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We present a simple parallel algorithm for the single-source shortest path
problem in planar digraphs with nonnegative real edge weights. The algorithm runs
on the EREW PRAM model of parallel computation in O((n2=+n1&=) log n)
time, performing O(n1+= log n) work for any 0<=<1�2. The strength of the
algorithm is its simplicity, making it easy to implement and presumable quite
efficient in practice. The algorithm improves upon the work of all previous
parallel algorithms. Our algorithm is based on a region decomposition of the
input graph and uses a well-known parallel implementation of Dijkstra's
algorithm. The logarithmic factor in both the work and the time can be
eliminated by plugging in a less practical, sequential planar shortest path
algorithm together with an improved parallel implementation of Dijkstra's
algorithm. � 2000 Academic Press

1. INTRODUCTION

The shortest path problem is a fundamental and well-studied combinatorial
optimization problem with a wealth of practical and theoretical applications [1].
Given an n-vertex, m-edge directed graph G=(V, E) with real edge weigths, the
shortest path problem is to find a path of minimum weight between two vertices u
and v, for each pair u, v of a given set of vertex pairs; the weight of a u-v path is
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the sum of the weights of its edges. The weight of a shortest u-v path is called the
distance from u to v. The shortest path problem comes in different variants depend-
ing on the given set of u, v vertex pairs and the type of edge weigths [1].

Although efficient sequential algorithms exist for many of these variants, there is
a certain lack of efficient parallel algorithms, that is, of algorithms that perform
work (total number of operations performed by the available processors) which is
close to the number of operations performed by the best known sequential algo-
rithm. Designing efficient parallel algorithms for shortest path problems constitutes
a major open problem in parallel computing. One possible reason for the lack of
such algorithms could be that emphasis has most often been put on obtaining very
fast (i.e., NC) algorithms. However, in most practical situations, where the number
of available processors p is fixed and much smaller than the sizes of the problems
at hand, the primary goal is to have a work-efficient (rather than very fast) parallel
algorithm, since the running time in such cases will be dominated by the work
divided by p. This is of particular importance if such algorithms can be shown to
have other practical merits (e.g., simplicity, ease of implementation).

An important variant of the shortest path problem is the single-source or shortest
path tree problem: given G as above and a distinguished vertex s # V, called the
source, the problem is to find shortest paths from s to every other vertex in G. The
single-source shortest path problem has efficient sequential solutions, especially
when G has nonnegative edge weights. In this case, the problem can be solved by
Dijkstra's algorithm in O(m+n log n) time using the Fibonacci heap or another
priority queue data structure with the same resource bounds [2, 5, 7]. If, in addition,
G is planar, then the problem can be solved optimally in O(n) time [14].

In this paper we consider the single-source shortest path problem in planar
digraphs with nonnegative real edge weights. Despite much effort, no sublinear
time, work-optimal parallel algorithm has been devised even for this case. The best
previous algorithm is due to Cohen [4] and runs in O(log4 n) time using O(n3�2)
work on an EREW PRAM2. There are two cases where the work is better. Both
cases, however, require edge weights to be integers and in one case the algorithm
is not deterministic. More specifically, in [16] an O(polylog(n) log L)-time, O(n)-
processor randomized EREW PRAM algorithm is given, where edge weights are
assumed to be nonnegative integers with L being the largest edge weight of G. In [14],
a deterministic parallel algorithm was given that runs in O(n2�3 log7�3 n(log n+log D))
time using O(n4�3 log n(log n+log D)) work, where D is the sum of the absolute values
of the integral edge weights (which may be negative). All of the above algorithms
in one way or another use sophisticated data structures which make them difficult
to implement. They all require that a plane embedding of the input graph is given.

In this paper we present a simple, easily implementable, parallel algorithm for the
single-source shortest path problem on a planar digraph G with nonnegative real
edge weights. By compromising on parallel running time, we achieve a (deterministic)
algorithm which in terms of work-efficiency improves upon previous algorithms.
More precisely, our algorithm runs in O((n2=+n1&=) log n) time and performs
O(n1+= log n) work on an EREW PRAM, for any 0<=<1�2. For instance, a
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choice of ==1�3 improves the bounds in [14] by at least a logarithmic factor and
the work bound in [4] by a factor of n1�6. The bounds of our algorithm can be
further improved to O(n2=+n1&=) time and O(n1+=) work, if the sequential algo-
rithm of [14] as well as the parallel implementation of Dijkstra's algorithm in [3]
are used as subroutines. However, we cannot claim that this version of the algorithm
is easily implementable.

Like previous planar single-source shortest path algorithms, our algorithm is
based on a so-called region decomposition of G as introduced in [6], coupled with
a reduction of the problem to a collection of shortest path problems on the regions
of G. Given a region decomposition, our algorithm mainly consists in the con-
current application of Dijkstra's sequential single-source shortest path algorithm to
the regions of the graph, followed by a final application of a simple parallel version
of Dijkstra's algorithm to an auxiliary (nonplanar) graph constructed using the
shortest path information computed in the regions. By suitable copying of the edges
of the graph, concurrent reading and writing can be avoided. For computing the
region decomposition presupposed by our shortest path algorithm, we also give an
EREW PRAM implementation of the algorithm in [6]. This implementation
(slightly more complicated than that of the shortest path algorithm) computes a
specific representation of the region decomposition as required for the EREW
PRAM implementation of the shortest path algorithm. As in previous algorithms it
is assumed that a planar embedding of the input graph is given.

It is worth noting that the only routines needed by our algorithms are: (i)
Dijkstra's algorithm (sequential and parallel version) implemented via any elementary
heap data structure (e.g., binary heap); (ii) standard implementations of (segmented)
parallel prefix computations and sorting; and (iii) the parallel planar separator
algorithm of Gazit and Miller [8], whose explicit EREW PRAM implementation
is given in Section 4.

The main advantage of our algorithm is its simplicity which makes it easy to
implement, in the sense that its implementation is based on fundamental, well-
understood routines (e.g., prefix computations, list ranking, sorting [11]) that are
likely to be found in any library of parallel combinatorial algorithms. A possible
environment for such an implementation is the PAD library of basic PRAM algo-
rithms and data structures [12], currently under development3. It is worth mentioning
that for a machine allowing concurrent reading, the algorithm can be considerably
simplified in that a lot of copying of the input graph becomes superfluous.

The rest of the paper is organized as follows. In the next section we give defini-
tions and state some preliminary results about separators and decompositions of
planar graphs. Our planar single-source shortest path algorithm is given in Section 3,
while Section 4 presents the implementation details for obtaining in parallel the region
decomposition needed for the shortest path algorithm. Concluding remarks are given
in Section 5. A preliminary version of this work appeared in [21].
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2. PRELIMINARIES

For the remainder of this paper let G=(V, E ) be a directed planar graph with
nonnegative, real edge weights, n=|V | vertices, and m�3n&6=O(n) edges. In the
following, when we speak about separator properties of G, we are referring to the
undirected version of G obtained by ignoring the direction of the edges. When we
speak of shortest paths, however, we take the direction of edges into account.

