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Abstract

We present a randomized, polynomial-time approxima-
tion scheme for multi-unit auctions. Our mechanism
is truthful in the universal sense, i.e., a distribution
over deterministically truthful mechanisms. Previously
known approximation schemes were truthful in expec-
tation which is a weaker notion of truthfulness assum-
ing risk neutral bidders. The existence of a universally
truthful approximation scheme was questioned by previ-
ous work showing that multi-unit auctions with certain
technical restrictions on their output do not admit a
polynomial-time, universally truthful mechanism with
approximation factor better than two.

Our new mechanism employs VCG payments in a
non-standard way: The deterministic mechanisms un-
derlying our universally truthful approximation scheme
are not maximal in range and do not belong to the class
of affine maximizers which, on a first view, seems to con-
tradict previous characterizations of VCG-based mecha-
nisms. Instead, each of these deterministic mechanisms
is composed of a collection of affine maximizers, one for
each bidder. This yields a subjective variant of VCG in
which payments for different bidders are defined on the
basis of possibly different affine maximizers.

1 Introduction

The field of algorithmic mechanism design [17] pro-
vides computationally efficient mechanisms implement-
ing social-choice functions in environments with multi-
ple participants like, e.g., the Internet, market places,
and auctions. Such a mechanism corresponds to an algo-
rithm that aggregates the preferences of different partic-
ipants into a single joint decision that maximizes social
welfare or other objectives.

The mechanism should work well assuming rational
selfish behavior of the participants. In order to achieve
this goal, the algorithm needs to extract information
from the different participants. If the mechanism is
designed in such a way that it is a dominant strategy

for the participants to honestly reveal their preferences,
it is called incentive compatible or truthful.

The study of combinatorial auctions is central to the
field of algorithmic mechanism design. The optimiza-
tion problems underlying various kinds of combinatorial
auctions are NP-hard but often there are known efficient
approximation algorithms for these problems. Incentive
compatibility, however, puts additional constraints on
the design of mechanisms that rule out standard meth-
ods known from the design of approximation algorithms
so that the known algorithms cannot be applied. Sev-
eral previous studies show that randomization has the
potential to overcome the restrictions imposed by incen-
tive compatibility, see, e.g., [4, 7, 8, 13]. Three different
notions of truthfulness are distinguished:

• Deterministic truthfulness: A mechanism is truth-
ful if a bidder always maximizes his utility by bid-
ding truthfully.

• Universal truthfulness: A universally truthful
mechanism is a probability distribution over deter-
ministically truthful mechanisms.

• Truthfulness in expectation: A mechanism is truth-
ful in expectation if a bidder always maximizes his
expected utility by bidding truthfully.

Observe that, if the random bits used by the mechanism
are known, a universally truthful algorithm corresponds
to a deterministically truthful algorithm. That is, the
randomization does not affect the incentive compatibil-
ity but only other aspects like, e.g., the approximation
guarantee. In contrast, truthfulness in expectation is a
significantly weaker concept as it yields incentive com-
patibility only if bidders do not know the outcome of
the random bits. Another, even more critical weakness
of truthfulness in expectation is that it assumes bidders
to be risk neutral. For a further discussion see, e.g., [7].

Multi-unit auctions are a good basis for study-
ing the power of randomization in algorithmic mech-
anism design. They are arguably the most basic variant



of combinatorial auctions: m identical items shall be
allocated to n bidders such that social welfare is max-
imized. Neglecting the issue of truthfulness, the multi-
unit auction problem is a generalization of the knapsack
problem and admits a fully polynomial-time approxi-
mation scheme (FPTAS). In contrast, the best known
polynomial-time, deterministically truthful mechanism
guarantees only a 2-approximation [5].

It is known that deterministic mechanisms follow-
ing Roberts’ characterization [18], i.e., affine maximiz-
ers with VCG-based payments, require an exponential
number of queries in order to achieve an approxima-
tion factor better than two for multi-unit auctions [5].
Only very recently, the exponential lower bound on
the number of queries has even been extended towards
a class of mechanisms beyond Roberts’ characteriza-
tion [6]. Hence, getting an approximation ratio better
than two for multi-unit auctions is either impossible or
requires to develop completely new ideas.

Much better results are known for randomized
mechanisms. Recently, Dobzinski and Dughmi [4] were
able to present a randomized FPTAS for multi-unit auc-
tions. This FPTAS is truthful in expectation. More
generally, they study the difference in the computational
power between mechanisms that are truthful in expecta-
tion and mechanisms that are universally truthful. With
the purpose to separate these two concepts, they show
that there is a variant of multi-unit auctions with cer-
tain restrictions on the output for which there exists
an FPTAS being truthful in expectation but there does
not exist a polynomial-time universally truthful algo-
rithm with an approximation factor better than two.
The authors state that they ideally would like to prove
this negative result for multi-unit auctions rather than
only for a technical variant of these auctions.

We show, however, that proving a lower bound on
the approximation ratio of universally truthful mecha-
nisms for multi-unit auctions is not possible. In particu-
lar, we present a randomized polynomial-time approxi-
mation scheme (PTAS) that is universally truthful. Our
approach uses VCG payments in a non-standard way ex-
tending the notion of VCG-based mechanisms slightly
beyond the characterization of Roberts. The determin-
istic mechanisms underlying our randomized approxi-
mation scheme are not affine maximizers themselves but
they are composed of a collection of affine maximizers,
one for each bidder. This way, we can ensure truthful-
ness by using VCG payments for each bidder based on
the bidder’s affine maximizer.

