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Abstract. An effective means to reduce the inefficiency of Nash flows in non-atomic
network routing games is to impose tolls on the arcs of the network. It is a well-known
fact that marginal cost tolls induce a Nash flow that corresponds to a minimum cost flow.
However, despite their effectiveness, marginal cost tollssuffer from two major drawbacks,
namely (i) that potentially every arc of the network is tolled, and (ii) that the imposed tolls
can be arbitrarily large.
In this paper, we study therestricted network toll problemin which tolls can be imposed
on the arcs of the network but are restricted to not exceed a predefined threshold for
every arc. We show that optimal restricted tolls can be computed efficiently for parallel-
arc networks and affine latency functions. This generalizesa previous work on taxing
subnetworks to arbitrary restrictions. Our algorithm is quite simple, but relies on solving
several convex programs. The key to our approach is a characterization of the flows that
are inducible by restricted tolls for single-commodity networks. We also derive bounds
on the efficiency of restricted tolls for multi-commodity networks and polynomial latency
functions. These bounds are tight even for parallel-arc networks. Our bounds show that
restricted tolls can significantly reduce the price of anarchy if the restrictions imposed on
arcs with high-degree polynomials are not too severe. Our proof is constructive. We define
tolls respecting the given thresholds and show that these tolls lead to a reduced price of
anarchy by using a(λ,µ)-smoothness approach.
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1 Introduction

Congestion in traffic networks has several negative effectsas it causes, e.g., environmental
pollution, waste of natural resources and time, stress on the traffic participants, etc. With the
increase in traffic in recent years, it becomes an increasingly important issue to implement
regulation means that efficiently reduce congestion in networks. In this context, road pricing has
long been recognized as being one of the most effective regulation means. The idea is to charge
traffic participants for the usage of roads by imposing tolls. Such negative incentives usually
lead to a change in behavior in that traffic participants, forexample, travel along longer (but
less congested) routes, avoid certain parts of the network (at certain times), or do not travel at
all during peak-times, etc. Recent technological advances, in particular, in satellite technology,
facilitate the realization of such pricing schemes, e.g., by enabling to collect tolls electronically.
Furthermore, they open up the possibility to implementdynamicpricing schemes, in which tolls
may vary over time or depend on congestion.

In this paper, we study the problem of computing efficient pricing schemes to reduce
congestion in network applications caused by selfish behavior. In our studies we use a well-
established model of traffic routing in networks, also knownas theWardrop model. In this
model, we are given a directed graphG = (V,A) with latency functionsℓ := (ℓa)a∈A on the
arcs,k commodities(s1, t1), . . . ,(sk,tk) ∈V ×V, and a non-negative demandr i for every com-
modity i ∈ [k]. The latency functions are used to model the (flow-dependent) congestion on
the arcs and are assumed to be non-negative and non-decrasing. The demandr i of commodity
i ∈ [k] specifies the amount of flow that needs to be routed fromsi to ti . A common interpretation
is that ther i units of flow represent an (infinitely) large population of players, each controlling
an infinitesimal amount of ther i flow units. The goal of every player is to send his flow along a
shortest latency path from its sourcesi to its destinationti . The resulting game is also called a
non-atomic network routing game. A flow f in which no player has an incentive to unilaterally
deviate from its path is called aNash flow(or Wardrop flow).

In general, a Nash flow can be inefficient in the sense that it does not correspond to an
optimal flow that minimizessocial cost, i.e., the total average latency. Theprice of anarchy
[12] is a measure to quantify the efficiency loss caused by selfish behavior. In the context of
network routing games, it is defined as the worst-case ratio over all instances between the cost
of a Nash flow and the cost of an optimal flow. In a seminal work, Roughgarden and Tardos [17]
show that the price of anarchy of non-atomic network routinggames is unbounded in general
and provide bounds for specific classes of latency functions, e.g., polynomial latency functions.

An effective means to reduce the price of anarchy in network routing games is to impose
non-negative tollsτ := (τa)a∈A on the arcs. We consider bothdynamicandstatic tolls in this
paper. In the dynamic case, the toll that is imposed on arca∈A is defined by a (flow-dependent)
toll function τa which maps every flow valuex to a non-negative tollτa(x). In the static case,
the toll on arca ∈ A is specified by a non-negative constantτa. By traversing an arca ∈ A
with flow valuex, a player now experiences a delay ofℓa(x) and additionally has to pay a toll
of τa(x). We letα > 0 be a parameter that specifies how players value time over money. That
is, the combined cost of an arca∈ A with flow valuex is defined asφa(x) := ℓa(x)+ ατa(x).
We assume that every players’ goal is to choose a path that minimizes his total combined cost.
A stable outcome of this game is a Nash flow with respect to the combined cost functions
φ := (φa)a∈A.

A fundamental result due to Beckman, McGuire and Winsten [1]states thatmarginal cost
tolls induce a Nash flow that is socially optimal. That is, if we define τa(x) := 1

αx · ℓ′a(x) for
every arca∈ A then a Nash flow with respect toφ is an optimal flow with respect toℓ. Even
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though marginal cost tolls are theoretically appealing, they have two major drawbacks: (i) It
is assumed that tolls can be imposed oneveryarc of the network. (ii) The tolls imposed on
the arcs can be arbitrarily large. These are severe drawbacks that rule out the applicability of
marginal cost tolls in several situations.

