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“Envy, desire, and the pursuit of honor drive a person from the world.”

Chapters of Our Fathers 4:27

Abstract

We consider the problem of fairly dividing a heterogeneous cake between a number of
players with different tastes. In this setting, it is known that fairness requirements may result
in a suboptimal division from the social welfare standpoint. Here, we show that in some
cases, discarding some of the cake and fairly dividing only the remainder may be socially
preferable to any fair division of the entire cake. We study this phenomenon, providing
asymptotically-tight bounds on the social improvement achievable by such discarding.

1 Introduction

Cake cutting is a standard metaphor used for modeling the problem of fair division of goods
among multiple players. “Fairness” can be defined in several different ways, with envy-freeness
being one of the more prominent ones. A division is envy-free if no player prefers getting a piece
given to someone else.
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50%− ε for Alice 100% for Bob

(b) discarding of some cake

Figure 1: Discarding a small part of the cake allows for a better envy-free division between
Alice and Bob.

Consider the rectangular cake depicted in Figure 1(a). It is a chocolate cake sprinkled with
candies right along the middle. Suppose you have two kids: Alice and Bob. Alice likes the
base of the cake, but is indifferent to the candies; Bob is the opposite: he cares only for the
candies. It is easy to see that if each of the children must get one consecutive piece of the
cake, then splitting the cake along the middle is the only possible envy-free division. Any other
split would result in one child getting less than 50% (by his or her valuation) and envying the
other. But this division is rather wasteful: if Bob could only get a small additional fraction
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from Alice (small in her view), he would be doubly as happy. Is there any possible way to make
this happen — without introducing envy?

Interestingly, the answer is in the affirmative. By discarding a small piece from the right-end
of the cake, we can now place the cut to the left of candies, giving the right piece to Bob and
the left to Alice (see Figure 1(b)). Alice would no longer envy Bob, as he gets the same amount
of the cake as she does. The overall happiness level would substantially increase: Bob is doubly
happy, and Alice is only ε less happy.

The above is a particular example of what we call the dumping effect — the phenomenon
in which one can increase the social welfare of envy-free divisions by discarding (=dumping)
some of the cake. The above provides an example of a utilitarian 1.5− ε dumping effect (i.e. the
utilitarian welfare, defined as the sum of individual utilities, increases by a factor of 1.5− ε). In
this paper we analyze the dumping effect: under what circumstances may it arise? what social
welfare can it improve? and by how much? Interestingly, we show that at times much can be
gained by such discarding of some of the cake. We show:

• With regards to utilitarian welfare, the dumping effect with n players can be as high
as Θ(

√
n); i.e. there are cases where discarding some of the cake allows for an envy-free

division that is Θ(
√
n) better (from the utilitarian standpoint) than any envy-free division

of the entire cake. This bound is asymptotically tight.

• With regards to egalitarian welfare, the dumping effect with n players can be as high
as n

3 . Egalitarian welfare is defined as the utility obtained by the least-happy player.
In particular, we show a case where discarding some cake allows us to improve from an
allocation in which at least one player gets no more than 1/n to an allocation in which
everybody gets at least ≈ 1/3 (!). Our construction almost matches the upper bound of n2
following from [AD10]; for n ≤ 4 we show that the bound of n

2 can actually be obtained.

• With regards to Pareto efficiency, there are instances in which discarding some cake allows
for an envy-free division that Pareto dominates every envy-free division of the entire cake.
We show that by discarding even one piece of the cake it may be possible to double the
utility of all but two players without harming these remaining two players.

All of our results are for divisions that require that each player get one consecutive piece of the
cake. For divisions that allow players to get arbitrarily many pieces of the cake we show that
no dumping effect is possible.

Related work. The problem of fair division has been studied in many different fields and
settings. Modern mathematical treatment of fair division via the cake cutting abstraction
started in the 1940s [Ste49]. Since then, many works presented algorithms or protocols for fair
division [Str80, EP84, BT95, CLPP10], as well as theorems establishing the existence of fair
divisions (under different interpretations of fairness) in different settings [DS61, Str80]. Starting
from the mid 1990s, several books appeared on the subject [BT96, RW98, Mou04], and much
attention was given to the question of finding bounds on the number of steps required for
dividing a cake fairly [MIBK03, SW03, EP06, Pro09].

A more recent work by Caragiannis et al. [CKKK09] added the issue of social welfare into
the framework of cake cutting. In particular, Caragiannis et al. aimed at showing bounds on
the loss of social welfare caused by fairness requirements, by defining and analyzing the Price of
Fairness (defined for different fairness criteria). The work in [CKKK09] considered fair division
of divisible and indivisible goods, as well as divisible and indivisible chores; for each of these
settings, it has provided bounds on the highest possible degradation in utilitarian welfare caused
by three prominent fairness requirements — proportionality, envy-freeness, and equitability.
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Following this line of work, a recent work by a subset of the authors here [AD10] analyzed the
utilitarian and egalitarian Price of Fairness in the setting of cake cutting where each piece is
required to be a single connected interval. (This is in contrast to the work of [CKKK09] that
allowed a piece in the division to be comprised of any union of intervals.)

