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Abstract. An effective means to reduce the inefficiency of Nash flows dn-atomic
network routing games is to impose tolls on the arcs of thevorit It is a well-known
fact that marginal cost tolls induce a Nash flow that corragipdo a minimum cost flow.
However, despite their effectiveness, marginal cost siffer from two major drawbacks,
namely (i) that potentially every arc of the network is tdlland (ii) that the imposed tolls
can be arbitrarily large.

In this paper, we study thestricted network toll problerm which tolls can be imposed
on the arcs of the network but are restricted to not exceededefined threshold for
every arc. We show that optimal restricted tolls can be cdegpefficiently for parallel-
arc networks and affine latency functions. This general@@sevious work on taxing
subnetworks to arbitrary restrictions. Our algorithm igggimple, but relies on solving
several convex programs. The key to our approach is a cleaization of the flows that
are inducible by restricted tolls for single-commodity wetks. We also derive bounds
on the efficiency of restricted tolls for multi-commoditytmerks and polynomial latency
functions. These bounds are tight even for parallel-arevods. Our bounds show that
restricted tolls can significantly reduce the price of ahgii€ the restrictions imposed on
arcs with high-degree polynomials are not too severe. Gooffis constructive. We define
tolls respecting the given thresholds and show that thdiseléad to a reduced price of
anarchy by using &\, p)-smoothness approach.

* Part of this work has been done while the author was at MPrimddics, Saarbriicken, Germany.
** Part of this work has been done while the author spent a suimteenship at CWI.



1 Introduction

Congestion in traffic networks has several negative effasti causes, e.g., environmental
pollution, waste of natural resources and time, stress err#ific participants, etc. With the
increase in traffic in recent years, it becomes an increbsingportant issue to implement
regulation means that efficiently reduce congestion in agkta: In this context, road pricing has
long been recognized as being one of the most effectiveaignimeans. The idea is to charge
traffic participants for the usage of roads by imposing tdlisch negative incentives usually
lead to a change in behavior in that traffic participants,eikample, travel along longer (but
less congested) routes, avoid certain parts of the netvedrdeftain times), or do not travel at
all during peak-times, etc. Recent technological advarogsrticular, in satellite technology,
facilitate the realization of such pricing schemes, e germbling to collect tolls electronically.
Furthermore, they open up the possibility to implendymamiqoricing schemes, in which tolls
may vary over time or depend on congestion.

In this paper, we study the problem of computing efficientipd schemes to reduce
congestion in network applications caused by selfish behavi our studies we use a well-
established model of traffic routing in networks, also knawgntheWardrop modelIn this
model, we are given a directed gra@h= (V,A) with latency functiond := (£3)aca On the
arcs,k commoditiegsy, t1), ..., (S, &) € V xV, and a non-negative demandor every com-
modity i € [k]. The latency functions are used to model the (flow-dependemtgestion on
the arcs and are assumed to be non-negative and non-dgcrEisindemand; of commodity
i € [K] specifies the amount of flow that needs to be routed dot;. A common interpretation
is that ther; units of flow represent an (infinitely) large population ahytrs, each controlling
an infinitesimal amount of the flow units. The goal of every player is to send his flow along a
shortest latency path from its sourgdo its destination;. The resulting game is also called a
non-atomic network routing gama flow f in which no player has an incentive to unilaterally
deviate from its path is calledash flow(or Wardrop flowy.

In general, a Nash flow can be inefficient in the sense thatdsdwmt correspond to an
optimal flow that minimizesocial costi.e., the total average latency. Thace of anarchy
[12] is a measure to quantify the efficiency loss caused Hiskdbehavior. In the context of
network routing games, it is defined as the worst-case rago all instances between the cost
of a Nash flow and the cost of an optimal flow. In a seminal wodyghgarden and Tardos [17]
show that the price of anarchy of non-atomic network rougjagies is unbounded in general
and provide bounds for specific classes of latency functiesgs, polynomial latency functions.