Definition 2.1. A separator of a graph H=(VH , EH) is a subset C of VH

whose removal partitions VH into two (disjoint) subsets A and B such that any
path from a vertex in A to a vertex in B contains at least one vertex from C.

Lipton and Tarjan [17] showed that planar graphs have small separators.

Theorem 2.1 (Planar separator theorem). Let G=(V, E ) be an n-vertex planar
graph with nonnegative costs on its vertices summing up to one. Then there exists a
separator S of G which partitions V into two sets V1 , V2 , such that |S |=O(- n) and
each of V1 , V2 has total cost at most 2�3.

We shall call such a separator S a 1
3� 2

3 separator of G. Let wt(v) denote the cost of
a vertex v # V. Then the cost of a subset V$�V will be denoted as wt(V$)=�u # V $ wt(u).

Definition 2.2 [6]. A region decomposition of a graph G is a division of the
vertices of G into regions, such that: (i) each vertex is either interior, i.e., it belongs
to exactly one region, or boundary, i.e., it is shared among at least two regions; and
(ii) there is no edge between two interior vertices belonging to different regions. For
any integer 1�r�n, an r-division is a region decomposition of G into 3(n�r)
regions such that each region has at most c1r vertices and at most c2 - r boundary
vertices, for some constants c1 and c2 .

By recursively applying the planar separator theorem, Frederickson [6] gave a
sequential O(n log n) time algorithm for computing an r-division. Our single-source
shortest path algorithm��like many others, see e.g., [14]��is based on Frederickson's
r-division of a planar graph. An explicit parallel implementation of Frederickson's
approach for computing an r-division, in a specific representation necessary for our
shortest path algorithm, is given in Section 4. This implementation is based on
recursive applications of the work-optimal parallel algorithm of Gazit and Miller
[8] for finding a 1

3� 2
3 separator in a planar graph, whose explicit implementation

is also given.
The other two main subroutines used by our algorithm are: (a) Dijkstra's

sequential algorithm (see, for instance, [1]). We shall denote a call of the algorithm
on a digraph H with source vertex s as Seq�Dijkstra(s, H ). (b) A parallel version
of Dijkstra's algorithm [5], applied to a digraph G$=(V$, E$) and running in time
O(m$p+n$ log n$) using p�m$�n$ EREW PRAM processors, where n$=|V$| and
m$=|E$|.

The parallelization of Dijkstra's algorithm, called parallel Dijkstra, is straight-
forward and obtained by doing distance label updates in parallel. (We assume that
the reader is famililar with Dijkstra's algorithm [1].) The idea is as follows. Let
each of the p processors have a private heap supporting insert and decrease-key
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operations in constant time and find and delete-min in O(log n) time, all in worst-
case [2, 5]. Assume that a vertex of minimum tentative distance has been selected
and broadcast to the p processors before the start of the next iteration. The
adjacency list of the selected vertex is divided into p equal sized segments, such that
the distance labels of the adjacent vertices can be updated in parallel in O(d�p) time,
d being the degree of the selected vertex. Each processor inserts (or decreases the
key of) the vertices it has updated into its private heap, and selects, again from its
private heap, a vertex of minimum distance label. By a prefix-minimum operation
the processors collectively determine the vertex of the globally minimum distance
label for the next iteration. The selected vertex is removed from all the heaps in
which it is present and the next iteration can start. It is easily verified that the algo-
rithm runs on the EREW PRAM in the stated time bound and is work-optimal for
p�m$�(n$ log n$). The algorithm is easy to implement: the heaps are local to each
processor, so a sequential implementation can be reused, the only parallel operation
needed being the prefix-minimum computation. We shall denote a call of the
parallel Dijkstra algorithm on G$ with source vertex s as Par�Dijkstra(s, G$).

It should be noted that any heap (e.g., a binary heap), with O(log n) worst-case
time for any heap operation, suffices for our purposes. As we shall see in Section
3, the work performed, O(m$ log n$), by such an implementation of parallel Dijkstra
is asymptotically smaller than the work performed by the other steps of our algorithm
(because m$=O(n)).

3. THE PLANAR SHORTEST PATH ALGORITHM

In this section we present our parallel algorithm for solving the single-source
shortest path problem on a planar digraph G with nonnegative edge weights. We
assume that G is provided with an r-division (see Definition 2.2). In Section 4 we
will show how such an r-division can be found.

Let s # V be the source vertex. Our algorithm works as follows. Inside every
region compute, for every boundary vertex v, a shortest path tree rooted at v. These
single-source computations are done concurrently using Dijkstra's sequential algo-
rithm. For the region containing s an additional single-source computation starting
at s is performed, if s is not a boundary vertex. Then G is contracted to a graph
G$ having as vertices the source vertex s and all boundary vertices of the decom-
position of G and having edges between any two boundary vertices belonging to the
same region (of G) with weight equal to their distance inside the region (if a path
does not exist, the corresponding edge weight is set to �). Furthermore, there are
edges from s to the boundary vertices of the region containing s, say R1 , with
weight equal to their distance from s in R1 . In G$ a single-source shortest path
computation is performed, using the parallel Dijkstra algorithm, producing shortest
paths from s to all other vertices of G$, that is, to all boundary vertices of G.
Finally, the shortest paths and distance from s to the rest of the vertices in G (i.e.,
to all the interior vertices of the regions) are computed in parallel, using for each
(interior) vertex the shortest path information obtained for the boundary vertices
of the region it belongs to. The implementation details of our algorithm follow.
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Algorithm. Planar single-source shortest path.

Input: A weighted planar digraph G=(V, E), a distinguished source vertex s # V,
and an r-division of G into regions Ri , 1�i�t, t=O(n�r). Let V(Ri) (resp. B(Ri)) be
the vertex set (resp. boundary vertex set) of Ri . Let C=�1�i�t B(Ri) be the set of all
boundary vertices and let C(v) for v # C denote the set of regions to which the bound-
ary vertex v belongs. Without loss of generality assume that s # V(R1). If s is a bound-
ary vertex, then pick R1 arbitrarily from the regions to which s belongs.