Finally, the concept of partial divisions of a cake (in which not all the cake is allotted to the
players) has also been considered in [CLPP10] and very recently in [CLP11]. Interestingly, in
each of these works, discarding of some of the cake serves a different purpose. In [CLPP10], the
authors present a proportional, envy-free and truthful cake cutting algorithm for players with
valuation functions of a restricted form. In that work, disposing of some of the cake is what
ensures that the players have no incentive to lie to the protocol. In [CLP11], a restricted case of
non-additive valuation functions is considered, with one of the results being an approximately-
proportional, envy-free protocol for two players. In that protocol, some cake is discarded in
order to guarantee envy-freeness. Here, we show that leaving some cake unallocated can also
increase social welfare.

2 Definitions and Preliminaries

As customary, we assume a 1-dimensional cake that is represented by the interval [0, 1]. We
denote the set of players by [n] (where [n] = {1, . . . , n}), and assume that each player i has a
nonatomic (additive) measure vi mapping each interval of the cake to its value for player i, and
having vi([0, 1]) = 1. Let x be some division of the cake between the players; we denote the
value player i assigns to player j’s piece in x by ui(x, j). We say that a division x is complete
if it leaves no cake unallocated; otherwise, we say that the division is partial.

Definition 1. We say that a cake instance with n players exhibits an α-dumping effect (with
α > 1 and with respect to some social welfare function w(·)) if there exists a partial division y
such that

1. y is envy-free; i.e. ui(y, i) ≥ ui(y, j) for all i, j ∈ [n], and

2. for every envy-free complete division x, w(y) ≥ α · w(x).

In this work, we consider two prominent social welfare functions: utilitarian and egalitarian.
The utilitarian welfare of a division x is the sum of the players’ utilities; formally, we write
u(x) =

∑
i∈[n] ui(x, i). The egalitarian welfare of a division x is the utility of the worst-off

player, i.e. eg(x) = mini∈[n] ui(x, i).
From this point forward, we restrict the discussion to divisions in which every player gets

a single connected interval of the cake. The first reason for this restriction is that giving the
players such connected pieces seem more “natural”, and is in many scenarios more desirable than
giving pieces composed of unions of intervals. The second reason is captured by the following
simple result:

Proposition 1. If players are allowed to get non-connected pieces (that are composed of unions
of intervals), there can be no utilitarian or egalitarian dumping effect. In addition, in this
setting no envy-free partial division can Pareto dominate all envy-free complete divisions.

Proof. We prove for utilitarian welfare; the proof for egalitarian welfare and Pareto domination
is analogous. Suppose that we allow such non-connected divisions, and assume that there is a
utilitarian α-dumping effect, with α > 1. Then there exists an envy-free partial division y such
that for every envy-free complete division x,

∑
i∈[n] ui(y, i) ≥ α ·

∑
i∈[n] ui(x, i). Let U ⊆ [0, 1]

be the part of the cake that was not allocated to the players in y; it is known (e.g. [DS61]) that
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U itself has a complete envy-free division y′. Note that giving each player i her part from y′

in addition to her original piece from y yields again an envy-free division; call this division z.
Clearly, z is a complete division of [0, 1] having ui(z, i) ≥ ui(y, i) for all i ∈ [n]. It follows that
for every envy-free division x∑

i∈[n]

ui(z, i) ≥
∑
i∈[n]

ui(y, i) ≥ α ·
∑
i∈[n]

ui(x, i) >
∑
i∈[n]

ui(x, i) ;

a contradiction.

We thus formally define a connected division of a cake to n players simply as a sequence of
n non-intersecting open intervals1; the first interval is given to the first player, the second to the
second player, etc. We will say that such a division is complete if the union of these intervals
(including their endpoints) equals the entire cake; otherwise, we will say that the division is
partial. Note that a partial division may leave several disjoint intervals unallocated.

Finally, we give the definition of the Price of Envy-Freeness, first defined in [CKKK09],
which aims to measure the highest degradation in social welfare that may be necessary to
achieve envy-freeness.

Definition 2. Let I be a cake instance, X the set of all complete divisions of I, and XEF the
set of all complete envy-free divisions of I. The Price of Envy-Freeness of the cake instance I,
with respect to a social welfare function w(·), is defined as the ratio

maxx∈X w(x)

maxy∈XEF w(y)
.

We now show a connection between the dumping effect of a cake instance and the Price of
Envy-Freeness for the same instance and welfare function.

Proposition 2. The utilitarian (resp. egalitarian) dumping effect is bounded from above by the
utilitarian (resp. egalitarian) Price of Envy-Freeness.