The affine maximizers used by our mechanism op-
timize social welfare subject to additive perturbations
of the valuations. The running time of the analysis
employs known results from the smoothed analysis of

Pareto-optimal solutions [1, 2]. Different bidders might
use different scales of perturbation, depending on the
bids of the other bidders. The major technical chal-
lenge is to ensure that the combination of the possibly
different affine maximizers applied to different bidders
leads to a feasible allocation, that is, to an allocation
not exceeding the number of available items.

2 Preliminaries

In a multi-unit auction, a set of m identical items
has to be allocated to n bidders. Each bidder i
has a valuation function vi : {0, . . . ,m} → R≥0
satisfying the following standard assumptions: The
valuation functions vi are non-decreasing (free disposal)
and vi(0) = 0 (normalization). Let V denote the set
of non-decreasing and normalized valuation functions.
The set of feasible allocations is

A =

{
s = (s1, . . . , sn) ∈ {0, . . . ,m}n

∣∣∣∣∣
n∑
i=1

si ≤ m

}
.

The valuation of bidder i for allocation s is denoted
by vi(s). Let us explicitly point out that vi depends
only on si and not on s−i, that is, vi(s) = vi(si) (no
externalities). The objective is to find an allocation
s ∈ A maximizing the social welfare v(s) =

∑n
i=1 vi(si).

It is assumed that the valuation functions are not
given explicitly but in form of a black box that can
be queried by the mechanism. The black box answers
so-called weak value queries: Given i ∈ [n], k ∈ [m],
what is the value vi(k)? The challenge is to find an
approximately optimal solution without querying the
valuation functions completely. An efficient algorithm
is supposed to run in time polynomial in n and logm,
which is the established notion of polynomial time in
this context.

A deterministic mechanism for multi-unit auctions
is a pair (f, p) with f : V n → A being a social choice
function and p = (p1, . . . , pn), pi : V n → R being a
payment scheme. A mechanism is (deterministically)
truthful if it is a dominant strategy for each bidder to
report his true valuation, that is, for all i ∈ [n], all vi, v

′
i

and all v−i it holds that bidder i’s utility when bidding
vi is not smaller than the bidders utility when bidding
v′i, i.e., vi(f(vi, v−i)) − pi(vi, v−i) ≥ vi(f(v′i, v−i)) −
pi(v

′
i, v−i).
A randomized mechanism is a probability distribu-

tion over deterministic mechanisms. It is called univer-
sally truthful if each of these deterministic mechanisms is
truthful. A weaker form of randomized incentive com-
patibility is truthfulness in expectation which assumes
that a bidder’s expected utility is maximized when re-
vealing his true valuations.



2.1 Characterizations of truthfulness. Starting
point for our considerations is the well-known direct
characterization of incentive compatible mechanisms
(see, e.g., [16]).

Proposition 2.1. A mechanism (f, p) is truthful if
and only if it satisfies the following conditions for every
bidder i and every v−i.

a) There exists a price q
(i)
s (v−i), for every s ∈ A,

such that for all vi with f(vi, v−i) = s, it holds

p(vi, v−i) = q
(i)
s (v−i).

b) The social choice function maximizes the utility for
player i. That is,

f(v) = argmax
s∈A(i)(v−i)

(vi(s)− q(i)s (v−i))

with A(i)(v−i) ⊆ A being any non-empty subset of
allocations.

These properties can be satisfied by using a so-
cial choice function corresponding to an affine maxi-
mizer, i.e., a function f : V n → A′, A′ ⊆ A of the
form f(v) = argmaxs∈A′(

∑n
i=1 wivi(s) + cs) with con-

stants wi > 0 (multiplicative weights) and cs ∈ R

(additive perturbations). Combining an affine maxi-
mizer with a weighted variant of VCG payments, i.e.,
pi(v) = hi(v−i) −

∑
k 6=i(wk/wi)vk(s) − cs/wi with hi :

V n−1 → R being an arbitrary function, yields a truth-
ful mechanism. For more details, we refer the reader to
Nisan’s Introduction to Mechanism Design [16].

Roberts’ characterization of incentive compatible
mechanisms [18] shows that only affine maximizers
satisfy the conditions of the direct characterization,
provided that the domain of the bidders’ valuations is
unrestricted, i.e. V = R|A|.

2.2 A subjective variant of VCG. The valuations
of multi-unit auctions, like many other kinds of combi-
natorial auctions, are restricted by the assumptions of
free disposal and no externalities so that there might be
truthful mechanisms beyond Roberts’ characterization.
This motivates us to extend the scope of mechanisms in
a way that allows us to apply different affine maximiz-
ers (or other, more general, quasi-linear maximizers) to
different bidders for computing partial allocations that
are then combined to a joint allocation. We describe
our approach in its most general form.

Definition 2.1. Let f (1), . . . , f (n), f (i) : V n → A be a
collection of n functions such that

f (i)(v) = argmax
s∈A(i)(v−i)

(vi(s) + g(i)s (v−i))

with A(i)(v−i) ⊆ A being a non-empty subset of allo-

cations and g
(i)
s : V n−1 → R being an arbitrary func-

tion. The function f : V n → {0, . . . ,m}n defined by
f(v)i = f (i)(v)i, for 1 ≤ i ≤ n, is called a composition
of quasi-linear maximizers. This composition is called
feasible if f(V n) ⊆ A, i.e., if it defines a feasible social
choice function f : V n → A.

Note that every affine maximizer f corresponds to
a feasible composition of quasi-linear maximizers when

setting f (i) = f , A(i)(v−i) = A′ and g
(i)
s (v−i) =∑

k 6=i(wk/wi)vk(s) + cs/wi, for all i ∈ [n]. In fact,
our approximation scheme chooses each of the functions
f (1), . . . , f (n) to be an affine maximizer. However,
these affine maximizers are not necessarily identical but

employ possibly different additive perturbations c
(i)
s .