In this paper, we overcome these drawbacks by restricting the set of feasible tolls. These
restrictions are assumed to be given exogenously by means ofthreshold functions on the arcs.
That is, in arestricted network toll problem we are given an instance of the network routing
game together with some threshold functionsθ := (θa)a∈A that specify an upper bound on the
maximum toll chargeable on each arc. As for tolls, we call threshold functionsθ dynamicif
they are flow-dependent andstaticotherwise. We call the tollsτ = (τa)a∈A θ-restrictedif for
everya∈ A, 0≤ τa(x)≤ θa(x) for all flow valuesx≥ 0. Givenθ-restricted tollsτ, let f τ denote
a Nash flow that is induced byτ, i.e., f τ is a Nash flow with respect toφ = ℓ+ ατ.

Our model incorporates several interesting special cases.For example, we can enforce that
tolls are only imposed on a subnetwork induced by a subsetT ⊆ A of the arcs by settingθa = ∞
for everya∈ T andθa = 0 otherwise. Another example is that we can restrict the tollon each
arca∈A by a (flow-independent) threshold valueθa. Yet another example is that we can require
that the toll on each arca∈ A does not exceed a certain fraction of the latency of that arc,e.g.,
θa(x) = εℓa(x) for someε > 0.

Given the restrictions imposed on the set of feasible tolls,the following two natural ques-
tions arise and will be studied in this paper:

1. Can one quantify the efficiency ofθ-restricted tolls?

We are interested in studying the efficiency ofθ-restricted tolls in relation to the cost of
a socially optimal flow. To this aim, we define theefficiencyof θ-restricted tolls as the
minimum ratio of the cost of a Nash flowf τ inducible byθ-restricted tollsτ and the cost of
an optimal flow. We also address the problem of computingθ-restricted tolls that guarantee
a certain efficiency.

2. Can one compute (approximately) optimalθ-restricted tolls?

We consider the roblem of computing (approximately) optimal θ-restricted tolls. We call
θ-restricted tollsτ optimal if the Nash flow f τ induced byτ has cost less than or equal to
any other Nash flow that is inducible byθ-restricted tolls. Similarly,θ-restricted tollsτ are
said to beλ-approximatefor someλ ≥ 1 if the cost off τ is at mostλ times the cost of any
other Nash flow inducible byθ-restricted tolls.

Clearly, from the discussion above it follows that we obtainan efficiency of one ifθa = ∞
for everya∈ A. On the other hand, the efficiency coincides with the price ofanarchy ifθa = 0
for everya∈ A.

The special case that tolls can only be imposed on a subsetT ⊆ A of the arcs has re-
cently been studied by Hoefer, Olbrich and Skopalik [10]. For this case, the authors derive an
algorithm to compute optimalT-restricted tolls for parallel-arc networks with affine latency
functions. They also prove that the problem of computing optimal tolls is NP-hard, even for
two-commodity networks and affine latency functions. Note that the restricted network toll
problem that we consider here is more general, and thus this hardness result extends to our
setting.

Our Results. The main contributions presented in this paper are as follows:
In Section 3 we show that optimalθ-restricted tolls can be computed efficiently in parallel-

arc networks with affine latency functions. This extends theresult of Hoefer et al. [10] to
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arbitrary dynamic threshold functions on the arcs. Our approach is different from the one de-
scribed in [10]. Despite its generality, our algorithm is quite simple. The key to our approach is
a characterization of the flows that are inducible byθ-restricted tolls. Our characterization ap-
plies to single-commodity networks in general. It allows usto determine whether a given flow
is inducible byθ-restricted tolls by verifying whether there is a negative cycle in a properly
constructed graph (which can be done in polynomial time). Based on this characterization, we
derive an algorithm to compute optimalθ-restricted tolls for parallel-arc networks. Our algo-
rithm works for general latency functions; however, we can only guarantee polynomial running
time if all latency and threshold functions are affine (in which case we need to solve a series of
convex programs).

In Section 4 we derive upper bounds on the efficiency of dynamic θ-restricted tolls for
multi-commodity networks and polynomial latency functions of degreep. Our pricing scheme
is a simple and natural adaptation of marginal cost tolls to the restricted setting: for every arc
a∈ A we charge marginal cost tolls if this does not exceed the thresholdθa, and we chargeθa

otherwise. Essentially, we show that these tolls achieve anefficiency that depends on the degree
of the polynomial and the smallest ratio between the threshold value and the latency of an arc
(see Section 4 for precise statements). The technique that we use to establish these bounds rests
on a(λ,µ)-smoothnessapproach [16] that has previously been used successfully tobound the
price of anarchy of network routing games [2, 8] and in a more general context in [16]. We
also prove that our bounds are tight, even for parallel-arc networks. Our pricing scheme also
provides a way to computeθ-restricted tolls for multi-commodity networks and polynomial
latency functions that areλ-approximate, whereλ is equal to the established efficiency.

