller than the entire right subtrie of the root. It
�ts in between the leaves \abac" and \bcbcaba".

Searching the Patricia trie requires one I/O to load it into memory, plus ad-
ditional I/Os to do the sequential scan of the string after the leaf of the Patricia
trie is reached. Each block of the search string that is examined during a sequen-
tial scan does not have to be read in again for lower levels of the SB-tree, so the
I/Os for the sequential scan can be charged to the blocks of the search string. The
resulting query time to search in an SB-tree for a string of ` characters is therefore
O(logB N + `=B), which is optimal.

Ferragina and Grossi apply SB-trees to string matching, pre�x search, and
substring search. Farach et al. [60] show how to construct SB-trees, su�x trees,
and su�x arrays on strings of length N using O(n logm n) I/Os, which is optimal.
Clark and Munro [45] give an alternate approach to su�x trees.

Arge et al. [17] consider several models for the problem of sorting K strings
of total length N in external memory. They develop e�cient sorting algorithms in
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these models, making use of the SB-tree, bu�er tree techniques, and a simpli�ed
version of the SB-tree for merging called the lazy trie. In the RAM model, the
problem can be solved in O(K logK + N) time. By analogy to the problem of
sorting integers, it would be natural to expect that the I/O complexity would be
O(k logm k + n) time, where k = dK=Be. Arge et al. show somewhat counterin-
tuitively that for sorting short strings (i.e., strings of length at most B) the I/O
complexity depends upon the total number of characters, whereas for long strings
the complexity depends upon the total number of strings.

Theorem 9.1 ([17]). We can sort K strings of total length N , where N1 is

the total length of the short strings and K2 is the number of long strings, using the

following number of I/Os:

O

�
N1

B
logm

�
N1

B
+ 1

�
+K2 logM (K2 + 1) +

N

B

�
;(9.1)

Lower bounds for various models of how strings can be manipulated are given
in [17]. There are gaps in some cases between the upper and lower bounds.

10. The TPIE External Memory Programming Environment

There are three basic approaches to supporting development of I/O-e�cient
code, which we call array-oriented systems (such as PASSION and ViC*), access-
oriented systems (such as the UNIX �le system, Panda, and MPI-IO), and
framework-oriented systems (such as TPIE). We refer the reader to [68] and its
references for background.

In this section we describe TPIE (Transparent Parallel I/O programming En-
vironment)3 [18, 132, 134], which is used as the implementation platform for the
experiments in the next section. TPIE is a comprehensive software package that
helps programmers to develop high-level, portable, and e�cient implementations
of EM algorithms.

TPIE takes a somewhat non-traditional approach to batched computation: In-
stead of viewing it as an enterprise in which code reads data, operates on it, and
writes results, TPIE views computation as a continuous process during which a
program is fed streams of data from an outside source and leaves trails of results
behind. Programmers do not need to worry about making explicit calls to I/O rou-
tines; instead, they merely specify the functional details of the desired computation,
and TPIE automatically choreographs a sequence of data movements to keep the
computation fed.

TPIE is written in C++ as a set of templated classes and functions. It con-
sists of three main components: a block transfer engine (BTE), a memory manager
(MM), and an access method interface (AMI). The BTE is responsible for moving
blocks of data to and from the disk. It is also responsible for scheduling asynchro-
nous read-ahead and write-behind when necessary to allow computation and I/O to
overlap. The MM is responsible for managing main memory in coordination with
the AMI and BTE. The AMI provides the high-level uniform interface for applica-
tion programs. The AMI is the only component that programmers normally need to
interact with directly. Applications that use the AMI are portable across hardware
platforms, since they do not have to deal with the underlying details of how I/O

3The TPIE software distribution is available at no charge on the World Wide Web at

http://www.cs.duke.edu/TPIE/.
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is performed on a particular machine. We have seen in the previous sections that
many batched problems in spatial databases, GIS, scienti�c computing, graphs, and
string processing can be solved optimally using a relatively small number of basic
paradigms like scanning, multiway distribution, and merging, which TPIE supports
as access mechanisms. TPIE also supports block-oriented operations on trees for
online problems.