Proof. We again prove only for utilitarian welfare. Assume, by contradiction, that there exists
a cake cutting instance with n players and with utilitarian dumping effect of β, while the
utilitarian Price of Envy-Freeness for these n players is α < β. Then there exists a partial
division y such that for every envy-free complete division x,

∑
i∈[n] ui(y, i) ≥ β ·

∑
i∈[n] ui(x, i).

Note that every inclusion-maximal unalloted interval is adjacent to at least one interval that is
given to a player. Therefore, consider the complete division z which allocates each player her
interval as in y, and in addition adds the previously-unalloted intervals to the piece of one of
the adjacent players (chosen arbitrarily). This is clearly a (not necessarily envy-free) complete
division in which ui(z, i) ≥ ui(y, i) for every i ∈ [n]. We get that for every envy-free division x∑

i∈[n]

ui(z, i) ≥
∑
i∈[n]

ui(y, i) ≥ β ·
∑
i∈[n]

ui(x, i) > α ·
∑
i∈[n]

ui(x, i) ,

contradicting our bound on the utilitarian Price of Envy-Freeness.

1Since we assume that the valuation functions of all players are nonatomic, open and closed intervals always
have the same value.
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3 Utilitarian Welfare

Theorem 3. The utilitarian dumping effect with n players may be as high as Θ(
√
n), and this

bound is asymptotically tight.

We will show that for every k, t ∈ N, there exists a cake cutting instance with n = 2k(3t−2)
players in which throwing away (t−1)k intervals of the cake can improve the utilitarian welfare
of the best envy-free division by a factor of ktn+2tn

nk+12t(t−1)k+tn >
kt+2t
k+3t (note that 12(t− 1)k < 2n).

In particular, choosing t = Θ(k) yields an improvement of Θ(
√
n). The matching upper bound

follows from Proposition 2, combined with with Theorem 1 of [AD10], which shows an upper

bound of
√
n

2 + 1− o(1) on the Price of Envy-Freeness.
To prove the lower bound we construct a cake with three parts: the “common” part, the

“high-values” part, and the “compensation” part. Furthermore, each of the latter two parts
is itself divided into k identical subparts. Thus, in order to clarify the presentation, we first
illustrate the key structure and reason about its properties. We then explain how this structure
is used to create the full construction.

Let us start with a subset of 3t − 2 players, comprised of 2t − 2 “Type A” players, t − 1
“Type B” players, and one “chosen” player C. For 0 ≤ i ≤ t− 2 we will have the players 3i+ 1
and 3i+ 2 be of Type A, and the player 3i+ 3 be of Type B; we will say that players 3i+ 1 and
3i+2 are “neighbors”. In the “high values” part of the cake, the chosen player C has t intervals
she desires, each of them being of value 1

t to her. Between every two consecutive pieces desired
by C there are two more pieces, desired by a pair of neighbors of Type A. Each neighbor desires
one of these pieces, and considers that piece to be worth 4

n (as can be seen on the left-hand
side of Figure 2). In addition, each pair of neighbors desires two more pieces, located in the
“compensation” part of the cake. Namely, for every two neighbors 3i+1 and 3i+2, we have two
pieces desired by 3i+ 1 followed by two pieces desired by 3i+ 2; each of these pieces is worth 2

n
to the corresponding player. In between these four pieces, there are three pieces desired by the
player 3i+3 of Type B: the first and third pieces have each a value of 3

2n to that player, and the
second has value of 1

n . The reader is again referred to Figure 2 for a graphical representation;
note that while the preferences of the chosen player C are completely described, this is not so
for the other players.
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Figure 2: The (incomplete) preferences of one set of players. The number above each column
denotes which player has that valuation.

We can now reason about the possible envy-free divisions for these (incompletely-described)
preferences.

Lemma 1. Assume a set of players with preferences as above. Suppose in addition that in any
envy-free division the following properties hold:

5



(P1) any piece of value 4
n or more that can only be given to some Type A player either

intersects her (single) desired piece from the “high-values” part, or contains both of her
desired pieces from the “compensation” part, and

(P2) it is impossible for any Type B player to get a piece of value 2
n or more which is not

completely contained in the part of the cake described above.

Then no envy free division gives the chosen player C a piece of value ≥ 1
t .

Proof. Suppose that C does get such a piece. It must be that this piece intersects at least two
of C’s desired pieces; in other words, there are two neighbors of Type A such that C completely
devours a desired piece of each of them. Let these players be 3i + 1 and 3i + 2; these players
consider C’s piece as worth at least 4

n and thus must each get a piece of at least this value to
avoid envy. By the property (P1), the only way to do that is to give each of them their two
desired pieces from the compensation part of the cake. Recall that each of the two players has
two desired pieces in the compensation part: denote them (from left to right) A1, A2, A3 and
A4. In between those pieces, there are three pieces which we will denote by B1, B2 and B3,
desired by the Type B player 3i + 3. In order to give each of these Type A players a piece of
value 4

n , we must give player 3i+ 1 an interval containing A1, B1 and A2, and player 3i+ 2 an
interval containing A3, B3 and A4. Each of these intervals is worth at least 3

2n to player 3i+ 3
who thus cannot be satisfied with the piece B2 (worth to her only 1

n), and must therefore get
her share from another part of the cake. Since no other players have any value for the piece
B2, it must be shared between players 3i + 1 and 3i + 2 whose pieces are the closest to it. At
least one of these players will get at least half of B2, and the piece of this player will be worth
at least 2

n to player 3i+ 3; by the property (P2), this will cause envy.