Our findings support the intuition that, in order to achieve agood efficiency, it is more
important to be able to impose tolls on the arcs that are sensitive to flow changes (high de-
gree polynomials) than on the arcs that are relatively insensitive to flow changes (low degree
polynomials).

For the special case that all restrictions are of the formθa(x) = εℓa(x), our bound matches
exactly theprice of stabilityof ε-Nash flows shown by Christodoulou, Koutsoupias and Spirakis
[3]:







(

(1+ ε)
(

1− p
p+1

( 1+ε
p+1

)1/p
))−1

if ε < p

1 if ε ≥ p.

Our result therefore shows that such tolls allow us to reducethe (generally large) inefficiency
of Nash flows to at least the price of stability ofε-Nash flows; the actual instance-dependent
efficiency of such tolls might be better than that.

All our results mentioned above hold for dynamic threshold functions (and thus also for
static ones).

Related Work. As mentioned above, most related to our work is the recent article [10] by
Hoefer et al. who study the problem of taxing subnetworks, a special case of the restricted
toll problem that we consider here. The authors focus on the problem of computing optimal
tolls. They show that this problem isNP-hard for two-commodity networks and affine latency
functions by a reduction from partition. They also derive analgorithm to compute optimal
tolls for parallel-arc networks and affine latency functions. Their algorithm is sophisticated and
crucially exploits that the restrictions are of the formθa ∈ {0,∞} for every arca∈ A.

The classic result that marginal cost pricing induces optimal flows is due to Beckmann,
McGuire and Winsten [1]. More recently, it has been shown that optimal-inducing tolls exist
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even when users are heterogeneous, i.e., have different latency/toll trade-offs: this was first
shown for single-commodity networks by Cole, Dodis and Roughgarden [4] and then ex-
tended to the multi-commodity case by Fleischer, Jain and Mahdian [7] and independently
by Karakostas and Kolliopoulos [11].

Cole et al. [5] study the setting in which the cost of each useris defined as the latency
plus the taxes paid by the user. For heterogeneous users, Fleischer [6] shows that if there is
a single commodity, then tolls that are linear in the maximumlatency of the optimal flow are
sufficient to force the users to the system optimum. The question of computing tolls that enforce
particular flows has been studied in [9]. The above papers allstudy the non-atomic model; tolls
for heterogeneous users in the context of atomic routing games have been considered by Swamy
[18].

Bounds on the price of anarchy and the price of stability ofε-Nash flows in non-atomic and
atomic congestion games, including network congestion games, have been derived recently by
Christodoulou et al. [3].

2 Preliminaries

We provide formal definitions of the concepts introduced in the Introduction. Suppose we are
given an instanceI = (G,(ℓa)a∈A,(si ,ti)i∈[k],(r i)i∈[k]) of the non-atomic network routing game.
LetP i denote the set of all simple directedsi ,ti -paths inG and defineP :=∪i∈[k]P i . An outcome
of the game is a flowf : P → R+ that is feasible, i.e.,∑P∈P i fP = r i for every i ∈ [k]. Given
a flow f , the total flow on arca∈ A is defined asfa := ∑P∈P :a∈P fP. We define the latency of
a pathP ∈ P with respect tof asℓP( f ) := ∑a∈Pℓa( fa). The total costC( f ) of f is given by
its average latency, i.e.,C( f ) := ∑P∈P fPℓP( f ). A flow that minimizesC(·) is called optimal
and denoted byf ∗. A feasible flow f is called aNash flow(or Wardrop flow) with respect to
ℓ := (ℓa)a∈A if and only if

∀i ∈ [k], ∀P∈ P i , fP > 0 : ℓP( f ) ≤ ℓP′( f ) ∀P′ ∈ P i . (1)

Throughout this paper, we assume that the latency functionsare non-negative, monotone non-
decreasing, differentiable and semi-convex, i.e.,x · ℓa(x) is convex for every arca ∈ A; such
latency functions are also calledstandard[14]. The cost of a Nash flow is unique if the latency
functions are standard.

In a restricted network toll problemwe are given an instanceI of the network routing game
and threshold functionsθ := (θa)a∈A on the arcs. In this setting, non-negative tollsτ := (τa)a∈A

can be imposed on the arcs that have to obey the bounds defined by the threshold functions
(θa)a∈A. In the most general setting, both tolls and threshold functions are flow-dependent.
Given a feasible flowf , we define the combined cost that a player experiences by traversing
arca∈A asφa( fa) = ℓa( fa)+ατa( fa). We assume that every players’ goal is to choose a pathP
that minimizes the combined costℓP( f )+ατP( f ), whereτP( f ) := ∑a∈P τa( fa). For notational
convenience, we assume thatα is normalized to 1. This is without loss of generality because
we can always divide all toll functions byα.