When comparing Definition 2.1 with the direct
characterization of truthful mechanisms in Proposi-
tion 2.1, it becomes obvious that the composition of
quasi-linear maximizers is more general than affine max-

imizers. When setting g
(i)
s (v−i) = −q(i)s (v−i) one ob-

serves that every mechanism that satisfies the direct
characterization is a feasible composition of quasi-linear
maximizers and vice versa. In other words, a determin-
istic mechanism (f, p) is truthful if and only if f corre-
sponds to a feasible composition of quasi-linear maxi-
mizers.

The following proposition shows how to choose
the prices p for a given feasible composition of quasi-
linear maximizers f , such that the mechanism (f, p) is
truthful.

Proposition 2.2. Let f = (f (1), . . . , f (n)) be a feasi-
ble composition of quasi-linear maximizers. Let hi :
V n−1 → R be an arbitrary function that does not de-
pend on vi. For every i ∈ [n], define pi(v) = hi(v−i) −
g
(i)
s (v−i) with s = f (i)(v) denoting the allocation se-

lected by function f (i). Then (f, p) is truthful.

Proof. The utility of bidder i for an allocation s chosen

by fi is vi(s)−pi(v) = vi(s)+g
(i)
s (v−i)−hi(v−i). If v−i

is fixed arbitrarily, then this expression is maximized if

vi(s) + g
(i)
s (v−i) is maximized, which is what happens

when i reports vi truthfully as f (i) picks the allocation

that maximizes vi(s) + g
(i)
s (v−i). �

Let us remark that when hi is chosen according
to Clarke’s pivot rule, i.e., hi(v−i) = v(f (i)(0, v−i)),
then the mechanism is individually rational, i.e., bidders
always get non-negative utility, and has no positive
transfer, i.e., payments are always non-negative. This
approach corresponds to a subjective variant of VCG.



2.3 Previous work. Neglecting the issue of truth-
fulness, the multi-unit auction problem is a generaliza-
tion of the NP-hard knapsack problem and admits a
fully polynomial time approximation scheme (FPTAS).
In particular, in the single minded case, in which each vi
is a step function with only one step, the computational
problem behind multi-unit auctions corresponds to the
knapsack problem. It is well known that the knapsack
problem admits an FPTAS [11]. This FPTAS, how-
ever, is not incentive compatible. In the single-minded
case truthfulness is achieved if algorithms satisfy cer-
tain monotonicity properties. Mu’alem and Nisan [14]
present a generic approach for combining monotone al-
gorithms. They are able to present a 2-approximation
for single-minded multi-unit auctions. Briest et al. [3]
extend their approach and, this way, derive a truthful
FPTAS for the single-minded case.

Monotonicity yields truthfulness only for single-
minded bidders. All known computationally effi-
cient, deterministically truthful mechanisms beyond the
single-minded case are maximal-in-range (MIR), i.e.,
optimize over a subrange A′ ⊆ A. This subrange is cho-
sen in such a way that an optimal allocation is found in
polynomial time. Using the MIR approach, Dobzinski
and Nisan [5] present a PTAS for multi-unit auctions
with k-minded bidders, i.e., each vi is a step function
with up to k steps. The PTAS is complemented by a
proof showing that the MIR approach cannot be used to
derive an FPTAS for k-minded bidders, unless P = NP.

For the case of valuations given by black boxes,
Dobzinski and Nisan [5] give a polynomial time, deter-
ministically truthful 2-approximation mechanism based
on the MIR approach. In addition they prove, that any
algorithm that is based on this approach and achieves an
approximation ratio better than 2 needs an exponential
number of queries. This negative result can be extended
to VCG-based algorithms employing affine maximizers.

Very recently, Dobzinski and Nisan [6] introduced
a novel kind of auction mechanisms for multi-unit
auctions called triage auction. Remarkably, the triage
auction is not VCG-based but admits approximation
ratios better than two. Unfortunately, however, it does
not allow for an efficiently computable implementation.
Interestingly, it follows from the analysis of the triage
auctions that every mechanism that is scalable, i.e.,
multiplying all valuations by the same positive constant
does not change the allocation, and guarantees an
approximation ratio better than 2 needs an exponential
number of queries. Hence, an efficiently computable,
deterministically truthful mechanism that achieves a
better approximation ratio than 2 cannot be scalable.

In a seminal work, Lavi and Swami [13] have intro-
duced a very general framework showing that any ap-

proximation algorithm witnessing an LP integrality gap
can be transformed into an algorithm that is truthful in
expectation. Their algorithm follows an approach called
maximal-in-distributional-range (MIDR) that optimizes
over a range of distributions over allocations and applies
VCG prices to these distributions. For the multi-unit
auction problem the integrality gap is 2 and, hence, the
framework of Lavi and Swami gives a 2-approximation.

Recently, Dobzinski and Dughmi [4] have presented
an improved MIDR algorithm for the multi-unit auc-
tion. In particular, they present an FPTAS for multi-
unit auctions that is truthful in expectation. Dughmi
and Roughgarden [8] present a more general result
showing that every packing problem that admits an
FPTAS also admits a truthful-in-expectation random-
ized mechanism that is an FPTAS.

2.4 Outline. Before presenting the randomized
mechanism, we introduce two tools addressing the key
issues that need to be solved. In Section 3, we present
an affine maximizer, called ∆-perturbed maximizer,
that perturbs all valuations by adding ”relatively small”
numbers. The scale of these perturbations is controlled
by the parameter ∆. On the one hand, if ∆ is chosen
small enough then the optimal allocation with respect
to the perturbed bids yields a good approximation of
the optimal allocation with respect to the original bids.
On the other hand, if ∆ is sufficiently large then the
running time of the ∆-perturbed maximizer can be
bounded polynomially. The proof for the running time
of this algorithm applies results from the smoothed
analysis of Pareto-optimal solution [1, 2].