The input G=(V, E) is represented as a collection of adjacency lists stored in an
array A, such that vertices adjacent to the same vertex u # V form a consecutive
segment of the array denoted by A(u). The r-division is computed by the algorithm
given in Section 4 and is provided with the following data structures to facilitate the
necessary copying of the graph. Each vertex that is interior in a region Ri (i.e., a vertex
in V(Ri)&B(Ri)) has a label denoting the region it belongs to. The set B(Ri) of bound-
ary vertices of a region Ri is represented as an array. The set C of all
boundary vertices is also represented as an array. All adjacent vertices of a boundary
vertex v # C that belong to the same region are assumed to form a consecutive segment
of vertices in A(v). Adjacent boundary vertices v$ of v # C that belong to several regions
are arbitrarily put into one such segment. Every vertex v # B(Ri) has two pointers to
A(v), pointing to the first and the last vertex in the (consecutive) segment of vertices
that belong to Ri . Each v # C has a pointer to an array C(v) containing all regions for
which v is a boundary vertex. Finally, each boundary vertex v # B(Ri) has a pointer to
the position of Ri in the array C(v). The representation of the r-division is illustrated
in Fig. 1.

In the case where a boundary vertex belongs to many regions the segmentation
of the adjacency lists of the boundary vertices allows a processor for each region to
be associated with each such boundary vertex while still avoiding concurrent read
or write operations.

Output: A shortest path tree in G rooted at s. The shortest path tree is returned
in arrays D[1 : n] and P[1 : n]. The distance from s to v is stored in D[v] and the
parent of v in the shortest path tree is stored in P[v].

Method:
1. Initialization
2. Computation of shortest paths inside regions
3. Computation of shortest path tree inside R1

4. Contraction of G into G$ and shortest path tree computation in G$
5. Computation of shortest path tree in G

End of algorithm.

We now turn to the description of the implementation of each individual step.

1. Initialization. We start by making |B(Ri)| copies of every region Ri . This is
needed to avoid concurrent memory accesses in Step 2, when we compute shortest
paths inside every region. Let Rk

i denote the k th copy of region Ri , 1�k�|B(Ri)|,
which will be associated with the kth boundary vertex vk of B(Ri). This association
is needed in Step 2 when we will perform shortest path tree computations in Rk

i

rooted only at vk. With every u # V(Ri), two arrays D i
u[1 : |B(Ri)|] and Pi

u[1 : |B(Ri)|]
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FIG. 1. Data structures needed for the representation of the r-division. (a) All vertices adjacent to
u # V form a consecutive segment A(u) in A. (b) The data structures involving a boundary vertex
v # B(Ri).

are associated. The entry Di
u[k] stores the distance of a shortest vk-u path in Rk

i , while
the entry Pi

u[k] stores the parent of u in a shortest path tree in Rk
i rooted at vk.

1.01 for all u # V(Ri)&B(Ri), 1�i�t, do in parallel
1.02 Make |B(Ri)| copies of A(u);
1.03 od
1.04 for all v # B(Ri), 1�i�t do in parallel
1.05 Make |B(Ri)| copies of the segment of A(v) containing the vertices

belonging to Ri ;
1.06 od
1.07 for all u # V(Ri), 1�i�t do in parallel
1.08 Allocate space for the arrays Di

u [1 : |B(Ri)|] and Pi
u[1 : |B(Ri)|];

1.09 od
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1.10 for all u # V(Ri), 1�i�t, 1�k�|B(Ri)| do in parallel
1.11 if u=vk then D i

u[k]=0 else D i
u[k]=�;

1.12 P i
u[k]=null ;

1.13 od

Steps 1.01�1.03 and 1.04�1.06 are carried out by segmented prefix computations.
We will discuss the implementation of Steps 1.01�1.03. The implementation of Steps
1.04�1.06 is done in a similar way. An array is constructed which for each vertex
stores the number of copies to be made, namely |B(Ri)| for u # V(Ri)&B(Ri). By
prefix summation the size of a new vertex array A$ is computed. This array is
divided into segments A$(u) which, for each u # V(Ri)&B(Ri), can hold the |B(Ri)|
copies of u. A pointer to A(u) is stored in the first position of A$(u). By a segmented
prefix computation over A$ each of these pointers are broadcast to each copy of u.
In a similar fashion the adjacency array A is copied into an array A" such that each
u # V(Ri)&B(Ri) has |B(Ri)| copies of each of its adjacent vertices. Let A$(u)[k]
denote the position in A$(u) that stores the pointer for the k th copy, uk, of u. Now
the l th adjacent vertex of uk in A"(u) can be found by offsetting A$(u)[k] by
|B(Ri)| (l&1)+k positions. Thus, each copy of u can access its own copy of u's
adjacent vertices without any concurrent reading.

2. Computation of shortest paths inside regions. For each boundary vertex vk of
Ri , a single-source shortest path problem with source vk is solved in Rk

i using
Dijkstra's sequential algorithm. During the execution of the algorithm, each time a
boundary vertex v j, j{k, of Ri is selected, only the segment of its adjacent vertices
belonging to Ri is scanned.

2.01 for all vk # B(Ri), 1�i�t, 1�k�|B(R i)| do in parallel
2.02 Run Seq-Dijkstra(vk, Rk

i );
2.03 for all u # V(Rk

i ) do in parallel
2.04 Store the distance of a shortest vk-u path in D i

u[k];
2.05 Store the parent of u in the shortest path tree rooted at vk in P i

u [k];
2.06 od
2.06 od

3. Computation of shortest path tree inside R1 . If s is not a boundary vertex,
solve the single-source shortest path problem inside R1 with source vertex s, result-
ing in a distance (resp. parent) array D1[1 : |V(R1)|] (resp. P1[1 : |V(R1)|]);
\x # V(R1), D1[x] stores the distance of a shortest s-x path in R1 , and P1[x]
stores a pointer to the parent of x in the shortest path tree in R1 rooted at s.

3.01 if s � B(R1) then run Seq-Dijkstra(s, R1), resulting in arrays D1[ } ] and P1[ } ];

4. Contraction of G into G$ and shortest path tree computation in G$. Contract
G to a graph G$=(V$, E$) having the source vertex s and all boundary vertices of
G as its vertices. For any two boundary vertices vk and v j belonging to the same
region Ri there is an edge in G$ from vk to v j with weight equal to their distance
in Ri . If s is not a boundary vertex, then add edges from s to all boundary vertices
of R1 with weights equal to the distances found in Step 3. The single-source shortest
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path problem is then solved on G$ with source s using the parallel Dijkstra algo-
rithm, resulting in a distance (resp. parent) array D$[1 : |V$|] (resp. P$[1 : |V$|]),
where, \x # V$, D$[x] stores the distance from s to x in G$ and P$[x] stores a
pointer to the parent of x in the shortest path tree in G$ rooted at s. After this step
the distance from s to each boundary vertex of G has been computed.