We can now fully describe our construction. We will have k sets of players, each of them
identical to the set described above. This sums up to k chosen players, k(2t−2) Type A players,
and k(t− 1) Type B players, totaling in k(3t− 2) = n

2 players; the other half of the players will
be called “the common players”, and will all have the same preferences. The leftmost part of the
cake will be the “common” part; this part is worth 1 to all of the common players, 1− 8

n to the
Type A players, and 1− 4

n to the Type B players. In the middle, we will have the “high-values”
part, which will be composed of k copies of the high-values part presented above, one for each
set of players. Finally, the rightmost part of the cake will be the “compensation” part, which
will again be composed of k identical copies of the compensation part presented above, in the
same order of sets of players as the high-values part. The reader is referred to Figure 3, which
illustrates the full construction.

“Common” Part

������������

“High-Values” Part

...

First Set︷ ︸︸ ︷
. . .

k-th Set︷ ︸︸ ︷
...

“Compensation” Part

First Set︷ ︸︸ ︷
... . . .

k-th Set︷ ︸︸ ︷
...

Figure 3: Preferences of all players when n = 2(3t− 2)k.

Lemma 2. The properties (P1) and (P2) of Lemma 1 hold in our construction for all the Type
A and Type B players in all of the sets.
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Proof. Note that no player can get a piece which intersects both the common part and the
compensation part (as such a connected piece contains the entire “high values” part of the
cake). Thus, (P1) and (P2) follow by showing that in an envy-free division no Type A or Type
B player can get a piece of value 2

n or more from common part alone.
Suppose that we do give some Type A or Type B player a piece of value at least 2

n from the
common part; such a piece must be of physical size of more than 2

n -th of the total size of the
common part. However, in order to avoid envy, we must then give each of the common players
a piece of at least this size from the common part. This forces us to give the players in total at
least (n2 + 1) · 2

n > 1 of the size of the common part; i.e. we need to give away more than 100%
of this part.

We can now prove a bound on the utilitarian welfare of any envy-free division.

Lemma 3. Any envy-free division of the cake above has utilitarian welfare of at most
(

1
t +

12(t−1)
n

)
k + 1.

Proof. Consider the following division. We divide the common part equally between all the
common players; this gives each common player value of 2

n , and contributes a total of 1 to the
utilitarian welfare. We next divide the high-values part: we give the first desired piece of each
chosen player to that player; these players thus contribute a total of k

t to the welfare. We also
give each Type A player her (single) desired piece from this part. (This leaves us with (t− 1)k
unallocated intervals of this part that are desired only by the chosen players; we add each such
interval to the piece of one of the players whose pieces are closest.) The collective contribution
of the Type A players to the welfare is 2k(t− 1) · 4

n . Finally, we divide the compensation part
between the Type B players: we give each such player an interval containing all her desired
pieces from the compensation part, adding the remaining intervals to any of the closest pieces.
Thus, the Type B players collectively contribute k(t− 1) · 4

n to the welfare; adding everything

up, we get a division with utilitarian welfare of
(

1
t + 12(t−1)

n

)
k + 1.

We first note that it is easy to verify that this division is indeed envy-free; we complete
the proof by arguing that no envy-free division can yield higher utilitarian welfare. Lemma 1
combined with Lemma 2 implies that there is no envy-free division in which contribution of the
chosen players to the welfare exceeds k

t . It also follows from Lemma 2 that in any envy-free
division the contribution of the Type B players to the welfare is bounded by k(t−1) · 4

n . Clearly,
there is also no way to increase the contribution of the common players to the welfare to beyond
1. We are thus left with the Type A players: observe that the only way to give a Type A player
utility exceeding 4

n (without devouring too much of the high-values part) is to give her a piece
intersecting both the high-values part and the common part. However, this is not profitable:
suppose that we have such a division, in which some α-fraction of the common part is given to
players outside the set of common players. By our observations above, the utilitarian welfare
of this division is bounded by

(
1
t + 12(t−1)

n

)
k + (1− α) + α · (1− 4

n) <
(

1
t + 12(t−1)

n

)
k + 1.

The following lemma, combined with Lemma 3, completes the proof for Theorem 3.

Lemma 4. By throwing away k(t− 1) pieces of the cake, we can achieve an envy-free division
of the remaining cake with utilitarian welfare exceeding k + 2.