Ideally, ∆ should be chosen as a function of the
maximum bid vmax. Unfortunately, truthfulness pre-
cludes explicitly using vmax as it depends on the val-
uations of all bidders. Instead, for each bidder i, our
mechanism computes a lower bound Li on vmax that is
independent of the valuations vi. It is crucial for the cor-
rectness of our mechanism that all bidders agree on the
same lower bound if the largest and the second largest
bids are relatively close. In Section 4, we formally inves-
tigate this consensus problem in terms of a two player
game and present a randomized solution to the prob-
lem that is based on and extends previous results about
randomized consensus in mechanism design [9, 10].

In Section 5, we introduce our mechanism using
the previously presented tools. In particular, universal
truthfulness is achieved by applying the subjective
variant of VCG presented in Section 2.2. We bound the
expected approximation ratio and the expected running
time of the algorithm. Finally, in Section 6, we present
a variant of the algorithm with a deterministic running
time bound.



3 The ∆-perturbed maximizer

Our mechanism calls an affine maximizer with different
kinds of additive perturbations as a subroutine. The
∆-perturbed maximizer, for ∆ > 0, takes as input the
bids and perturbs these bids by adding two terms to
each bid. That is, for 1 ≤ i ≤ n, 0 ≤ j ≤ m, vi(j) is
increased by an integer q(j) = O(logm) and a random
number xji ∈ [0, 1] both multiplied by ∆. Thus, the
parameter ∆ controls the scale of the perturbation.

Definition 3.1. (∆-perturbed maximizer)
Let ∆ > 0. For 1 ≤ i ≤ n, 0 ≤ j ≤ m, let xji be
a random variable chosen independently, uniformly at
random from [0, 1]. For k ∈ {1, . . . ,m}, let q(k) denote
the largest integer such that k is a multiple of 2q(k). Set
q(0) = blogmc+ 1. For 1 ≤ i ≤ n, 0 ≤ j ≤ m, define

v′i(j) = vi(j) + (2q(j) + xji )∆ .

The ∆-perturbed maximizer selects an allocation s ∈ A
maximizing v′(s) =

∑n
i=1 v

′
i(si).

Observe that 0 ≤ q(k) ≤ blogmc+1, for 0 ≤ k ≤ m.
Hence, for every s ∈ A, 0 ≤ v′(s) − v(s) ≤ (2blogmc +
3)∆n. This yields

Lemma 3.1. The ∆-perturbed maximizer selects an al-
location maximizing the social welfare up to an additive
error of (2blogmc+ 3)∆n. �

Lemma 3.2. The ∆-perturbed maximizer sets si = 0,
for every i with vi(m) < ∆.

Proof. For 1 ≤ k ≤ m, it holds q(k) ≤ blogmc ≤ q(0)−
1. Combining this equation with vi(k) ≤ vi(m) < ∆
and xki ≤ 1 gives

v′i(0) = 2q(0)∆ + x0i

≥ 2(q(k) + 1)∆

> 2q(k)∆ + vi(k) + xki ∆

= v′i(k) ,

for every 0 ≤ k ≤ m. Consequently, setting si = 0
maximizes v′i and, hence, v′, too. �

Next we turn our attention to the efficient compu-
tation of the ∆-perturbed maximizer. As the running
time of our algorithm shall be bounded polynomially in
logm, it is not possible to evaluate the valuation func-
tion and the random variables xji completely. We will
show that it is sufficient to consider only a small num-
ber of breakpoints of the valuation functions in order
to find the allocation maximizing v′. This property is
based on the additve perturbations of the valuations by
the 2q(k)∆ term in the definition of v′.

The breakpoints are defined as follows. Let Vi =
(vi(0), vi(1), . . . , vi(m)) denote the non-decreasing se-
quence of bids of bidder i. We partition Vi into non-
decreasing subsequences V qi = (vi(k))k=0,...,m|q(k)=q, for
0 ≤ q ≤ blogmc + 1. The q-breakpoints of bidder i are
defined to be the smallest indices of the sequence V qi
such that the value of this index is at least 0,∆, 2∆, . . .
The breakpoints of bidder i are defined to be the union
of the q-breakpoints, for 0 ≤ q ≤ blogmc+ 1.

Lemma 3.3. Any allocation s maximizing v′(s) satisfies
that si, for 1 ≤ i ≤ n, is a breakpoint of Vi.

Proof. For the purpose of a contradiction, assume that
s maximizes v′ and si is not a breakpoint. Let q = q(si).
Observe that si > 0 as index 0 is a breakpoint. This
implies that q ≤ blogmc and si is a multiple of 2q, but
not a multiple of 2q+1. Now consider the allocation s′

with s′j = sj , for j 6= i, and s′i = si − 2q. This way, s′i
is a multiple of 2q+1 such that q′ = q(s′i) ≥ q + 1. This
gives

v′i(si) = vi(si) + 2q∆ + xsii ∆ ≤ vi(si) + 2q′∆−∆ .

As si is not a breakpoint, it is not the first element in
V qi and the difference between vi(si) and the value of
its predecessor in this list is less than ∆. The element
placed before si in this list is si − 2q+1. This gives

vi(si) < vi(si − 2q+1) + ∆ ≤ vi(s′i) + ∆ .

By combining these equations, we obtain

v′i(si) < vi(s
′
i) + 2q′∆ ≤ v′i(s′i) .