4.01 V$=C _ [s]; E$=<;
4.02 for all 1�i�t, 1�k, j�|B(Ri)| do in parallel
4.03 for all pairs vk, v j # B(Ri) do in parallel
4.04 Add edge (vk, v j ) to E$ with weight equal to Di

v j [k];
4.05 od
4.06 od
4.07 if s � B(R1) then
4.08 for all v # B(R1) do in parallel
4.09 Add edge (s, v) to E$ with weight equal to D1[v];
4.10 od
4.11 G$=(V$, E$);
4.12 Run Par-Dijkstra(s, G$), resulting in arrays D$[ } ] and P$[ } ]

FIG. 2. Creation of E$.
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The adjacency list representation of E$ (Steps 4.04 and 4.09) is constructed as
follows. Consider each array C(vk) which contains all different regions to which a
boundary vertex vk # C belongs. To each entry Ri of this array, we associate an
array of size |B(Ri)| (see Fig. 2). Store the edge (vk, v j ) in the j th position of this
array. Now, E$, represented as an array in which all edges adjacent to vk form a
consecutive segment, can be constructed by a prefix computation on the union of
the C(vk) arrays along with their associated arrays. If s is not a boundary vertex,
it is trivial to augment E$ with a new segment containing all edges (s, v) such that
v # B(R1). Note that E$ may contain multiple edges, namely in the case where
boundary vertices vk and v j both belong to the same regions, but this affects neither
the correctness nor the complexity of running the parallel Dijkstra algorithm in
Step 4.12. Each time a pointer P$[x] is updated, x # V$, we store together with the
parent vertex of x the region to which the edge (P$[x], x) belongs. This allows us
in Step 5 to recover the parent pointers for the required shortest path tree in G.

5. Computation of the shortest path tree in G. To compute the requested
shortest path tree Ts in G rooted at s, we have to find the shortest path distance
in G from s to every vertex (boundary or interior) x # V and store it in D[x], as
well as the parent pointer for every x in the shortest path tree in G rooted at s and
store it in P[x].

To compute distances and parent pointers from s to interior vertices we do the
following. For each interior vertex u # V(Ri)&B(Ri), of a region Ri , scan through
its distance array D i

u to find the boundary vertex vk # B(Ri) which minimizes the
sum of the distance from s to vk (as computed in Step 4) and the distance from vk

to u (as computed in Step 2). Store this minimum distance in D[u]. The parent of
u, P[u], in Ts is the parent of u in the shortest path tree in R i rooted at vk, except
for the special case where s # V(R1)&B(R1) and u is an interior vertex of R1 . These
computations are done in Steps 5.10�5.13, except for the handling of the special
case which is done in Steps 5.21�5.25 and discussed below.

Distances from s to every boundary vertex have been computed in Step 4 and
stored in the array D$. Hence, all we have to do for the boundary vertices is to com-
pute parent pointers. For each boundary vertex vk # B(Ri), we look up its parent
wl=P$[vk] in the shortest path tree T $s in G$ rooted at s and check whether the
edge (wl, vk) belongs to Ri or not (this information was saved by the parallel
Dijkstra algorithm in Step 4). If the edge (wl, vk) does not belong to Ri , then we
do nothing, because the shortest s-vk path does not pass through Ri . Otherwise, if
the edge belongs to Ri , we distinguish between the cases wl{s and wl=s. In the
former case, we have that D[vk]=D$[vk] and the parent of vk in Ts is the parent
of vk in the shortest path tree in Ri rooted at wl which is stored in P i

vk [l]. In the
latter case, we further check if s is a boundary vertex or not. If s # B(R1), then the
edge (s, vk) belongs to R1 and hence we return to the former case, i.e., D[vk]=
D$[vk](=D1[vk]) and P[vk]=P1

vk [l]. If s � B(R1), D[vk]=D$[vk](=D1[vk]) as
before, but the parent of vk in Ts is equal to P1[vk] (as computed in Step 3). These
computations, concerning the boundary vertices, are done in Steps 5.14�5.19.

Finally, in the case where s is not a boundary vertex, the distance and parent
information computed so far for the interior vertices in R1 may not be correct,
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because D[u], for u # V(R1)&B(R1), stores the weight of a (shortest) s-u path
passing through at least one boundary vertex and the actual shortest s-u path may
stay entirely in R1 . This is rectified by updating D[u] (resp. P[u]) to D1[u] (resp.
P1[u]) in the case where D1[u]<D[u]. These computations, regarding the
interior vertices of R1 , are done in Steps 5.21�5.25.

A preprocessing step is necessary in order to avoid concurrent memory accesses.
To avoid concurrent reading of the array D$ in Step 5.11, |V(Ri)&B(Ri)| copies of
each value D$[vk] have to be made for each boundary vertex vk (Steps 5.01�5.04).
To avoid concurrent reading of the parent pointers in array P$ in Step 5.16, a copy
of P$[v] is made for each of the |C(v)| regions to which the boundary vertex v # C
belongs (Steps 5.05�5.08). This copying of D$ and P$ is done by segmented prefix
computations.

5.01 for all vk # B(Ri), 1�i�t, 1�k�|B(R i)| do in parallel
5.02 Make |V(Ri)&B(Ri)| copies of D$[vk];
5.03 Let D$u[vk] denote the u th copy of D$[vk] for u # V(Ri)&B(R i);
5.04 od
5.05 for all v # C do in parallel
5.06 Make |C(v)| copies of P$[v];
5.07 Let P$i [v] denote the copy of P$[v] for region Ri ;
5.08 od
5.09 for all 1�i�t do in parallel
5.10 for all u # V(Ri)&B(Ri) do in parallel
5.11 D[u]=minv k # B(Ri )[D$u[vk]+D i

u[k]];
5.12 P[u]=P i

u[k];
5.13 od
5.14 for all vk # B(Ri) do in parallel
5.15 D[vk]=D$[vk];
5.16 Let wl=P$i [vk];
5.17 if edge (wl, vk) belongs to Ri then
5.18 if wl=s and s � B(R1) then P[vk]=P1[vk] else P[vk]=P i

vk [l];
5.19 od
5.20 od
5.21 if s � B(R1) then
5.22 for all u # V(R1)&B(R1) do in parallel
5.23 if D1[u]<D[u] then
5.24 D[u]=D1[u]; P[u]=P1[u];
5.25 od

Theorem 3.1. The single-source shortest path problem in an n-vertex planar
digraph, with nonnegative edge weights, can be solved in O((r+n�- r) log n) time
using O(n - r log n) work on the EREW PRAM.