Proof. Suppose that for each Type B player we throw away the one piece worth 1
n in the

compensation part. We can now give each chosen player all of her desired pieces; this collectively
contributes k to the utilitarian welfare. Also, since these players have received all their desired
pieces, they will clearly envy no other players. Type A players now consider the pieces given
to the chosen players as worth 4

n ; we can give each of them a piece of the same value from the
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compensation part. This contributes 4(2t−2)k
n to the welfare, and ensures that Type A players do

not envy chosen players. Finally, the remaining players (Type B players and common players)
share the common part such that each of them gets a piece of the same physical size. This
guarantees the each common player value of 1

n
2

+(t−1)k and each Type B player value of

1− 4
n

n
2 + (t− 1)k

=
n−4
n

n
2 + n

6 −
k
3

=
3n− 12

(2n− k)n
≥ 3

2n

(since (t − 1)k = n
6 −

k
3 and assuming k ≥ 8). It thus follow that none of these players envy

any other players (the other players clearly do not envy them), and their contribution to the

welfare is
n
2

+k(t−1)·(1− 4
n

)
n
2

+(t−1)k . The utilitarian welfare of this division is therefore:

k +
8(t− 1)k

n
+

n
2 + k(t− 1)(1− 4

n)
n
2 + k(t− 1)

= k +
8(t− 1)k

n
+ 1−

8(t−1)k
n

n+ 2k(t− 1)

= k + 1 +
8(t− 1)k

n
·
(

1− 1

n+ 2k(t− 1)

)
However, since 6k(t− 1) < n < 8k(t− 1)− 1 for t > 2, we have

k + 1 +
8(t− 1)k

n
·
(

1− 1

n+ 2k(t− 1)

)
> k + 1 +

8(t− 1)k

n
·
(

1− 1

8k(t− 1)

)
= k + 1 +

8(t− 1)k − 1

n
> k + 2

as stated.

4 Egalitarian Welfare

Theorem 4. The egalitarian dumping effect with n players may get arbitrarily close to n
3 , and

this bound is asymptotically tight.

We will show that for every k ∈ N, there exists a cake cutting instance with n = 3k + 1
players in which throwing away k intervals of the cake can improve the egalitarian welfare of
the best envy-free division by a factor arbitrarily close to n

3 . The matching upper bound follows
from Proposition 2, combined with with Theorem 5 of [AD10], which shows an upper bound of
n
2 on the Price of Envy-Freeness.

To illustrate the main ideas of our lower bound construction, we begin with presenting the
simple case of n = 4. Fix some small ε > 0. We will have a cake with two parts: the “main
part” and the “last player” part. In the main part, we have two “blocks” of four intervals: in
both blocks, the first interval is of value 1

4 to player 4 and the third interval is of value 1−ε
3 to

player 3. The remaining intervals (second and fourth) of the first block are each of value 1+ε
4

to player 1, while those of the second block are each of value 1+ε
4 to player 2. The first block is

followed by an interval of value ε to player 3; we denote this interval by I. The second block is
followed by an interval of value 1−ε

3 to player 3. In the “last player” part we have two intervals
of value 1

4 to player 4; between these intervals there are two more intervals, one considered by
player 1 as worth 1−ε

2 , and the other considered by player 2 as worth 1−ε
2 . Figure 4 illustrates

these preferences graphically.

Lemma 5. In every envy-free division of the above cake, player 4 has utility at most 1
4 .
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1
4
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1
4

1−ε
2
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1
4

4

1 2

4

Figure 4: Preferences of all players when n = 4. The number above each column denotes which
player has that valuation.

Proof. Suppose otherwise, then it has to be that the piece of player 4 intersects at least two of
her four desired intervals. If it intersects two of her first three desired pieces, we get that player
4 completely devours at least one of the blocks; however, each block is worth strictly more than
1
2 to some player, and that player will envy player 4.

Thus, this interval must be contained in the “last player” section, and intersect player 4’s
third and fourth desired intervals. However, if this is the case, the piece of player 4 is worth
1−ε

2 to both player 1 and player 2. To ensure envy-freeness, they both need to get a piece worth
at least 1−ε

2 . Thus, if ε is small enough, player 1 must get a piece containing the third interval
of the first block, and player 2 must get a piece containing the third interval of the second
block. Each of these pieces are therefore worth 1−ε

3 to player 3; this forces player 3 to get the
rightmost of her desired intervals in order to avoid envy. Hence, the interval I must be split
between players 1 and 2. However, this way at least one of them will end up with a piece worth
more than 1

3 to player 3, making her envious; a contradiction.

This implies that no envy-free division can have egalitarian welfare exceeding 1
4 . We now

show that discarding one piece of the cake allows us to significantly increase the egalitarian
welfare while maintaining envy-freeness.

Lemma 6. In the above cake, discarding the interval I allows for an envy-free division with
egalitarian welfare of 1−ε

3 .

Proof. Suppose we discard the piece I. We can now allocate the entire “last player” part to
player 4, giving her utility 1

2 . In the main part, we give player 1 the entire first block, and player
2 the entire second block. Finally we give player 3 the interval following the second block. It is
easy to verify that this division is indeed envy-free, and that its egalitarian welfare is 1−ε

3 .