The tollsτ = (τa)a∈A are calledθ-restrictedif for every arca∈ A, 0≤ τa(x) ≤ θa(x) for all
flow valuesx≥ 0. We defineT (θ) as the set of allθ-restricted tolls, i.e.,

T (θ) := {(τa)a∈A | ∀a∈ A : 0≤ τa(x) ≤ θa(x) ∀x≥ 0}.

Givenθ-restricted tollsτ, let f τ denote a Nash flow that is induced byτ, i.e., f τ is a Nash
flow with respect toφ = ℓ+ τ. Theefficiencyof θ-restricted tolls for a given instance of the
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restricted network toll problem is defined as

min
τ∈T (θ)

C( f τ)

C( f ∗)
. (2)

That is, we relate the cost of the best Nash flowf τ that is inducible byθ-restricted tollsτ to
the cost of an optimal flow. Note that we account for the average latency of the network here
rather than the total disutility (latency plus toll) of the players. The reason for that is that we are
interested in characterizing the effect of tolls on the performance (measured in terms of average
latency) of the network.

Given the restrictionsθ = (θa)a∈A on the arcs,θ-restricted tollsτ areoptimal if the Nash
flow f τ induced byτ satisfiesC( f τ)≤C( f τ̄) for all Nash flowsf τ̄ induced byθ-restricted tolls
τ̄. Similarly, θ-restricted tollsτ areλ-approximatefor someλ ≥ 1 if C( f τ) ≤ λC( f τ̄) for all
Nash flowsf τ̄ induced byθ-restricted tolls̄τ.

3 Computing optimal θ-restricted tolls

We first give a characterization of the flows that are inducible byθ-restricted tolls for single-
commodity networks. This characterization will be the key to derive an algorithm that computes
optimalθ-restricted tolls for parallel-arc networks. All results presented in this section hold for
flow-dependent threshold functionsθ.

3.1 Characterization of inducible flows for single-commodity networks

We consider the problem of determining whether a given flowf is inducible byθ-restricted
tolls. We focus on the single-commodity case. As we will see,this problem reduces to verifying
whether there is a negative cycle in a properly constructed graph.

Suppose we are given a flowf . Recall thatf is a Nash flow with respect toℓ+ τ iff for
every twos, t-pathsP,P′ ∈ P with fP > 0 it holdsℓP( f )+ τP ≤ ℓP′( f )+ τP′ . Said differently,
every flow-carrying path must be a shortest path with respectto the combined costφ := ℓ+ τ.
Subsequently, letℓa, τa andθa refer toℓa( fa), τa( fa) andθa( fa), respectively. (In the discussion
below, several definitions will depend on the flowf ; however, for notational convenience we
often do not state this dependence explicitly.)

We use the following alternative characterization of Nash flows (see, e.g., [15]). For every
vertexu ∈ V, let δu be the length of a shortest path froms to u with respect toℓ + τ. Define
A+ as the set of arcs with positive flow, i.e.,A+ := {a∈ A : fa > 0}. Then f is a Nash flow
with respect toφ = ℓ+ τ if and only if (i) δv ≤ δu+ ℓa+ τa for every arca = (u,v) ∈ A, and (ii)
δv = δu + ℓa+ τa for every arca = (u,v) ∈ A+.

We can thus express the setF (θ) of θ-restricted tolls that inducef as follows:

F (θ) := {(τa)a∈A | δv− δu ≤ ℓa + τa ∀a = (u,v) ∈ A\A+

δv− δu = ℓa + τa ∀a = (u,v) ∈ A+

δu free ∀u∈V
0≤ τa ≤ θa ∀a∈ A}.

(3)

Note that the(δu)u∈V are unrestricted in this formulation. Alternatively, we could have required
thatδs = 0 andδu ≥ 0 for everyu∈V. However, this is equivalent to the formulation (3) stated
above.
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We define a grapĥG = Ĝ( f ) = (V, Â) with arc-costsc : Â→ R as follows:Ĝ contains all
arcsa = (u,v) ∈ A and, additionally, for every arca = (u,v) ∈ A+ the reversed arc(v,u). We
call the former type of arcsforward arcsand the latter type of arcsbackward arcs. The cost of
each forward arca= (u,v) ∈ Â is equal toca := ℓa+θa. Every backward arca = (v,u) ∈ Â has
a cost equal to the negative of the latency of its reversed arc(u,v) ∈ A, i.e.,ca := −ℓ(u,v).

Given some subsetX of arcs and functions(ga)a∈X, we defineg(X) as a short for∑a∈X ga.

Theorem 1. Let f be an arbitrary feasible flow. Then f is inducible byθ-restricted tolls if and
only if Ĝ( f ) does not contain a cycle of negative cost.