Proof. We start with the correctness of the algorithm. We first claim that the
shortest paths from s to all boundary vertices in G have been correctly computed
after Step 4. A shortest s-v path in G, where v is a boundary vertex, consists of a
sequence of shortest subpaths, each one belonging to a region of G. A path can
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enter and leave a region Ri only through the boundary vertices of Ri . Hence, com-
puting shortest paths between any two boundary vertices vk, vj in Ri , or between
s and any w # B(R1), and then substituting the shortest vk-v j (resp. s-w) path in Ri

(resp. R1) by an edge (vk, v j ) (resp. (s, w)) with weight equal to their distance in Ri

(resp. R1), resulting in graph G$, preserves shortest paths from s to every boundary
vertex in G. But these are exactly the shortest path computations performed in Step
4, based on the shortest paths computed inside every region in Steps 2 and 3. To
complete the proof of the claim it remains to show that shortest paths inside every
region are correctly computed in Steps 2 and 3, which reduces to showing that the
arbitrary placement to only one segment in A(v) of adjacent boundary vertices v$
of v # C that may belong to several regions does not affect correct shortest path
computation between v and v$ in the relevant regions. We will show this for Step
2 (a similar proof holds for Step 3). Consider the edge (v, v$). Since G is planar, this
edge can belong to at most two regions, say Ri and Rj . Let v$ be arbitrarily put into
the segment regarding Ri , i.e., (v, v$) is assumed to belong only to Ri . Since (v, v$)
belongs only to Ri and Rj , it suffices to show that the arbitrary placement of (v, v$)
in Ri does not affect the shortest v-v$ path that stays entirely within the subgraph
induced by V(Ri) _ V(Rj) and that this information is available at the beginning of
Step 4. Such a shortest v-v$ path will be the minimum weight path between two
paths: a shortest v-v$ path in Ri and a shortest v-v$ path in Rj . The former path is
computed in Step 2 by the shortest path tree computation in Ri (which includes
(v, v$)) with root v. The latter path is computed in Step 2 by the shortest path tree
computation in Rj with root v. By the construction of G$, the weights of both paths
will be present in G$ as two (v, v$) edges, one carrying the weight of the former path and
the other carrying the weight of the latter path. As mentioned in Step 4, this affects
neither the correctness nor the complexity of the parallel Dijkstra algorithm. Hence, the
shortest paths computations in Step 4 are correct and consequently the claim is true.

We now claim that Step 5 computes correct shortest paths from s to every vertex in
G. This is true for the boundary vertices, as shown above, except for the updating of the
parent pointers whose correctness can be easily verified by the description of Step 5.
Now, let u be an interior vertex of a region Ri . Clearly, to find the shortest s-u path in
G, it suffices to find the boundary vertex v of Ri which minimizes the sum of the s-v
distance in G (computed correctly in Step 4) and the v-u distance in Ri (computed in
Step 2). (If s is a boundary vertex, then for some regions the former distance is zero.)
This is exactly the computation performed in Steps 5.09�5.20. A special handling must
be done in the case where s, belonging to region R1 , is not a boundary vertex of R1 .
Then it can be easily verified that the shortest s-u path, where u is an interior vertex of
R1 , either stays entirely in R1 or passes through at least one boundary vertex of R1 . The
former path is computed in Step 3, while the latter one in Steps 5.09�5.20, as described
above. Clearly, the path of minimum weight between these two paths is the required
shortest s-u path in G. This computation is performed by Steps 5.21�5.25. Hence, the
second claim is true and consequently correctness has been established.

From the description of the algorithm, it is clear that all steps can be done
without concurrent read or write. The complexity of the algorithm is as follows. In
Step 1, O(- r) copies of O(r) edges are made within each region, using a prefix
computation. Hence, Step 1 takes O(log n) time and O((n�r) r - r)=O(n - r) work.
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In Step 2, O(- r) concurrent single-source shortest path computations are performed
in each region which has O(r) vertices and edges. Each single-source shortest path com-
putation takes O(r log r) time and work. Hence, Step 2 takes over all regions O(r log r)
time and requires O((n�r) - r (r log r))=O(n - r log r) work. One additional single-
source shortest path computation may be needed in Step 3 taking O(r log r) time
and work. To construct the contracted graph G$=(V$, E$) in Step 4, all we have
to do is to generate E$, since V$=C _ [s]. As explained in the algorithm, creation
of E$ involves a prefix computation on an array of total size

:
v # C, Ri # C(v)

|C(v)| } |B(Ri)|=O \ :
v # C

|C(v)| - r+=O( |C | - r)

=O((n�- r) - r)=O(n).

Thus, creating E$ takes O(log n) time and O(n) work. The resulting graph G$ has
O(n�- r) vertices and O(n) edges. On G$ the single-source shortest path problem is
solved in parallel in O((n�- r) log n) time and O(n log n) work using the parallel
Dijkstra algorithm. Finally, in Step 5, copying the D$ values takes O(n - r) work
and copying the P$ values takes O(n�- r) work, since the total size of the lists C(v)
is O(n�- r); both copying operations take O(log n) time. The loop in Steps
5.10�5.13 needs O(log r) time and O(n - r) work. The remainder of Step 5 can be
done in constant time and O(n) work. Hence, the total time taken by the algorithm
is O(r log r+(n�- r) log n), and the total work performed is O(n - r log n). K

By letting r=n2=, for any 0<=<1�2, we have:

Theorem 3.2. On an n-vertex planar graph the single-source shortest path
problem can be solved in O(n2= log n+n1&= log n) time and O(n1+= log n) work on an
EREW PRAM.

Both bounds of the above result can be improved by a logarithmic factor, if we
substitute the calls of the sequential Dijkstra algorithm in Step 2 with the linear-
time algorithm for planar digraphs [14] and the call of parallel Dijkstra algorithm
in Step 4 with the new implementation given in [3], which runs in O(n) (resp.
O(n log(m�n))) time and O(m log n) work on a CREW (resp. EREW) PRAM. Since
m=O(n) in our case, we have the following.

Theorem 3.3. On an n-vertex planar graph the single-source shortest path
problem can be solved in O(n2=+n1&=) time and O(n1+=) work on an EREW PRAM.

4. OBTAINING THE REGION DECOMPOSITION IN PARALLEL

In this section we present an explicit EREW PRAM implementation of the
algorithm in [6] for finding an r-division of a planar graph G. The main procedure is
an algorithm for finding a separator in G. A simple, work-optimal parallel algorithm for
the latter problem was given by Gazit and Miller [8]. Their algorithm is a clever
parallelization of the sequential approach by Lipton and Tarjan [17] and runs in
O(- n log n) time using O(n) work on a CRCW PRAM. Randomized NC algorithms
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for the problem of finding a small separator have been given in [9, 13]. For our
purposes the slower, but simple and easily implementable algorithm is appropriate.

We start by giving the implementation on an EREW PRAM of the algorithm in
[8], running in O(- n log n) time and performing O(n log n) work. We also include
a proof of correctness by reproving and simplifying some lemmata used in [8].
Then, in Section 4.2, we give the implementation of the algorithm for finding the
r-division. For simplicity, we relax in the following the constant in the size of the
separator.

4.1. The Gazit�Miller Separator Algorithm

In order to better understand how the Gazit�Miller algorithm works, we have to
recall the Lipton�Tarjan approach.

Let G=(V, E ) be an embedded planar graph. (W.l.o.g., we assume that G is
connected.) The Lipton�Tarjan algorithm starts by choosing an arbitrary vertex
s # V and then performing from s a breadth first search (BFS) in G. The vertices of
V are assigned a level numbering (with s having level 0) with respect to the level
they belong to in the BFS tree constructed. Let lmax be the maximum level com-
puted and let V(l) be the set of vertices at level l. The crucial property of BFS is
that every V(l) is a separator of G.