That is, we have constructed a feasible allocation s′ with
v′(s) < v′(s′) which contradicts our assumption and
thus proves the lemma. �

Finding the optimal solution with respect to the
perturbed maximizer corresponds to the multiple-choice
knapsack problem: For simplicity in notation, assume
that there is the same number b of breakpoints for each
bidder. This way, there are nb objects, each of which
corresponds to one of the breakpoints. Let us use the
tuple (i, j) for denoting a breakpoint of bidder i at
which j items are allocated to bidder i. An object k
corresponding to a breakpoint (i, j) has weight wk = j
and profit pk = v′i(j). The objects are divided into n
classes, one for each bidder. The algorithm has to pick
a subset S ⊆ [nb] containing at most one object from
each of the n classes such that the sum of the weights
w(S) is at most m (the capacity of the knapsack) and
the sum of the profits p(S) is maximized.



We use the dynamic programming framework of
Nemhauser and Ullmann [15], see also [12], for enu-
merating all the Pareto-optimal subsets, where Pareto-
optimality is defined as follows. A subset S ⊆ [nb] is
called feasible if it contains at most one object from
each class. Subset S is said to dominate subset S′ if
w(S) ≤ w(S′) and p(S) > p(S′). (Since profits are
perturbed by adding continuous random variables, we
can safely assume that different subsets have different
profits, which simplifies the presentation.) The Pareto-
optimal subsets are those feasible subsets that are not
dominated by any other feasible subset.

The running time of the dynamic program is
O(b

∑n
i=1 ki) where ki denotes the number of Pareto-

optimal sets restricted to the feasible subsets over the
classes (bidders) 1 to i. Now we exploit that the ∆-
perturbed maximizer adds a random number xji times
∆ to each profit (valuation). Recall that these numbers
are chosen independently uniformly at random from
[0,1]. This perturbation model fits into the framework
of smoothed analysis for the knapsack and other bi-
nary optimization problems introduced in [2]. This way,
we obtain an upper bound on the expected number of
Pareto-optimal subsets.

Lemma 3.4. ([1, 2]) For every i ∈ [n], E [ki] =
O(b2n2P/∆) with P denoting the maximum profit. �

Hence, by linearity of expectation, the expected
running time for enumerating the Pareto-optimal sub-
sets is O(b3n3P/∆). In order to bound the running
time of the ∆-perturbed maximizer, we could now sub-
stitute vmax for P . However, it will turn out that this
is not good enough in order to get a polynomial run-
ning time bound for the mechanism. In particular, the
mechanism chooses ∆ proportional to the second largest
bid maxi6=i∗ vi(m). In order to get a polynomial run-
ning time bound for the mechanism, we need thus a
running time bound for the ∆-perturbed maximizer in
terms of the second largest rather than the largest bid.
We achieve this goal by enumerating the Pareto-optimal
allocations among all bidders except i∗ and then sup-
plementing each of these allocations with items for bid-
der i∗.

Lemma 3.5. The ∆-perturbed maximizer can be com-
puted in expected time O((n logm)3(P/∆)4 + log4m)
with P denoting maxi 6=i∗ vi(m).

Proof. As a first step the algorithm computes the break-
points for all bidders i 6= i∗. The number of breakpoints
for each of these bidders is at most b = (blogmc +
2)(P/∆ + 1). Each breakpoint can be computed by
using a binary search. The running time for computing
all breakpoints is thus O((P/∆) log2m).

Next the algorithm enumerates the Pareto-optimal
allocations for the bidders in [n] \ i∗. This takes time
O(b3n3(P/∆)) in expectation. The optimal solution
including bidder i∗ is composed of one of these solutions
supplemented by a number of items for i∗. In particular,
the algorithm needs to check only the maximum number
of items from list V qi∗ , for each q ∈ {0, . . . , blogmc+ 1},
that can be added to each of the computed Pareto-
optimal solutions without exceeding the total number of
available items m. As there are O(b2n2(P/∆)) Pareto-
optimal solutions in expectation and q = O(logm) lists
each of which can be searched in time O(logm), this
takes time O(b2n2(P/∆) log2m) in expectation.

As b = (blogmc+ 2)(P/∆ + 1), this gives an upper
bound of O((n logm)3(P/∆)4+log4m) on the expected
running time. �

4 Consensus with drop-outs

Suppose there are two players each of which has access
to a real number. In particular, let a1 ∈ R be a number
that is available to player 1 but not visible to player 2
and a2 ∈ R be a number that is available to player 2
but not visible to player 1. In the setting that we are
considering, it is known that |a1 − a2| ≤ 1. Apart from
these numbers, the two players are undistinguishable
and we seek for a symmetric algorithm that allows them
to agree on a common lower bound b ≤ min{a1, a2}
without allowing them to communicate about their
numbers. Ideally, we would seek for a consensus
function ` : R→ R satisfying

∀a1, a2 ∈ R, |a1−a2| ≤ 1 : `(a1) = `(a2) ≤ min{a1, a2} .

Unfortunately, however, such a consensus function does
not exist: For the purpose of a contradiction, assume
that the function does exist and let `(x) = b, for some
b < x. This implies `(y) = b, for all y ≤ x by inductively
considering the intervals [x−1, x], [x−2, x−1], [x−3, x−
2] . . .. Hence, for y < b, we obtain `(y) = b > y, which
contradicts our assumption.

In order to solve the consensus problem, one needs
to introduce randomization. Goldberg and Hartline [9,
10] present a consensus function failing with some
bounded probability. However, using their approach in
our mechanism for multi-unit auctions leads to infea-
sible allocations and, for this reason, destroys incentive
compatibility even though the failure probability can be
made arbitrary small.

In the following, we present a randomized consensus
function in which a player can detect whether the
consensus might fail. In this case the player ”drops
out”. In our mechanism, a bidder corresponding to such
a player receives the empty allocation. This way, we can
ensure the feasibility of our mechanism.