11. Empirical Comparisons

In this section we examine the empirical performance of algorithms for two
problems that arise in spatial databases. The TPIE system described in the previous
section is used as the common implementation platform. Other recent experiments
involving the paradigms discussed in this paper appear in [42, 79].

11.1. Rectangle Intersection and Spatial Join. In the �rst experiment,
three algorithms are implemented in TPIE for the problem of rectangle intersection,
which is typically the �rst step in a spatial join computation. The �rst method,
called Scalable Sweeping-Based Spatial Join (SSSJ) [21], is a robust new algorithm
based upon the distribution sweep paradigm of Section 5. The other two methods
are Partition-Based Spatial-Merge (QPBSM) used in Paradise [108] and a new
modi�cation called MPBSM that uses an improved dynamic data structure for
intervals [21].

The algorithms were tested on several data sets. The timing results for the two
data sets in Figures 7(a) and 7(b) are given in Figures 7(c) and 7(d), respectively.
The �rst data set is the worst case for sweep line algorithms; a large fraction of the
line segments in the �le are active (i.e., they intersect the current sweep line). The
second data set is a best case for sweep line algorithms. The two PBSM algorithms
have the disadvantage of making extra copies. SSSJ shows considerable improve-
ment over the PBSM-based methods. On more typical data, such as TIGER/line
road data sets [126], experiments indicate that SSSJ and MPBSM run about 30%
faster than QPBSM.

11.2. Batched Operations on R-trees. In the second experiment, three
methods for building R-trees are evaluated in terms of their bulk loading time and
the resulting query performance. The three methods tested are a newly developed
bu�er R-tree method [18] (labeled \bu�er"), the naive sequential method for con-
struction into R*-trees (labeled \naive"), and the best update algorithm for Hilbert
R-trees (labeled \Hilbert") [82].

The experimental data came from TIGER/line road data sets from four U.S.
states [126]. One experiment involved building an R-tree on the road data for each
state and for each of four possible bu�er sizes. The four bu�er sizes were capable of
storing 0, 600, 1,250, and 5,000 rectangles, respectively. The query performance of
each resulting R-tree was measured by posing rectangle intersection queries, using
rectangles taken from TIGER hydrographic data. The results, depicted in Figure 8,
show that bu�er R-trees, even with relatively small bu�ers, achieve a tremendous
speedup in construction time without any worsening in query performance, com-
pared with the naive method (which corresponds to a bu�er size of 0).

In another experiment, a single R-tree was built for each of the four U.S. states,
containing 50% of the road data objects for that state. Using each of the three
algorithms, the remaining 50% of the objects were inserted into the R-tree, and the
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Figure 7. Comparison of Scalable Sweeping-Based Spatial Join
(SSSJ) with the original PBSM (QPBSM) and a new variant
(MPBSM) (a) Data set 1 consists of tall and skinny (vertically
aligned) rectangles. (b) Data set 2 consists of short and wide (hor-
izontally aligned) rectangles. (c) Running times on data set 1.
(d) Running times on data set 2.
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Figure 8. Costs for R-tree processing (in units of 1000 I/Os)
using the naive repeated insertion method and the bu�er R-tree
for various bu�er sizes: (a) cost for bulk-loading the R-tree, (b)
query cost.