Let l1 be the middle level, i.e., wt(�l<l1
V(l))<1�2, but wt(�l�l1

V(l))�1�2.
Consequently, wt(�l>l1

V(l))�1�2. If |V(l1)|=O(- n), then the algorithm stops
since V(l1) is clearly the required separator. Otherwise, there must exist levels
l0�l1 ( first cut) and l2>l1 (last cut) such that |V(l0)|�- n, |V(l2)|�- n,
l1&l0<- n, and l2&l1<- n. (Note that l2 may be the empty level lmax+1.)
Removal of the first and last cuts partitions V into three sets: A=�l<l0

V(l), B=
�l0<l<l2

V(l), and C=�l>l2
V(l). If wt(B)�2�3, then the required separator is

S=V(l0) _ V(l2), V1 is the heaviest of A, B, C, and V2 is the union of the remain-
ing two (lighter) sets. However, if wt(B)>2�3, then B has to be further split. Since
wt(A)+wt(C)<1�3, it suffices to find a separator S$ of B with O(- n) vertices such
that each part into which B is separated has cost at most 2�3. For if we have it, then
the required separator S is V(l0) _ V(l2) _ S$, |S |=O(- n), V1 is the heavier part
of B, and V2 is the union of A, C and the lighter part of B. Clearly, both V1 and
V2 will have cost at most 2�3.

To find S$, construct a planar graph GB as follows. Delete from G all vertices in
C _ V(l2) (along with their incident edges) and shrink all vertices in A _ V(l0) to
a single vertex s$ with weight zero, i.e., replace all vertices in A with s$ and add
edges from s$ to every vertex in V(l0+1). It is easy to verify that GB has a spanning
tree T of diameter at most 2(l2&l0&1)+1�2 - n: s$ is the root of T and all
vertices in GB have BFS distance at most (l2&l0&1) from s$. Then, the required
separator S$ can be found by working on the dual graph of GB . The bound on |S$|
comes from the bound in the diameter of T.

The problem of computing efficiently in parallel a separator S$ in GB of size O(- n)
has been solved in [18]. More specifically such an S$ can be found in O(log n) time
and O(n) work on an EREW PRAM if GB is provided with a spanning tree of
diameter O(- n).
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The main difficulty in parallelizing the Lipton�Tarjan approach is the computa-
tion of the BFS tree rooted at (an arbitrary vertex) s: either one has to pay in time
(O(n)) resulting in a parallel algorithm with no speedup or one has to pay in work
(close to O(n3)) which makes the parallel algorithm highly work-inefficient. In
order to avoid the expensive BFS computation, Gazit and Miller proposed a different
partitioning of V into levels. Their approach is summarized as follows: perform
a normal BFS, but if at some level there are only a few vertices then augment its
size by adding more vertices into it. This so-called augmented BFS must be done
in a way such that each augmented level is connected only to the next; other-
wise, GB may not have a spanning tree of small diameter and�or each level of the
augmented BFS will not be a separator. That is, for 0�l<lmax , there exists at
least one edge (x, y) such that x # V(l) and y # V(l+1), and there is no edge
(w, z) such that w # V(l) and z # V(l+i), for 2�i�lmax . This specific connected-
ness is achieved by taking augmentation vertices in preorder from a spanning tree
of G.

It follows by the above discussion that there are two main problems to be solved:
(i) find the levels l0 (first cut), l1 (middle level), and l2 (last cut); and (ii) find a
spanning tree of diameter O(- n) in GB .

The bulk of the work in the Gazit�Miller algorithm is in the solution of the first
problem. The solution of the second problem is a by-product.

The three levels l0 , l1 , and l2 computed by the Gazit�Miller approach may not
be the same as those computed by the Lipton�Tarjan algorithm; however, they will
have similar properties. That is, l0�l1<l2 , wt(�l<l1

V(l))<1�2, |V(l0)|�2 - n,
|V(l2)|�- n, l1&l0<- n, and l2&l1<- n.

The high-level description of the Gazit�Miller algorithm is similar to that of the
Lipton�Tarjan approach. Phase A performs the augmented BFS and computes levels
l0 and l1 , while Phase B computes another set of levels and also finds level l2 .

Algorithm Gazit�Miller.
Input: Embedded (connected) planar graph G=(V, E ) with nonnegative costs on

its vertices summing up to one.
Output: A partition of V into three sets V1 , V2 , S, such that S is a separator of G,

|S |�7 - n, and each of V1 , V2 has total cost at most 2�3.
Method:
01. Run the Initialization Phase;
02. Run Phase A;
03. if |V(l1)|�7 - n then
04. S=V(l1); V1=�l<l1

V(l); V2=V&V1&S;
05. else run Phase B;
06. Let A, B, C, and GB as defined previously;
07. if wt(B)�(2�3) then
08. S=V(l0) _ V(l2); V1=maxwt[A, B, C]; V2=(A _ B _ C)&V1 ;
09. else find a 1

3� 2
3 separator in GB yielding partition

10. W1 , W2 , S$, |S$|�4 - n, and wt(W1)�wt(W2);
11. S=V(l0) _ V(l2) _ S$; V1=W1 ; V2=A _ C _ W2 ;
End of algorithm.
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We will now describe the implementation details of the three phases. The
Initialization Phase is as follows:

Initialization Phase:
1. Allocate arrays A[1 : n] and A$[1 : - n];
2. Find a spanning tree T of G rooted at an arbitrary vertex s;
3. Compute the preorder numbering, pre( } ), of the vertices in T ;
4. for all v # T do in parallel A[ pre(v)]=v;
End of Initialization Phase.

In Step 4 of the Initialization Phase, the vertices of G are stored in an array A
according to their preorder number. The array A will be used as a stack. At any given
instant vertices will be stored in the segment A[i : n], 1�i�n, with A[i] being the
stack top. After initialization lower numbered vertices will appear nearer the top.
Vertices will pop off A in blocks, and by the preorder numbering the vertices in any
such block will be connected to vertices in some previously popped block.

Lemma 4.1. The Initialization Phase of the Gazit�Miller algorithm runs in
O(log2 n) time using O(n log n) work on an EREW PRAM.

Proof. In Step 1 space for arrays A and A$ is allocated and start addresses are
broadcast to all processors. This takes O(log n) time and O(n) work. Step 2 takes
O(log2 n) time and O(n log n) work using the very simple algorithm of [19]. (Note
that for the latter step, there exists an O(log n log* n)-time, O(n)-work EREW
PRAM algorithm [10]; however, this algorithm does not seem to be as simple as
the algorithm of [19].) Step 3 takes O(log n) time and O(n) work, using parallel
tree contraction [11]. Finally, Step 4 uses O(1) time and O(n) work. K

The implementation of Phase A, which performs the augmented BFS and finds
levels l0 and l1 , is given next.