The randomized variant of the consensus function
has an additional parameter τ that is chosen uniformly
at random from [0, 1]. Both players use the same
random number τ . The consensus function is defined
as follows.

Definition 4.1. Let 0 < ε ≤ 1. An ε-drop-out
consensus function ` : [0, 1]×R→ R ∪ [⊥] satisfies:

1. For every a ∈ R and τ chosen uniformly at random
from [0, 1], Pr [`(τ, a) =⊥] = ε.

2. For every a ∈ R and τ ∈ [0, 1] with `(τ, a) 6=⊥, it
holds `(τ, a) ≤ a.

3. For every a1 < a2 ∈ R and every τ ∈ [0, 1]
with `(τ, a1) 6=⊥ and `(τ, a2) 6=⊥, it holds: If
`(τ, a1) 6= `(τ, a2) then a1 < `(τ, a2)− 1.

The additive gap of ` is defined by max{a− `(τ, a) | τ ∈
[0, 1], a ∈ R, `(τ, a) 6=⊥}.

More intuitively, the three properties can be sum-
marized as follows: If one of the players obtains ⊥
when evaluating `, then this player drops out. Prop-
erty 1 states that each of the two players drops out
with probability ε. Property 2 states that if a player
does not drop out then `(τ, a) is a lower bound on the
player’s number a. Property 3 states that the consen-
sus is successful if none of the players drops out. In this
case, either both players agree on the same lower bound
`(τ, a1) = `(τ, a2) ≤ min{a1, a2} or the smaller of the
two numbers is well separated from the lower bound of
the other one, i.e., a1 < `(τ, a2) − 1. Observe that the
latter statement can only be true if a2 > a1 + 1.

These properties are crucial for the correctness and
the truthfulness of our mechanism. The running time of
the mechanism depends exponentially on the gap of `.
Hence, we seek for a function ` whose gap is as small as
possible.

Lemma 4.1. For every 0 < ε ≤ 1, there exists an ε-
drop-out consensus function ` with additive gap 1

ε − 1.

Proof. We define a function that maps a given number
a ∈ R to a multiple of 1

ε perturbed by a suitable
offset depending on the outcome of τ . In particular,
for τ ∈ [0, 1] and k ∈ Z, define

xτ (k) = (k + τ) · 1

ε
.

For fixed τ ∈ [0, 1], the sequence (xτ (k))k∈Z partitions
the set of real numbers into intervals of length 1

ε , called
τ -intervals. Let k be the largest integer such that
xτ (k) ≤ a. We define

`(τ, a) =

{
x(τ, k) if x(τ, k + 1)− a > 1,
⊥ if x(τ, k + 1)− a ≤ 1.

That is, a is mapped to the left boundary of the τ -
interval in which it is contained; unless its number a
has distance less than one to the right boundary of its τ -
interval, in which case the player drops out. Obviously,
the additive gap of ` corresponds to the length of the
τ -intervals minus one and is thus 1

ε − 1.
We have to prove that ` satisfies the properties from

Definition 4.2. First observe that x(τ, k+1) is a random
number that is picked uniformly at random from the
interval (a, a+ 1

ε ], As a consequence,

Pr [`(τ, a) =⊥] = Pr [x(τ, k + 1) ∈ (a, a+ 1]] = ε ,

which corresponds to the first property.
Now suppose `(τ, a) 6=⊥. In this case `(τ, a) =

x(τ, k) ≤ a which follows directly from the definition
of `(τ, a) and x(τ, k). Hence, the second property holds
as well.

Finally, we prove the third property. Fix τ ∈
R. Suppose `(τ, a1) 6=⊥, `(τ, a2) 6=⊥ and `(τ, a1) 6=
`(τ, a2), for some a1 < a2 ∈ R. In this case, a1 and a2
lie in different τ -intervals. In particular, if `(τ, a1) =
x(τ, k) then `(τ, a2) ≥ x(τ, k+ 1). Now the definition of
` gives x(τ, k+1)−a1 > 1 and, hence, `(τ, a2)−a1 > 1,
which corresponds to the third property. �

In our mechanism, we use the following multiplica-
tive variant of the drop-out consensus function. In this
variant, the players have access to positive real num-
bers a1 and a2. The goal is to compute a lower bound
L > 0 on these numbers such that the multiplicative gap
max{a1/L, a2/L} is as small as possible, where the lower
bound needs to hold only if the ratio max{a1/a2, a2/a1}
is bounded from above by some given parameter N > 1.

Definition 4.2. Let 0 < ε ≤ 1 and N > 1. An (ε,N)-
drop-out consensus function L : [0, 1]×R>0 → R>0∪[⊥]
satisfies:

1. For every a > 0 and τ chosen uniformly at random
from [0, 1], Pr [L(τ, a) =⊥] = ε.

2. For every a > 0 and τ ∈ [0, 1] with L(τ, a) 6=⊥, it
holds L(τ, a) ≤ a.

3. For every a1 > 0, a2 > a1 and every τ ∈ [0, 1]
with L(τ, a1) 6=⊥ and L(τ, a2) 6=⊥, it holds: If
L(τ, a1) 6= L(τ, a2) then a1 < L(τ, a2)/N .

The multiplicative gap of L is defined by
max{a/L(τ, a) | τ ∈ [0, 1], a > 0, L(τ, a) 6=⊥}.

A multiplicative (ε,N)-drop-out consensus function
L for numbers a1, a2 > 0 can be derived from an additive
ε-drop-out consensus function ` for numbers a′1, a

′
2 ∈ R

by setting a′1 = logN a1 and a′2 = logN a2. If the
additive gap of ` is g > 0 then the multiplicative gap of
L is Ng. This gives



Lemma 4.2. For every 0 < ε ≤ 1 and N > 1, there
exists an (ε,N)-drop-out consensus function L with
multiplicative gap N1/ε−1.