We have shown a dumping effect of 4(1−ε)
3 for the case of n = 4 players. We will now

generalize this construction, proving Theorem 4.

Proof of Theorem 4. Similarly to the example above, we will have one player (player n) who
can only get a big piece of cake (without causing envy) when some of the cake is discarded; this
is the player creating the dumping effect. Instead of the other three players, we will now have
3k players, divided into k groups of 3 players. The cake will again be composed of a main part
and a “last player” part.

For every 1 ≤ j ≤ k, the players 3j−2, 3j−1 and 3j will form a “group”, whose preferences
resemble those of player 1,2 and 3 (respectively) in the case of n = 4. For each such group, we
will again have two blocks in the main part: in both blocks, the first interval is of value 1

n to
player n and the third interval is of value 1−ε

3 to player 3j. The remaining intervals (second
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and fourth) of the first of these blocks are each of value 1+ε
4 to player 3j − 2, while those of the

second block are each of value 1+ε
4 to player 3j−1. The two blocks are separated by an interval

Ij of value ε to player 3j, and followed by an interval of value 1−ε
3 to player 3j.

In the “last player” part, we have k + 1 intervals, each worth 1
n to player n. Separating the

j-th and j+1-th of these intervals are two pieces: one of value 1−ε
2 to player 3j−2 and the other

of value 1−ε
2 to player 3j − 1. The reader is referred to Figure 5 for a graphical representation

of the players’ preferences.

n

1
3

1

1-st block︷ ︸︸ ︷
3

I1

n

2
3

2

2-nd block︷ ︸︸ ︷
3

. . .
n

3
k
−

2

3
k

3
k
−

2

(2k−1)-th block︷ ︸︸ ︷

3
k

Ik

n

3
k
−

1

3
k

3
k
−

1

2k-th block︷ ︸︸ ︷

3
k

Main Part “Last Player” Part1

n

1 2

n

4 5

n

. . .
n

3
k
−

2

3
k
−

1

n

Figure 5: Preferences of all players when n = 3k + 1

We can now argue, similarly to the case of n = 4, that in any envy-free division of this cake,
player n gets a piece of value no more than 1

n ; this gives an upper bound of 1
n on the egalitarian

welfare. Otherwise, one option is that player n gets a piece containing a complete block from
the main part; such a piece is worth more than 1

2 to some player and makes her envy player n.
The only other option is that player n gets a piece intersecting two of her desired intervals from
the “last player” part, and in this case similar reasoning as in Lemma 5 shows that again some
player necessarily gets envious.

However, suppose that we discard of all the intervals Ij , 1 ≤ j ≤ k. Similarly to the case
of n = 4, this allows us to give the entire “last player” part to player n, for 1 ≤ j ≤ k and
i ∈ {1, 2} give the entire (2j − i+ 1)-th block to player 3j − i, and give each remaining interval
to the single player 3j who desires it. This gives each player 3j − 2 or 3j − 1 a piece of value
1+ε

2 , each player 3j a piece of value 1−ε
3 , and player n a piece of value k+1

n > 1
3 . Again, it is

easy to observe that this division causes no envy, and since its egalitarian welfare is 1−ε
3 this

completes the proof, as we have shown an improvement of (1−ε)n
3 .

4.1 Tight Lower Bounds for n ≤ 4

For very small values of n, we can show that the upper bound of n
2 on the egalitarian dumping

effect is indeed tight.

Theorem 5. For n ≤ 4 players, there are examples where the egalitarian dumping effect is
arbitrarily close to n

2 .

Proof. For n = 2, the upper bound implies that there is no egalitarian dumping effect. It thus
remains to prove the cases n = 3 and n = 4.

3 players. Fix some small ε > 0. Player 1 values the interval (0, ε) (her “favorite piece”) as
worth 1

2 − ε, the interval (1− ε, 1) (her “second-favorite piece) as worth 1
2 − 2ε, and the interval

(2
3 ,

2
3 + 3ε) as worth 3ε. Players 2 and 3 value the entire cake uniformly.
We first note that in any complete envy-free division, none of the last two players (each of

which has to get a piece of physical size at least 1
3) can receive the rightmost part of the cake;

10



such a piece is worth at least 1
2 + ε to player 1 and will make her envy any other player who

gets it. This implies that player 1 must get the rightmost piece of the cake, and so the leftmost
piece is given to some player i ∈ {2, 3}. This leftmost piece (which again must be of physical
size at least 1

3) is worth 1
2 − ε to player 1, and in order to avoid envy, her (rightmost) piece must

be worth at least that much. We thus conclude that in any envy-free division player 1 must get
a piece containing the interval (2

3 + 2ε, 1) (worth 1
2 − ε to her), leaving the two other players to

share the remainder of the cake; each of them will get value of at most 1
3 + ε, which is also the

egalitarian welfare of such a division.
Now, consider the following partial division. We give the interval (0, ε) to player 1, the

interval (ε, 1
2) to player 2, (1

2 , 1−ε) to player 3, and discard the interval (1−ε, 1). This is clearly
an envy-free (partial) division, giving every player value of exactly 1

2 − ε, which is therefore the
egalitarian welfare; the ratio between these two welfare values is 3−6ε

2+6ε , which approaches 3
2 = n

2
as ε→ 0.