Proof. SupposeĜ = Ĝ( f ) contains a cycleC ⊆ Â of negative cost. Since only backward arcs
have negative cost, at least one backward arc is part ofC. PartitionC into the setF of forward
arcs and the setB of backward arcs, respectively. Let̄B denote the set of reversed arcs inB.
Note thatB̄⊆ A+. We have

c(C) = c(F)+c(B) = ℓ(F)+ θ(F)− ℓ(B̄) < 0. (4)

Suppose for the sake of contradiction thatτ = (τa)a∈A ∈ F (θ) are feasible tolls that inducef .
By the feasibility ofτ, we have for every forward arca = (u,v) ∈ F, δv− δu ≤ ℓ(u,v) + τ(u,v)
and for every backward arca = (u,v) ∈ B, δu− δv = ℓ(v,u) + τ(v,u), or equivalently,δv− δu =
−ℓ(v,u)− τ(v,u). Summing over all arcs inC, we obtain:

0 = ∑
(u,v)∈C

δv− δu = ∑
(u,v)∈F

δv− δu + ∑
(u,v)∈B

δv− δu

≤ ∑
(u,v)∈F

ℓ(u,v) + τ(u,v)− ∑
(u,v)∈B

ℓ(v,u) + τ(v,u)

≤ ℓ(F)+ θ(F)− ℓ(B̄)− τ(B̄) < −τ(B̄),

where the last inequality follows from (4). Thusτ(B̄) < 0 which is a contradiction sinceτa ≥ 0
for every arca∈ A.

Next suppose that̂G does not contain a negative cycle. We can then determine the shortest
path distanceδu from s to every nodeu∈V in Ĝ with respect toc. (These distances are well-
defined becausêG does not contain a negative cycle.) Note that for every arca = (u,v) ∈ Â we
haveδv ≤ δu + c(u,v). Based on these distances, we extract tollsτ := (τa)a∈A as follows: For
every arca = (u,v) ∈ A, we define

τa := max{0,δv− δu− ℓa}. (5)

We show thatτ inducesf . By definition, we have for every arca= (u,v)∈ A: δv−δu−τa ≤ ℓa.
Consider an arca = (u,v) ∈ A+. Thenδu− δv ≤ −ℓa, or equivalently,δv− δu− ℓa ≥ 0. Thus,
δv−δu−τa = ℓa. Clearly,τa ≥ 0 for everya∈A. Moreover, for every arca= (u,v)∈A we have
δv−δu ≤ ℓa+θa and thusδv−δu− ℓa ≤ θa. We can infer thatτa ≤ θa for everya = (u,v) ∈ A.

⊓⊔

Note that the proof of the theorem also provides a way to extract the respective tolls iff is
inducible byθ-restricted tolls: Givenf , we compute the shortest path distanceδu with respect
to c from s to u for everyu∈V and define the tollτa for every arca = (u,v) ∈ A as in (5).

The following corollary is an immediate consequence of the above theorem and the fact
that negative cycles can be detected efficiently (e.g., by the Bellman-Ford algorithm).

Corollary 1. Given a flow f , we can determine in polynomial time whether f isinducible by
θ-restricted tolls.
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3.2 Computing optimal tolls in paralle-arc networks

In light of the above characterization, the problem of computing θ-restricted tolls such that the
costC( f τ) of the induced Nash flowf τ is minimized is equivalent to the problem of computing
a minimum cost flowf such thatĜ( f ) does not contain a negative cost cycle. Once we have
determinedf , we can extract the optimalθ-restricted tollsτ as defined in (5). This equivalence
constitutes the basis of our algorithm to compute optimal tolls in parallel-arc networks.

Let G = (V,A) be a parallel-arc network and letf be a feasible flow. The condition of
Theorem 1 then reduces to the following property:f is inducible byθ-restricted tolls if and
only if

∀a∈ A, fa > 0 : ℓa( fa) ≤ ℓa′( fa′)+ θa′( fa′) ∀a′ ∈ A. (6)

Note that these conditions are similar to the Nash flow conditions in (1) (specialized to parallel-
arc networks) with the difference that we allow some additional slackθa′( fa′) on the right-hand
side. Thus, our goal is to determine a minimum cost flowf among all flows that satisfy (6).

Corollary 2. The problem of computing optimalθ-restricted tolls for the parallel-arc re-
stricted network toll problem is equivalent to computing a minimum cost flow f satisfying
(6).

Computing a minimum cost flow can be done efficiently by solving a convex program.
However, here we need to ensure (6) additionally and it is a-priori not clear how to encode these
constraints. Note that for Nash flows the corresponding conditions are ensured by applying the
Karush-Kuhn-Tucker conditions to a convex program with an appropriately chosen objective
function. A similar approach does not work here because we cannot deliberately choose an
objective function and because of the asymmetry in (6) (due to the slack).

Our approach exploits the following key insight. Fix some minimum cost flowf ∗ satisfying
(6) and suppose we knew the minimum valuez= min{ℓa(0)+ θa(0) | a∈ A, f ∗a = 0} among
all zero-flow arcs inf ∗. Let z= ∞ if all arcs have positive flow inf ∗. We can then compute an
minimum cost flowf z = ( f z

a)a∈A satisfying (6) as follows. From (6) we infer thatf z
a = 0 for

every arca∈ A with ℓa(0) > z. Let Az = {a∈ A | ℓa(0) ≤ z} be the remaining arcs. On the arcs
in Az, we compute a feasible flow( f z

a)a∈Az of minimum cost satisfyingℓa( f z
a) ≤ z for every

a∈ Az andℓa( f z
a) ≤ ℓa′( f z

a′)+ θa′( f z
a′) for everya,a′ ∈ Az. The latter can be done by solving

the program:
Cz = min ∑a∈Az f z

aℓa( f z
a)

s.t. ∑a∈Az f z
a = r

f z
a ≥ 0 ∀a∈ Az

ℓa( f z
a) ≤ z ∀a∈ Az

ℓa( f z
a) ≤ ℓa′( f z

a′)+ θa′( f z
a′) ∀a,a′ ∈ Az.