An effective means to reduce the price of anarchy in netwouting games is to impose
non-negative tollg := (Ta)aca ON the arcs. We consider botlynamicandstatic tolls in this
paper. In the dynamic case, the toll that is imposed oaaré is defined by a (flow-dependent)
toll function 1, which maps every flow valueto a non-negative toli;(x). In the static case,
the toll on arca € A is specified by a non-negative constagt By traversing an ara € A
with flow valuex, a player now experiences a delay/gfx) and additionally has to pay a toll
of Ta(x). We leta > 0 be a parameter that specifies how players value time oveeyndhat
is, the combined cost of an aac= A with flow valuex is defined aspa(X) := fa(X) + oTa(X).
We assume that every players’ goal is to choose a path thanmas his total combined cost.
A stable outcome of this game is a Nash flow with respect to tmbined cost functions
@:= (Pa)aca.

A fundamental result due to Beckman, McGuire and Winstersfafes thatarginal cost
tolls induce a Nash flow that is socially optimal. That is, if we defia(x) := éx%’a(x) for
every arca € A then a Nash flow with respect tpis an optimal flow with respect té. Even



though marginal cost tolls are theoretically appealingythave two major drawbacks: (i) It
is assumed that tolls can be imposedemeryarc of the network. (ii) The tolls imposed on
the arcs can be arbitrarily large. These are severe drawlithakrule out the applicability of
marginal cost tolls in several situations.

In this paper, we overcome these drawbacks by restrictiag¢h of feasible tolls. These
restrictions are assumed to be given exogenously by meahseshold functions on the arcs.
That is, in arestricted network toll problem we are given an instance of the network routing
game together with some threshold functiéns- (8;)aca that specify an upper bound on the
maximum toll chargeable on each arc. As for tolls, we cakshiold function® dynamicif
they are flow-dependent amsthtic otherwise. We call the tolls = (13)aca 6-restrictedif for
everya € A, 0 < 15(x) < B4(x) for all flow valuesx > 0. Givenb-restricted tollg, let f* denote
a Nash flow that is induced ly i.e., f' is a Nash flow with respect ip= ¢ + aT.

Our model incorporates several interesting special cksg®example, we can enforce that
tolls are only imposed on a subnetwork induced by a subsef of the arcs by settinf; = «
for everya € T and8, = 0 otherwise. Another example is that we can restrict theotokach
arca < Aby a (flow-independent) threshold valBge Yet another example is that we can require
that the toll on each arg € A does not exceed a certain fraction of the latency of thateagc,
Ba(X) = €la(x) for somee > 0.

Given the restrictions imposed on the set of feasible ttiks following two natural ques-
tions arise and will be studied in this paper:

1. Can one quantify the efficiency 6frestricted tolls?

We are interested in studying the efficiencyfestricted tolls in relation to the cost of
a socially optimal flow. To this aim, we define tledficiencyof 6-restricted tolls as the
minimum ratio of the cost of a Nash floW inducible by6-restricted tolls and the cost of
an optimal flow. We also address the problem of compuingstricted tolls that guarantee
a certain efficiency.

2. Can one compute (approximately) optirfialestricted tolls?

We consider the roblem of computing (approximately) optifraestricted tolls. We call
0-restricted tollst optimalif the Nash flowf! induced byt has cost less than or equal to
any other Nash flow that is inducible Byrestricted tolls. Similarlyd-restricted tollst are
said to bex-approximateior someh > 1 if the cost off! is at mosfA times the cost of any
other Nash flow inducible b§-restricted tolls.

Clearly, from the discussion above it follows that we obtainefficiency of one iB; = o
for everya € A. On the other hand, the efficiency coincides with the pricanafrchy if6; = 0
for everya € A.

The special case that tolls can only be imposed on a subsetA of the arcs has re-
cently been studied by Hoefer, Olbrich and Skopalik [10F. #his case, the authors derive an
algorithm to compute optimal -restricted tolls for parallel-arc networks with affinedaty
functions. They also prove that the problem of computindgnoat tolls is NP-hard, even for
two-commodity networks and affine latency functions. Ndtattthe restricted network toll
problem that we consider here is more general, and thus #rgnkss result extends to our
setting.