5 Description of the mechanism

Now we describe our randomized mechanism for multi-
unit auctions. It yields a (1− 4ε)-approximation of the
social welfare, in expectation, where 0 < ε ≤ 1 is a
parameter.

The algorithm uses the following set of random
numbers: τ is a number chosen uniformly at random
from [0, 1]. This random number is used within all
calls to the consensus function. For 1 ≤ i ≤ n and
0 ≤ j ≤ m, let xji denote a random number that
is chosen uniformly at random from [0, 1], too. The
random numbers xji are used within different calls to the
∆-perturbed maximizer. Let us stress that all calls to
the ∆-perturbed maximizer use the same set of random
variables {xi,j} but possibly different values of ∆ > 0.

The random numbers τ and xji are supposed to be
stochastically independent.

Recall that we want to achieve a running time
bound being polynomial in logm. For this reason, the
algorithm cannot even generate all random numbers xji .
Let us point out, however, that the algorithm needs
to access xji only when it accesses the valuation vi(j).
Hence xij can be generated when vi(j) is accessed for
the first time. In our running time analysis, we assume
for simplicity that the random numbers xij are provided
by a black box like the valuations vi(j).

Our mechanism for multi-unit auctions proceeds as
follows. Let N = 2(logm + 3)n/ε. For every bidder,
i ∈ [n], the mechanism computes the number si of items
allocated to bidder i in the following way.

• At first, the mechanism calls the (ε,N)-drop-out
function L (as described in Definition 4.2) with pa-

rameter v
(−i)
max = maxj∈[n],j 6=i vj(m). In particular,

let Li = L(τ, v
(−i)
max ).

• If Li =⊥ then the algorithm sets si = 0.

• If Li 6=⊥ then Li is a lower bound on v
(−i)
max and,

hence, on vmax = maxi∈[n] vi(m) as well. The
algorithm calls the ∆i-perturbed maximizer for
∆i = Li/N . This call yields an allocation s(i) ∈
{0, . . . ,m}n. The mechanism sets si = s

(i)
i .

We described the mechanism in a way using up
to n calls to the ∆-perturbed maximizer, one for each
bidder. We claim, however, that only one or two calls
are necessary since there are at most two different
outcomes for the parameter ∆. To see this, let i∗ =
argmaxi∈[n]vi(m) be a bidder making the highest bid.

Observe that for all bidders i 6= i∗, v
(−i)
max = vmax. That

is, the algorithm computes the same lower bound Li,
for all i 6= i∗. Suppose Li 6=⊥. Then all these bidders
derive the same parameter ∆i and thus compute the
same allocation s(i). Only bidder i∗ might compute
a different allocation s(i

∗). We need to show that the
combination of s(i

∗) and s(i), for i 6= i∗, gives a feasible
solution, that is, it holds

Lemma 5.1.
∑n
i=1 si ≤ m.

Proof. First suppose that bidders i∗ and i 6= i∗ do
not drop out within the consensus function and both
types of bidders agree on the same value Li = Li∗ .
In this case, the mechanism calls the ∆-perturbed
maximizer with the same parameters for all bidders.
As a consequence, s(i) = s(i

∗), for all i ∈ [n], which

implies
∑n
i=1 si =

∑n
i=1 s

(i∗)
i ≤ m since s(i

∗) is a feasible
allocation.

Next suppose that at least one of the bidders drops
out in the consensus. That is, Li∗ =⊥ or Li =⊥, for all
i 6= i∗. In this case, the algorithm calls the ∆-perturbed
maximizer with the same parameters for all the bidders
that do not drop out, which again ensures feasibility.

It remains proving feasibility for the case that none
of the bidders drops out and Li 6= Li∗ , for i 6= i∗.
Observe that Li 6= Li∗ implies Li > Li∗ and thus

v
(−i)
max > v

(−i∗)
max . Thus, Property 3 in Definition 4.2 of

the consensus function gives v
(−i∗)
max < Li/N = ∆i. In

words, the maximum bid among the bidders i 6= i∗ is
upper-bounded by ∆i. Now Lemma 3.2 yields that the
∆i-perturbed maximizer sets si = 0, for all i 6= i∗, which
implies

∑n
i=1 si = si∗ ≤ m. �

Next we investigate the approximation factor. Let
opt denote the optimal welfare for the given valuations.

Lemma 5.2. The expected social welfare of the com-
puted allocation is at least (1− 4ε)opt.

Proof. All bidders i 6= i∗ use the same parameter Li
in the ε-drop-out consensus function. If one of them
drops out, then all of them drop out. Property 1 in
Definition 4.2 shows that the probability that one of
them drops out is ε. The probability that bidder i∗

drops out is ε, too. Hence, with probability 1− 2ε none
of the bidders drops out.

In the following, we prove that the approximation
ratio is at least 1− 2ε if none of the bidders drops out,
which altogether gives an approximation factor of at
least (1− 2ε)2 ≥ (1− 4ε) and, thus, proves the lemma.

Let us first analyze the social welfare of the alloca-
tion s(i

∗) that is calculated by the perturbed maximizer



of bidder i∗. By Lemma 3.1, allocation s(i
∗) approxi-

mates opt up to an additive error of at most

(2 logm+ 3)n∆i∗ = (2 logm+ 3)n
Li∗

N
.