Data Update Update with 50% of the data
Set Method Building Querying Packing

RI
naive
Hilbert
bu�er

259; 263
15; 865
13; 484

6; 670
7; 262
5; 485

64%
92%
90%

CT
naive
Hilbert
bu�er

805; 749
51; 086
42; 774

40; 910
40; 593
37; 798

66%
92%
90%

NJ
naive
Hilbert
bu�er

1; 777; 570
120; 034
101; 017

70; 830
69; 798
65; 898

66%
92%
91%

NY
naive
Hilbert
bu�er

3; 736; 601
246; 466
206; 921

224; 039
230; 990
227; 559

66%
92%
90%

Table 2. Summary of the costs (in number of I/Os) for R-tree
updates and queries. Packing refers to the percentage storage uti-
lization.
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construction time was measured. Query performance was then tested as before.
The results in Table 2 show that the bu�er R-tree has faster construction time than
the Hilbert R-tree (the previous best method for construction time) and similar or
better query performance than repeated insertions (the previous best method for
query performance).

12. Dynamic Memory Allocation

The amount of memory allocated to a program may 
uctuate during the course
of execution because of demands placed on the system by other users and processes.
EM algorithms must be able to adapt dynamically to whatever resources are avail-
able so as to preserve good performance [107]. The algorithms in the previous
sections assume a �xed memory allocation; they must resort to virtual memory if
the memory allocation is reduced, often causing a severe performance hit.

Barve and Vitter [29] discuss the design and analysis of EM algorithms that
adapt gracefully to changing memory allocations. In their model, without loss
of generality, a program P is allocated memory in phases: During the ith phase,
P is allocated mi blocks of internal memory, and this memory remains allocated
to P until P completes 2mi I/O operations, at which point the next phase begins.
The process continues until P �nishes execution. The model makes the reasonable
assumption that the duration for each memory allocation phase is long enough to
allow all the memory in that phase to be used by the program.

For sorting, the lower bound approach of (3.7) implies thatX
i

2mi logmi = 
(n logn):

We say that P is dynamically optimal for sorting ifX
i

2mi logmi = O(n logn)

for all possible sequences m1, m2, : : : of memory allocation. Intuitively, if P is
dynamically optimal, no other program can perform more than a constant number
of sorts in the worst-case for the same sequence of memory allocations.

Barve and Vitter [29] de�ne the model in generality and give dynamically
optimal strategies for sorting, matrix multiplication, and bu�er trees operations.
Their work represents the �rst theoretical model of dynamic allocation for EM
algorithms. Pang et al. [107] and Zhang and Larson [148] give memory-adaptive
merge sort algorithms, but their algorithms handle only special cases and can be
made to perform poorly for certain patterns of memory allocation.

13. Conclusions

In this paper we have described several useful paradigms for the design and
implementation of e�cient external memory algorithms and data structures. The
problem domains we have considered include sorting, permuting, FFT, scienti�c
computing, computational geometry, graphs, databases, geographic information
systems, and text and string processing. Interesting challenges remain in virtually
all these problem domains. One di�cult problem is to prove lower bounds for
permuting and sorting without the indivisibility assumption. Another promising
area is the design and analysis of algorithms for e�cient use of multiple disks.
Optimal bounds have not yet been determined for several basic graph problems
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like topological sorting, shortest paths, breadth-�rst and depth-�rst search, and
connected components. There is an intriguing connection between problems that
have good I/O speedups and problems that have fast and work-e�cient parallel
algorithms.

A continuing goal is to develop optimal EM algorithms and to translate theo-
retical gains into observable improvements in practice. For some of the problems
that can be solved optimally up to a constant factor, the constant overhead is too
large for the algorithm to be of practical use, and simpler approaches are needed.
In practice, algorithms cannot assume a static internal memory allocation; they
must adapt in a robust way when the memory allocation changes.

New architectures, such as networks of workstations, hierarchical storage de-
vices, and disk drives with processing capabilities present many interesting chal-
lenges and opportunities. Work is beginning, for example, on extensions of TPIE
to such domains and on applying the bu�er management techniques of the SRM
method in Section 3.2 to cache-friendly distribution sort algorithms. Active (or in-
telligent) disks, in which disk drives have some processing capability and can �lter
information sent to the host, have recently been proposed to further reduce the I/O
bottleneck, especially in large database applications [2, 110].

Acknowledgements. The author wishes to thank the members of the Center
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