(7)

The only remaining problem is that we do not knowz. However, because there are at most
|A|+1 different possibilities (including the casez= ∞), we can simply compute a flowf z for
each possible valuezand finally return the best flowf that has been encountered. The complete
algorithm is summarized in Algorithm 1.

Theorem 2. Algorithm 1 computes a minimum cost flow f satisfying(6).

Proof. Let f = f z be the flow returned by Algorithm 1. Clearly,f is a feasible flow by
construction. We argue thatf satisfies (6). Consider somea ∈ A+. Note that fa′ = 0 for
every arca′ /∈ Az and thusa ∈ Az. Because( fa)a∈Az is a feasible solution to (7), we have
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Algorithm 1: Algorithm to compute minimum cost flow satisfying (6)

1 Let Z = {ℓa(0)+θa(0) | a∈ A}.
2 for every z∈ Z∪{∞} do
3 DefineAz := {a∈ A | ℓa(0) ≤ z}.
4 Set f z

a = 0 for everya /∈ Az.
5 Let ( f z

a)a∈Az be an optimal solution of costCz to the program in (7).
(Remark:( f z

a)a∈Az is undefined and Cz = ∞ if (7) is infeasible.)
6 end
7 Return f = f z with Cz minimum among allz∈ Z∪{∞}.

ℓa( fa)≤ z≤ ℓa′(0) = ℓa′( fa′) for everya′ /∈ Az. Moreover,ℓa( fa)≤ ℓa′( fa′)+θa′( fa′) for every
a′ ∈ Az. Thus, f satisfies (6).

Let f ∗ be an optimal flow. We show thatC( f ) ≤ C( f ∗). Definez as the minimum value
ℓa( f ∗a )+θa( f ∗a ) of a zero-flow arca∈A, i.e.,z= min{ℓa(0)+θa(0) | a∈A, f ∗a = 0}. Letz= ∞
if all arcs have positive flow. Note thatf ∗a = 0 for everya /∈Az and thusC( f ∗)= ∑a∈Az f ∗a ℓa( f ∗a ).
Observe that( f ∗a )a∈Az is a feasible solution for the program in (7) with respect toz. Thus
C( f z) ≤C( f ∗). BecauseC( f ) ≤C( f z), this concludes the proof. ⊓⊔

Finally, observe that the program in (7) is convex if all latency and threshold functions are
affine, i.e., of the formq1x+ q0 with q1,q0 ≥ 0. In particular, the constraints of (7) are linear
and the objective function is convex quadratic in this case,so the program can be solved exactly
in polynomial time [13].

Corollary 3. Algorithm 1 computes a minimum cost flow f satisfying(6) in polynomial time if
all latency and threshold functions are affine.

Hoefer et al. [10] derived a similar result for the special case thatθa ∈ {0,∞} for every arc
a∈ A.

4 General efficiency ofθ-restricted tolls

We provide bounds on the efficiency ofθ-restricted tolls for multi-commodity networks with
polynomial latency functions of degreep. Our approach is algorithmic: We show how to com-
puteθ-restricted tolls for a given instance of the restricted network toll problem that guarantee
the claimed efficiency bound. The results given in this section hold for dynamic threshold func-
tions.

Let L p be defined as the set of all polynomial functionsg of the formg(x) = ∑p
d=0qdxd

with non-negative coefficientsqd, d = 0, . . . , p. Moreover, letM d refer to the set of all mono-
mial functions of the formℓa(x) = qdxd with non-negative coefficientqd. Suppose we are given
an arca∈ A with ℓa ∈ L p. We can replacea by a sequence ofp+1 arcs with latency functions
in M p, . . . ,M 0, respectively, in the obvious way. We can therefore assume without loss of gen-
erality that all latency functions(ℓa)a∈A of the given instance are monomials. Subsequently, we
used(a) to refer to the degree of the (monomial) latency functionℓa of a∈ A, i.e.,d(a) = d iff
ℓa ∈M d.

The basic idea is very simple. We define toll functions(τa)a∈A as follows:

τa(x) = min{x · ℓ′a(x), θa(x)}. (8)

8



That is, on each arca ∈ A, we impose marginal cost tollsx · ℓ′a(x) if this does not exceed the
thresholdθa(x) and otherwise charge the maximum possible tollθa(x). Clearly, these tolls are
θ-restricted. Note that these tolls are dynamic. We show at the end of the section how to derive
static tolls that achieve the same efficiency.