As N = 2(logm + 3)n/ε and Li∗ ≤ vmax ≤ opt, the
additive error is at most εLi∗ ≤ ε opt. Consequently,
v(s(i

∗)) ≥ (1− ε)opt.
Suppose none of the bidders drops out and Li = L∗i ,

for i 6= i∗. In this case, the mechanism uses the
same set of parameters Li∗ and ∆i∗ = Li∗/N for all
bidders. In particular, the allocation s computed by the
mechanism corresponds to the allocation s(i

∗) selected
by the perturbed mechanism of bidder i∗. In this case,
the mechanism achieves thus a social welfare of at least
(1− ε)opt.

Now suppose none of the bidders drops out and
Li 6= L∗i . We have studied this case already in the proof
of Lemma 5.1 where we have shown that

a) the mechanism sets si∗ = s
(i∗)
i∗ and si = 0, for

i 6= i∗; and

b) it holds v
(−i∗)
max < Li/N .

Thus, the mechanism achieves social welfare

v(s(i
∗))−

∑
i 6=i∗

vi(s
(i∗)
i ) ≥ (1− ε)opt−

∑
i6=i∗

v(−i
∗)

max .

Now ∑
i 6=i∗

v(−i
∗)

max < (n− 1)
Li
N
≤ ε opt

since Li ≤ vmax ≤ opt and N ≥ n/ε. Thus, if none of
the bidders drops out, the social welfare of the computed
solution is at least (1−2ε)opt, which completes the proof
of the lemma. �

We combine the algorithm with the subjective vari-
ant of VCG payments as described in Section 2.2.

Lemma 5.3. The described mechanism is universally
truthful.

Proof. Fix the random variables τ and xji . The out-

come of the consensus function L(τ, v
(−i)
max ) does not de-

pend on the valuation of bidder i and, hence, cannot be

influenced by the bidder. Bidders with L(τ, v
(−i)
max ) =⊥

receive the empty allocation and, hence, have no in-
centive to lie. Thus, we can focus on the bidders with

L(τ, v
(−i)
max ) 6=⊥.

The allocation for a bidder i with L(τ, v
(−i)
max ) 6=⊥ is

selected by the ∆i-perturbed maximizer. The param-

eter ∆i is a function of v
(−i)
max and does not depend on

vi. In particular, the ∆i-perturbed maximizer satisfies
the conditions described in Definition 2.1 when setting

g
(i)
s (v−i) = (2q(si) + xii)∆i +

∑
j 6=i(vi(sj) + (2q(sj) +

xji )∆i). As a consequence, Proposition 2.1 yields that
the composition of these affine maximizers together with
the subjective variant of VCG payments is truthful. �

The running time of the bidder is dominated by the
time needed for computing the perturbed maximizer,
once with parameter ∆i∗ and once with parameter ∆i,
for i 6= i∗. Lemma 3.5 gives the expected running time
in terms of this parameter, it is O((n logm)3(P/∆)4 +

log4m) with P = v
(−i∗)
max denoting the second largest

bid. As ∆i∗ ≤ ∆i, we only need to consider the case
∆ = ∆i∗ .

We use the multiplicative gap of the consensus
function given in Lemma 4.2 in order to upper-bound
P . It holds

P = v(−i
∗)

max ≤ N1/ε−1Li∗ = N1/ε∆i∗ .

Thus, P/∆i∗ ≤ N1/ε. This gives an expected running
time of O((n logm)3N4/ε) with N = O(n logm/ε).
Combining this running time bound with the other
results in this section gives

Theorem 5.1. There exists a randomized polynomial
time approximation scheme for multi-unit auctions that
is universally truthful.

6 Deterministic running time bound

Finally, let us investigate how the bound on the ex-
pected running time can be turned into a deterministic
running time bound. That is, only the bound on the
approximation guarantee is of stochastic nature. With-
out the aspect of truthfulness this would be completely
obvious, as one could simply stop the algorithm when
it exceeds the bound on the expected running time by a
factor of 1/ε, for 0 < ε < 1, and assign the empty alloca-
tion to all bidders. By the Markov inequality this would
happen only with probability ε and, hence, decrease the
approximation factor only by 1 − ε. When using this
approach, however, bidders might have an incentive to
lie in order to improve the running time and, this way,
their utility.

Instead, for every bidder i, we define a criterion Ci
that is independent of vi and is used to decide whether
si should be set to 0 since the running time bound
of the algorithm cannot be guaranteed. The criterion
Ci is defined as follows: The mechanism calculates
the set of Pareto-optimal solutions with respect to
the ∆i-perturbed maximizer over all bidders except
bidder i and the bidder i′ with largest bid among
the other bidders, following the algorithm described



in Section 3. If the running time of this computation
exceeds the bound on the expected running time by n/ε,
the mechanism sets si = 0. Otherwise, the mechanism
computes the solution for this bidder using the ∆i-
perturbed maximizer.

This mechanism is universally truthful as the crite-
rion Ci for bidder i does not depend on vi. Our approach
decreases the approximation factor at most by a factor
of 1− ε since the probability that the calculation for at
least one of the bidders needs to be stopped is at most ε.

Finally, we show that Ci guarantees a polynomial
running time bound for the ∆i-perturbed maximizer.
Either i or i′ corresponds to the bidder with maximum
bid, called i∗. The algorithm for the ∆i-perturbed
maximizer, as described in Section 3, computes the
Pareto-optimal allocations over the bidders in [n] \ {i∗}
and, hence, for one more bidder than in the test for
criterion Ci. Note, however, that one additional bidder
can increase the number of Pareto-optimal solutions
only by a factor of b, where b is the polynomially
bounded number of breakpoints of the bidder. Thus, the
criterion guarantees a deterministic polynomial bound
on the running time of the algorithm, which gives

Theorem 6.1. There exists a randomized approxima-
tion scheme for multi-unit auctions that is universally
truthful and admits a deterministic polynomial bound on
the running time.
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