Phase A:
01. l=0; V(0)=[s];
02. while wt(�l$<l V(l$))<1�2 do (* main loop *)
03. Next-level(l, V(l));
04. l=l+1; j=2l+1;
05. while |V(l)|<j and A{< do (* augmented level l *)
06. Pop the top - n vertices from A and store these in array A$;
07. Mark the vertices in A$ that belong to any previous level i<l;
08. Remove the marked vertices from A$ by parallel prefix computations

and count the number, R, of the remaining vertices;
09. \=min[ j&|V(l)|, R];
10. Add the first \ elements of A$ to V(l) and push the

remaining R&\ back onto A;
11. od (* augment level l *)
12. if |V(l)|<2 - n+1 then l0=l;
13. od (* main loop *)
14. l1=l ;
End of Phase A.
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The procedure next-level is a straightforward parallelization of one BFS step.

Procedure next-level(l, V(l))
1. V(l+1)=V(l);
2. Replace every u # V(l+1) by the list of its adjacent vertices;
3. Remove from V(l+1) all vertices belonging to any level i<l+1,

using a parallel prefix computation;
4. Remove all duplicate vertices, using sorting;
End of procedure.

Lemma 4.2. Phase A of the Gazit�Miller algorithm computes a set of levels
0�l�l1 , l1 being the last level, along with a special level l0�l1 such that:

(i) Each V(l) is a separator and the subgraph induced by �0�i�l V(i ) is
connected.

(ii) wt(�l<l1
V(l))<1�2, l1&l0<- n, and |V(l0)|�2 - n.

(iii) Any spanning tree of the subgraph induced by �l0�i�l1
V(i ) has diameter

at most 2 - n&1.

(iv) The whole computation takes O(- n log n) time using O(n log n) work on
an EREW PRAM.

Proof. (i) A vertex v is added to V(i ), 0<i�l, either because the next-level
procedure is executed or because it is picked from the array A. In the former case,
v is adjacent to a vertex in V(i&1). In the latter case, since vertices are chosen from
A in preorder number, v must be adjacent to at least one vertex in �0� j�i V( j )
(i.e., its parent in T ). Hence, in either case the subgraph induced on �0�i�l V(i )
is connected. Due to Steps 07 and 08 there is no edge that crosses two or more
levels so every V(l) is a separator.

(ii) The fact that wt(�l<l1
V(l))<1�2 follows by the termination condition

of the while-loop at Step 02. The total number of vertices k included in the sets
V(l) at the end of Phase A is k=|�0�l�l1

V(l)|�1+�l1
l=1 (2l+1)=(l1+1)2.

On the other hand, |�0�l�l1
V(l)|�n. Consequently, the total number of levels,

l1 , computed in Phase A is at most - k&1<- n, which implies that l1&l0<- n.
By the condition in Step 12 it is clear that |V(l0)|�2 - n.

(iii) The diameter of a spanning tree in the subgraph induced by �l0�i�l1
V(i)

cannot be more than �l1
i=l0

|V(i )|=�l1
i=0

|V(i )|&�l0&1
i=0

|V(i)|�n&l2
0 . By the

condition in Step 05, we must have that the augmented level l0+1 has size |V(l0+1)|
�2l0+3. Moreover, since l0 is the last level with |V(l0)|<2 - n+1, it must also
hold that 2l0+3�2 - n+1. This implies that l0�- n&1. Hence, �l1

i=l0
|V(i )|�

n&(n&2 - n+1)=2 - n&1.

(iv) We start by bounding the total number of iterations of the main-loop.
We claim that this number is bounded by 2 - n. Clearly, if the number of iterations
of the inner while-loop (augment level) is 0, then the main-loop will iterate at most
l1<- n times. Hence, it suffices to show that the inner while-loop is executed at
most 2 - n times over all executions of the main-loop. Consider an iteration of the
inner while-loop and call it proper if R<j&|V(l)|. Clearly, there are at most - n
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proper iterations in total, since at that point A has become empty. On the other
hand, a nonproper iteration is always the last iteration of the inner while-loop and
as a consequence V(l) has the required size. Since the total number of levels is
<- n, the total number of nonproper iterations is also <- n. Hence, the claim is
true.

The execution of next-level takes O(log n) time and O( |N(V(l))| log n) work
on an EREW PRAM, where N(V(l))=[(u, v) # E : u # V(l)]. Each execution of
the inner while loop takes O(log n) time and O(- n) work. Consequently, Phase A
runs in O(- n log n) time using O(n log n) work on an EREW PRAM. K

We now turn to the implementation of Phase B. It computes a set of levels (using
normal BFS) and also computes the level l2 .

Phase B:
1. l=l1 ; k=|�0�i�l1

V(i )|;

2. while |V(l)|�- n&k do
3. next-level(l, V(l));
4. l=l+1;
5. od
6. if V(l1+1)=< then l2=l1+1 else l2=l ;
End of phase B.

Lemma 4.3. Phase B of the Gazit�Miller algorithm computes a set of levels l>l1

along with a special level l2>l1 such that:

(i) V(l2) is a separator, |V(l2)|<- n, and l2&l1<- n.

(ii) The subgraph G$ induced by (�l1�i<l2
V(i )) _ [s"], where s" is a special

zero-weighted vertex connected to all vertices in V(l1), has a spanning tree of
diameter at most 2 - n+1.

(iii) The whole computation takes O(- n log n) time using O(n log n) work on
an EREW PRAM.

Proof. (i) If V(l1+1)=<, or V(l)=< at some iteration, then there are no
additional BFS levels to be created, i.e., we have reached the maximum BFS level.
In this case, V(l2)=< is a trivial separator. Otherwise, each V(l), l>l1 , is a
separator, since every level is created by Normal BFS (Step 3), and so is V(l2). In
every iteration of the while-loop, V(l)�- n&k. Hence, the total number of itera-
tions, l2&l1 , performed by the while-loop is bounded by - n&k<- n. It is also

clear by the description of the algorithm that |V(l2)|<- n, either because of the
terminating condition of the while-loop or because V(l2) is the trivial separator
(empty set).

(ii) Vertex s" can be considered as replacing all vertices in level l1&1 and
below in a way analogous to vertex s$ in the Lipton�Tarjan approach. The BFS
levels l1 (created during Phase A), l1+1, ..., l2 (created by Phase B) can alter-
natively be seen as being produced by performing on G$ a BFS rooted at s", with
s" having level l1&1. Consequently, all vertices are at a BFS distance of at most
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l2&l1 from s". As in the Lipton�Tarjan approach, the spanning tree of G$ is deter-
mined by the BFS process, has s" as its root, and diameter at most 2(l2&l1)+1<
2 - n+1.