4 players. Fix some ε > 0. Player 1 values the interval (0, ε) as worth 1
2 − ε, the interval

(3
4 ,

3
4 + 3ε) as worth 3ε, and the interval (1 − ε, 1) as worth 1

2 − 2ε. Player 2 values (ε, 2ε) as
worth 3ε, (1

4 − ε,
1
4) as worth 1

2 − 2ε, and (1
2 ,

1
2 + ε) as worth 1

2 − ε. Players 3 and 4 value the
entire cake uniformly. We illustrate the preferences of players 1 and 2 in Figure 6.

0 11
4

1
2

3
4

1

2

1 2
−
ε

3ε

2

1 2
−

2
ε

2

1 2
−
ε 1

3ε

1

1 2
−

2ε
Figure 6: Preferences of players 1 and 2.

We first observe that if any player other than 1 receives the rightmost piece, this player
must receive a piece of physical size at least 1

4 ; such a piece is worth 1
2 + ε for player 1, and will

make her envious of the player who got it. We conclude that the rightmost piece must therefore
be given to player 1. We further observe that the leftmost piece (which clearly cannot be also
given to player 1) must contain the interval (0, ε) and therefore worth 1

2−ε to player 1. Thus, in
order for player 1 to avoid envy, she must get the rightmost piece, and this piece must contain
the interval (3

4 + 2ε, 1).
We now consider the leftmost piece: If this piece is given to player 3 or 4, it must be of

physical size at least 1
4 , and thus worth 1

2 + ε to player 2, who will then envy that player.
We thus conclude that player 2 must receive the leftmost piece, and this piece must (strictly)
contain the interval (0, 1

4 − ε). This implies that players 3 and 4 have only an interval contained
in (1

4−ε,
3
4 +2ε) to share between them; in such a division, neither of them can get a piece worth

(in her eyes) more than 1
4 + 2ε, and so this is a bound on the maximum egalitarian welfare in

any envy-free division of this cake.
Consider, in contrast, the following partial division: we give the interval (0, 2ε) to player 1,

the interval (2ε, 1
2) to player 3, the interval (1

2 ,
1
2 + ε) to player 2, (1

2 + ε, 1− ε) to player 4, and
discard the interval (1 − ε, 1). It can be easily verified that this (partial) division is envy-free,
and that it gives each of the players utility of at least 1

2 − 2ε. The ratio between these two
welfare values is 2−8ε

1+8ε , which approaches 2 = n
2 as ε→ 0.
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5 Pareto-Dominant Partial Divisions

A division x is said to Pareto dominate another division y if for all i, ui(x, i) ≥ ui(y, i), and at
least one of these inequalities is strict; in other words, if at least one player does better in x
than in y, and no one does worse. x strictly Pareto dominates y if for all i, ui(x, i) > ui(y, i),
i.e. if everyone is doing better in x.

We first show that starting from any envy-free complete division it is impossible to strictly
improve the utility of all players simultaneously.

Theorem 6. Let x be an envy-free complete division. Then there is no other division, partial
or complete, that strictly Pareto dominates x.

Proof. Our proof hinges on the following observation, due to [AD10]:

Let y be a division such that ui(y, i) > ui(x, i) for some i ∈ [n]. Since i values any
other piece in the division x at most as much as her own, it has to be that in y, i
gets an interval that intersects pieces that were given to at least two different players
in x (possibly including i herself).

In other words, in order for a player i to get a piece worth more than her piece in x, she must get
at least one “boundary” (between two consecutive pieces) from x. Thus, a (partial or complete)
division that strictly Pareto dominates x must give (at least) one such boundary to each player.
However, since x is a connected division it contains only n − 1 boundaries, one less than the
number of players.

It it thus interesting that there do exist instances in which an envy-free partial division
(non-strictly) Pareto dominates every envy-free complete division. Moreover, in some cases the
partial division improves the utility of almost all the players, and by a significant (constant)
factor.

Theorem 7. For every n > 2, there exists a cake cutting instance with n players and an
envy-free partial division giving n − 2 players twice the value they would get in any envy-free
complete division, while giving the remaining two players at least as much as they would get in
any envy-free complete division.

Proof. Let n > 2, and fix some 0 < ε < 1
n(n+1) . Consider the following valuations:

• Each player 1 ≤ i ≤ n− 1 (“focused players”) desires only the interval ( in − ε,
i
n + ε), and

considers it to be of value 1.

• Player n assigns a uniform valuation to the entire cake.

Now, for envy-free complete division of the above cake, it must be that:

1. Player n gets a piece of physical size ≥ 1
n .

Since we give away all the cake, some player must get a piece of physical size at least 1
n ;

if player n does not get such a piece, she will envy that player.