Let φ := (φa)a∈A be the combined cost, i.e., for everya∈A, φa(x) := ℓa(x)+τa(x) for every
x ≥ 0, and let f = f τ be a Nash flow with respect toφ. We next derive a bound on the ratio
C( f )/C( f ∗), wheref ∗ is an optimal flow. We adapt the(λ,µ)-smoothnessapproach [16] which
was previously used successfully to bound the price of anarchy of network routing games [2,
8] and in a more general context in [16].

Becausef is a Nash flow with respect toφ, it satisfies the followingvariational inequality,
i.e., for every feasible flowx

∑
a∈A

φa( fa) fa ≤ ∑
a∈A

φa( fa)xa. (9)

By the definition ofφ,

C( f ) = ∑
a∈A

ℓa( fa) fa ≤ ∑
a∈A

ℓa( fa)xa + τa( fa)(xa− fa)

≤ ∑
a∈A

ω(ℓa,λ)ℓa( fa) fa + λℓa(xa)xa, (10)

where we define

ω(ℓa,λ) := sup
fa,xa≥0

(ℓa( fa)+ τa( fa)−λℓa(xa))xa− τa( fa) fa
ℓa( fa) fa

.

We assume by convention that 0/0 = 0. Finally, letω(λ) := supa∈Aω(ℓa,λ). With this defini-
tion, (10) implies

C( f ) ≤ ω(λ)C( f )+ λC(x). (11)

Becauseω(λ) depends onλ, let Λ refer to the values ofλ such thatω(λ) < 1. Then for every
λ ∈ Λ, (11) is equivalent to

C( f ) ≤ λ(1−ω(λ))−1C(x). (12)

The goal is to findλ ∈ Λ that provides the best upper bound.

Lemma 1. Let ℓa ∈M d and defineεa := τa( fa)/ℓa( fa). We have

ω(ℓa,λ) =

(

d(1+ εa)

d+1

)(

1+ εa

(d+1)λ

)1/d

− εa.

Moreover,ω(ℓa,λ) < 1 for

λ ≥

(

1+ εa

d+1

)(

d
d+1

)d

.

Proof. Defineµ := xa/ fa. Then

ω(ℓa,λ) = sup
fa,xa≥0

(ℓa( fa)+ τa( fa)−λℓa(µ fa))µ fa− τa( fa) fa
ℓa( fa) fa

= sup
µ≥0

(1−λµd)µ− (1−µ)εa.

9



The last expression attains its maximum at

µ∗ :=

(

1+ εa

(d+1)λ

)1/d

.

Substituting yields the claim. Note that the restrictionω(ℓa,λ) < 1 implies that

λ ≥

(

1+ εa

d+1

)(

d
d+1

)d

.

⊓⊔

We continue to study the values forω(ℓa,λ) andλ. Observe that for every arca∈ A with
ℓa ∈ M d there are two possibilities forεa = τa( fa)/ℓa( fa): If τa( fa) = fa · ℓ′a( fa) thenεa = d;
otherwise,τa( fa) = θa( fa) < fa · ℓ′a( fa) and thusεa = θa( fa)/ℓa( fa) < d.

We thus obtain
(

1+ εa

d+1

)(

d
d+1

)d

≤

(

1+d
d+1

)(

d
d+1

)d

.

Choosingλ = 1 therefore satisfies the restrictions imposed onλ in the above lemma (and is
tight for d = 0). Subsequently, we fixλ := 1.

We need to derive an upper bound onω(ℓa,1):

ω(ℓa,1) =

(

d(1+ εa)

d+1

)(

1+ εa

d+1

)1/d

− εa.

Note thatω(ℓa,1) decreases asεa increases. This motivates the following definitions:

ε̄d = min{εa | a∈ A, ℓa ∈M d}

and

ω(d,1) = d

(

1+ ε̄d

1+d

)1+1/d

− ε̄d. (13)

With these definitions, we obtain

ω(1) = max
d=0,...,p

ω(d,1). (14)

Corollary 4. Supposēεd = d. Thenω(d,1) = 0.

Observe that if we havēεd = d for everyd = 0, . . . , p then the above corollary in combina-
tion with (12) implies thatC( f ) ≤ C(x) (which actually follows readily from the observation
that in this case marginal cost tolls areθ-restricted and induce an optimal flow).

We obtain the following theorem.

Theorem 3. Given an instance of the restricted network toll problem with polynomial latency
functions of degree p, the efficiency ofθ-restricted tolls as defined in(8) is no worse than

max
d=0,...,p

(

(1+ ε̄d)

(

1−
d

d+1

(

1+ ε̄d

d+1

)1/d
))−1
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Proof. The proof follows from (12) withλ = 1 (λ ∈ Λ as argued above) and the definition of
ω(1) in (14). ⊓⊔

We give some interpretation of the above theorem. Our resultsuggests that it is more im-
portant to impose large tolls on arcs with high degree latency functions than on the ones with
low degree functions. As an example, consider the followingextreme situation: Suppose the
restrictions(θa)a∈A are such that we can impose marginal cost tolls on all arcsa∈ A with la-
tency functions of degree larger thant, and no tolls on all other arcs. The above bound then
proves that the tolls in (8) achieve an efficiency no worse than the price of anarchy for degreet
polynomials (see [17]), i.e.,

(

1−
t

t +1

(

1
t +1

)1/t
)−1

.