(iii) The resource bounds follow from the fact that the total number of
iterations of the while-loop is at most - n and the resource bounds of executing
procedure next-level (see Lemma 4.2). K

We are now ready to prove the following theorem.

Theorem 4.1. Let G=(V, E ) be an n-vertex planar graph with nonnegative costs
on its vertices summing up to one. Then, the Gazit�Miller algorithm finds a partition
of V into three sets V1 , V2 , S, such that S is a separator of G, |S |�7 - n, and each
of V1 , V2 has total cost at most 2�3. This partition can be computed in O(- n log n)
time using O(n log n) work on an EREW PRAM.

Proof. In view of the discussion preceding the Gazit�Miller algorithm, to prove
the theorem it suffices to show that (a) the levels l0 , l1 , and l2 obey properties
similar to those computed by the Lipton�Tarjan algorithm, and (b) that the
subgraph GB has a spanning tree of small diameter.

Part (a) follows immediately by Lemmata 4.2(i, ii) and 4.3(i). For part (b), recall
that GB is the graph induced on (�l0<i<l2 V(i )) _ [s$], where s$ has replaced all
vertices in �0�i�l0

V(i ) and is adjacent to all vertices in V(l0+1). Hence, we can
consider V(l0)=[s$]. Compute any spanning tree T in �l0�i�l1

V(i ). By Lemma
4.2(iii), its diameter is at most 2 - n&1. Now, consider all nodes u of T that belong
to level V(l1). Each such node u is also the root of a BFS tree, T$(u), generated
during Phase B by the procedure Next-Level in the graph induced by �l1�i<l2

V(i).
In fact, each such u is a child of s" in the implicit BFS tree construction used in
the proof of Lemma 4.3(ii). Attach to each such node u in T the subtree T$(u).
Clearly, the resulting tree is a spanning tree of GB . By Lemmata 4.2(iii) and 4.3(ii),
the new tree has diameter not greater than 2 - n&1+2 - n+1=4 - n.

The worst-case bound on |S | comes from Step 11 and is clearly bounded by
7 - n. The resource bounds follow easily by those of Lemmata 4.1, 4.2, and 4.3 and
the fact that computing a spanning tree takes O(log2 n) time and O(n log n) work
by the algorithm of [19]. K

4.2. The Parallel Algorithm for Finding an r-Division

The algorithm for finding an r-division of a planar graph G=(V, E), in the form
required by the planar single-source shortest path algorithm (Section 3), is given
below. The algorithm is based on recursive applications of Theorem 4.1.

Algorithm Parallel r-division.
Input: Planar graph G=(V, E), parameter r, and constants c1 , c2 .
Output: An r-division of G.
Method:
1. R=G; B(R)=<; C=<;
2. Split-Region(R);
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3. For all regions R$ and all boundary vertices v # B(R$), create pointers to the
beginning and end of the segment of v-adjacent vertices belonging to R$;

4. Create for each v # C the array C(v) of regions to which v belongs, using a
parallel prefix computation in the segmented adjacency list of v;

5. For all regions R$, and for each v # B(R$), create a pointer to the position of
R$ in C(v);

End of algorithm.

Procedure Split-Region(R)
1. if |V(R)|>c1r then (* split region *)

run the Gazit�Miller algorithm on R with vertex cost 1
|V(R)| ,

yielding partition V1(R), V2(R) and S(R)
else (* split boundary *)

if |B(R)|>c2 - r then
run the Gazit�Miller algorithm on R with vertex cost 0
for each v # V(R)&B(R) and vertex cost 1

|B(R)|

for each v # B(R), yielding partition V1(R), V2(R) and S(R)
else return;

2. Infer regions Ri , i=1, 2, induced by vertex sets V(Ri)=Vi(R) _ S(R) with
boundary vertex sets B(Ri)=(B(R) & Vi(R)) _ S(R);

3. C=C _ B(R1) _ B(R2);
4. Split the adjacency list of each v # B(R) by a parallel prefix computation into

two parts containing the neighbors of v belonging to R1 , and the neighbors
of v belonging to R2 ; mark each neighbor vertex with the region to which it
belongs; neighbors belonging to both R1 and R2 are put (arbitrarily) in the
first part;

5. Run Split-Region(Ri) in parallel for i=1, 2;
End of procedure.

Theorem 4.2. An r-division of an n-vertex planar graph G represented as required
for the planar shortest path algorithm in Section 3 can be computed in O(- n log2 n)
time using O(n log2 n) work on an EREW PRAM.

Proof. The correctness can be easily verified from the description of the algo-
rithm (see also [6]). It is also easy to see that the required representation of the
r-division is computed. In particular at each level of the recursion the adjacency
lists of the boundary vertices are correctly split and the adjacent vertices marked
with the region to which they belong. Thus, after the recursion each vertex adjacent
to a boundary vertex has been marked with the region to which it finally belongs.
The marks are used to create, for each boundary vertex v # B(Ri) of region Ri ,
pointers to the beginning and end of the segment of v's adjacency list of vertices
belong to Ri . This information is then used to create for each boundary vertex v
the array C(v) of regions to which it belongs.

We now turn to the resource bounds. We start with procedure Split-Region.
The depth of the recursion is O(log n). By Theorem 4.1 each iteration of Step 1
takes O(- n log n) time and O(n log n) work. Steps 2, 3, and 4 take O(log n) time
and O(n) work. Hence, procedure Split-Region, and consequently Step 2 of the
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algorithm, takes in total O(- n log2 n) time and O(n log2 n) work on an EREW
PRAM. The other steps of the algorithm are performed by segmented prefix opera-
tions (similar to the detailed descriptions given in Section 3) and can be done
within O(log n) time and O(n) work. This concludes the proof of the theorem. K

Note that both time and work required to find the r-division is within that of the
shortest path algorithm (Theorem 3.2).

5. FINAL REMARKS

We presented a sublinear-time, work-efficient parallel algorithm for the single-
source shortest path problem on planar digraphs. We believe that the main advantage
of our algorithm is its simplicity and ease of implementation. The improvement in the
work is based on a suitable choice of the parameters in the region decomposition which
reduced the problem to computing a small collection of local shortest path information
(inside every region) and then using this in computing global shortest path information
from the source to every boundary vertex in the original graph. Coming down to linear
work seems to be difficult, however.

It has tacitly been assumed that the input to the seperator algorithm is a planar
graph with an embedding. This of course begs the question of the existence of a
parallel planarity testing and embedding algorithm or of a parallel separator algo-
rithm not requiring an embedding as part of the input. We are not aware of any
parallel algorithm for the latter case. Work-efficient, NC algorithms for the former
case have been given in [15, 20], but neither of these algorithms seems to be easily
implementable. Designing a simple, easily implementable, parallel algorithm for
planarity testing and embedding is an interesting open problem.
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