2. Player n cannot get any piece containing some neighborhood of a point i
n for i ∈ [n− 1].

Because of the previous observation, if player n gets such a piece then her piece contains
the interval ( in − δ,

i+1
n − δ) for some 0 < δ < 1. Such a piece is always worth strictly more

than 1
2 to player i, and will make her envious.

Therefore, player n must get a piece of the form ( i−1
n , in) for some i ∈ [n].
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3. Every “focused player” has to get a piece of physical size exactly 1
n .

First, it is clear that if some player i ∈ [n− 1] gets a piece of size > 1
n , player n will envy

that player. On the other hand, we have that the players [n − 1] have to share cake of
total physical size n−1

n ; since none of them can get a piece of size larger than 1
n , each of

them must get a piece of size exactly 1
n .

From these observations we obtain that in any envy-free division, all the cuts are at points
i
n with i ∈ [n− 1]; in such a division, player n always has utility 1

n , and every other player has
utility 1

2 .
Now consider the following partial division of the cake. First, give player n the piece (0, 1

n),
and player 1 the piece ( 1

n ,
2
n−2ε). Then give each player 2 ≤ i ≤ n−1 the next piece of size 1

n−ε,
which is the interval

(
i · ( 1

n − ε), (i+ 1) · ( 1
n − ε)

)
. Finally, we throw away the (non-allocated)

remainder.
In this division, player n has value 1

n , which is just as good as in any complete division.
Similarly, player 1 has value 1

2 , which again is as good as she can get in any complete division.
Players 2 through n− 1, on the other hand, get each her entire desired interval; otherwise, the
position of the right boundary of player (n− 1)’s piece must be to the left of the point n−1

n + ε.
However, since we took ε < 1

n(n+1) , we have that the right boundary of player (n− 1)’s piece is
at (

1

n
− ε
)
· n >

(
1

n
− 1

n(n+ 1)

)
· n =

n

n+ 1
=

n2 − 1

n(n+ 1)
+

1

n(n+ 1)
>
n− 1

n
+ ε .

Therefore, each of these players gets a piece of value 1, which is twice what they could get in
any complete division.

Finally, it is clear that none of the players feel envy: Players 2 through n − 1 feel no
envy (having gotten all they desire in the cake). Player n feels no envy since she receives the
physically-largest piece in the division. Player 1 also feels no envy as her piece has value 1

2 , and
so no other player could have gotten a piece with a larger value for her.

We note that the construction above can be also used to show a utilitarian dumping effect

arbitrarily close to
2(n−1)+ 2

n

(n−1)+ 2
n

(one need only move the leftmost boundary in the partial division to

1
n−ε). While this is asymptotically inferior to the bound shown in Theorem 3, this construction
is much simpler, and works for as few as two players. In fact, for n = 2 this construction coincides
with the example given in the introduction, and moreover gives a provably tight lower bound:
the dumping effect of 3

2 − ε we obtain in this case matches the n − 1
2 upper bound on the

utilitarian Price of Envy-Freeness given in [CKKK09].

6 Discussion and Open Problems

In this work, we have studied the dumping effect and its possible magnitude. We have shown
that the increase in welfare when discarding some of the cake can be substantial, moving from
1/n to Θ(1) for egalitarian welfare and from Θ(1) to Θ(

√
n) for utilitarian welfare, and have

shown a Pareto improvement that improves by a factor of two all but two players. In fact,
in some cases discarding some of the cake can essentially eliminate the social cost associated
with fair division. It is interesting to note that all of our lower bound constructions have an
additional nice property — no player desires any discarded piece more than her own piece.
Thus, not only do players not envy each other, but they also do not feel much loss with any
discarded piece.
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Several problems remain open. First, we note that while our bounds for the utilitarian and
egalitarian welfare functions are asymptotically tight, there are still constant gaps which await
closure. With regards to Pareto improvement, we provided a construction where all but two
players improve their utility by a factor of two. An interesting open problem is to see whether a
stronger Pareto effect can be obtained. Before we do so, however, we must first define the exact
criteria by which we evaluate Pareto improvements. Possible criteria include: the number of
players that increase their utility, the largest utility increase by any player, and the total utility
increase of the players (= utilitarian welfare).

More important, perhaps, is that all of our results are existential in nature, but do not
provide guidance on what to do in specific cases. It is thus of interest to develop algorithms to
determine what, if any, parts of the cake it is best to discard in order to gain the most social
welfare, for the different welfare functions.

Finally, our work joins other recent works [CLPP10, CLP11] that imply that leaving some
cake unallocated may be a useful technique in fair division algorithms. Following this direction,
it may be interesting to see if discarding of some cake may also help in finding socially-efficient
envy-free connected divisions. Generalizing beyond fair division, it would be be interesting to
see if such an approach, of intentionally forgoing or discarding some of the available goods, can
also benefit other social interaction settings.
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