We next show that the bound in Theorem 3 is tight.

Theorem 4. For every p and every choice ofδ with 0≤ δ ≤ p there is a parallel-arc instance
of the restricted network toll problem with polynomial latency functions of degree p such that
the efficiency of the tolls defined in(8) is equal to

(

(1+ δ)

(

1−
p

p+1

(

1+ δ
p+1

)1/p
))−1

Proof. Consider a network consisting of two parallel arcsa, ā connectings andt. Suppose we
want to router = 1 units of flow froms to t. Let the respective latency functions beℓa(x) = 1
andℓā(x) = xp. Define threshold functionsθa(x) = 0 andθā(x) = δℓā(x). Let the tolls(τa)a∈A

be defined as in (8). Note thatε̄p = δ.
Consider a Nash flowf = f τ induced byτ. If ε̄p ≥ p then f is a Nash flow with respect to

marginal cost functions and thus an optimal flow. The claim follows.
Otherwisēεp < p. It is not hard to verify thatfā = (ε̄p +1)−1/p and fa = 1− fā. The total

cost of f is

C( f ) =

(

1
ε̄p +1

)1+1/p

+1−

(

1
ε̄p +1

)1/p

= 1−
ε̄p

ε̄p +1

(

1
ε̄p +1

)1/p

.

Consider an optimal flowf ∗. We havef ∗ā = (p+1)−1/p and f ∗a = 1− f ∗ā . The total cost off ∗

is

C( f ∗) =

(

1
p+1

)1+1/p

+1−

(

1
p+1

)1/p

= 1−
p

p+1

(

1
p+1

)1/p

.

Taking the ratioC( f )/C( f ∗) yields the claim. ⊓⊔

The next corollary characterizes the efficiency ofθ-restricted tolls withθa(x) = εℓa(x) for
every arca∈ A and a fixedε ≥ 0. Intuitively, such restrictions reflect the requirement that the
toll on each arc does not exceed anε-fraction of the travel time along that arc.

Corollary 5. Given an instance of the restricted network toll problem with polynomial latency
functions of degree p and threshold functions of the formθa(x) = εℓa(x), the efficiency ofθ-
restricted tolls as defined in(8) is no worse than1 if ε ≥ p and no worse than

(

(1+ ε)

(

1−
p

p+1

(

1+ ε
p+1

)1/p
))−1
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otherwise.

Proof. If ε≥ p we havēεd = d for everyd = 0, . . . , p and thusC( f )≤C(x). (This result actually
follows readily from the observation that in this case marginal cost tolls areε-restricted and
induce an optimal flow.) Otherwise,ε < p. Observe that ford ≤ ε, ε̄d = d and thusω(d,1) = 0
by Corollary 4. Forε < d ≤ p, ε̄d = ε. Note thatω(d,1) increases withd (for fixed εd = ε).
Thus, in this case

ω(1) = p

(

1+ ε
1+ p

)1+1/p

− ε.

Substituting yields the claimed bound. ⊓⊔

This bound matches exactly theprice of stabilityof ε-Nash flows shown by Christodoulou,
Koutsoupias and Spirakis [3].

Computing static tolls: The tolls defined in (8) are dynamic. It is not hard to see, thatwe can
also define static tolls achieving the same efficiency: Simply define the dynamic tollsτ as in (8)
and compute a Nash flowf = f τ with respect to the combined cost functionsφ = ℓ+ τ. Note
that this can be done by solving the following convex program:

min ∑a∈A
R fa

0 φa(x)dx
s.t. ∑P∈P i fP = r i ∀i ∈ [k]

fa = ∑i∈[k] ∑P∈P i :a∈P fP ∀a∈ A
fP ≥ 0 ∀P∈ P i , ∀i ∈ [k].

(15)

In order to being able to solve this program we need that each functionha(y) =
R y

0 φa(x)dx
is continuously differentiable and convex (see, e.g., [17]). This is the case becauseφa(x) =
ℓa(x)+ τa(x) is continuous and non-decreasing. Oncef has been computed, we can extract the
respective static tolls inducingf by definingτa = τa( fa) for every arca∈ A.

Computing approximate tolls: Observe that our results also yield an approach to computeθ-
restricted tolls that areλ-approximate, whereλ is the efficiency guarantee stated in Theorem 3:
Simply define the dynamic tollsτ as in (8) and compute a Nash flowf = f τ with respect to
the combined cost functionsφ = ℓ+ τ and the respective static tollsτ as described above. By
Theorem 3, the Nash flowf τ induced byτ satisfies

C( f τ) ≤ λC( f ∗) ≤ λC( f τ̄),

for every Nash flowf τ̄ induced byθ-restricted tolls̄τ. Thus,τ is λ-approximate.

Corollary 6. There is an algorithm that computes in polynomial timeλ-approximateθ-
restricted tolls for the multi-commodity network toll problem with monomial latency functions,
whereλ is the efficiency guarantee stated in Theorem 3.
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