Our Results. The main contributions presented in this paper are as fetlow
In Section 3 we show that optim@restricted tolls can be computed efficiently in parallel-
arc networks with affine latency functions. This extends risult of Hoefer et al. [10] to



arbitrary dynamic threshold functions on the arcs. Our apgh is different from the one de-
scribed in [10]. Despite its generality, our algorithm istgsimple. The key to our approach is
a characterization of the flows that are induciblefasestricted tolls. Our characterization ap-
plies to single-commodity networks in general. It allowsasletermine whether a given flow
is inducible by6-restricted tolls by verifying whether there is a negatiyele in a properly
constructed graph (which can be done in polynomial timeseBaon this characterization, we
derive an algorithm to compute optim@drestricted tolls for parallel-arc networks. Our algo-
rithm works for general latency functions; however, we caly guarantee polynomial running
time if all latency and threshold functions are affine (in efhcase we need to solve a series of
convex programs).

In Section 4 we derive upper bounds on the efficiency of dyndwiestricted tolls for
multi-commaodity networks and polynomial latency functiasf degreego. Our pricing scheme
is a simple and natural adaptation of marginal cost tollitorestricted setting: for every arc
a € Awe charge marginal cost tolls if this does not exceed thestinie6,, and we chargé,
otherwise. Essentially, we show that these tolls achieedffariency that depends on the degree
of the polynomial and the smallest ratio between the threskedue and the latency of an arc
(see Section 4 for precise statements). The technique thas&to establish these bounds rests
on a(A, n)-smoothnesapproach [16] that has previously been used successfutipiad the
price of anarchy of network routing games [2, 8] and in a maeegal context in [16]. We
also prove that our bounds are tight, even for parallel-atevarks. Our pricing scheme also
provides a way to computérestricted tolls for multi-commodity networks and polynial
latency functions that ae-approximate, wher# is equal to the established efficiency.

Our findings support the intuition that, in order to achievgamd efficiency, it is more
important to be able to impose tolls on the arcs that are Bem$o flow changes (high de-
gree polynomials) than on the arcs that are relatively isitga to flow changes (low degree
polynomials).

For the special case that all restrictions are of the fBs()) = €£4(x), our bound matches
exactly theprice of stabilityof e-Nash flows shown by Christodoulou, Koutsoupias and Sysraki

[3]:

((1+£)(1—‘JTF’l(é%i)l/p))i1 ife<p
1 ife>p.

Our result therefore shows that such tolls allow us to rediedgenerally large) inefficiency
of Nash flows to at least the price of stability @Nash flows; the actual instance-dependent
efficiency of such tolls might be better than that.

All our results mentioned above hold for dynamic threshaldctions (and thus also for
static ones).

Related Work. As mentioned above, most related to our work is the receidi@itl0] by
Hoefer et al. who study the problem of taxing subnetworkspecsl case of the restricted
toll problem that we consider here. The authors focus on thblem of computing optimal
tolls. They show that this problem iP-hard for two-commodity networks and affine latency
functions by a reduction from partition. They also deriveagorithm to compute optimal
tolls for parallel-arc networks and affine latency functomheir algorithm is sophisticated and
crucially exploits that the restrictions are of the foBge {0, o} for every arca € A.

The classic result that marginal cost pricing induces ogitifftows is due to Beckmann,
McGuire and Winsten [1]. More recently, it has been shown tdimal-inducing tolls exist



even when users are heterogeneous, i.e., have differentcidtoll trade-offs: this was first
shown for single-commodity networks by Cole, Dodis and Rmagden [4] and then ex-
tended to the multi-commodity case by Fleischer, Jain anfidiéan [7] and independently
by Karakostas and Kolliopoulos [11].

Cole et al. [5] study the setting in which the cost of each usetefined as the latency
plus the taxes paid by the user. For heterogeneous useis;Hde[6] shows that if there is
a single commaodity, then tolls that are linear in the maximatancy of the optimal flow are
sufficient to force the users to the system optimum. The gurest computing tolls that enforce
particular flows has been studied in [9]. The above papessialy the non-atomic model; tolls
for heterogeneous users in the context of atomic routingagdrave been considered by Swamy
[18].

Bounds on the price of anarchy and the price of stability-bfash flows in non-atomic and
atomic congestion games, including network congestionegaimave been derived recently by
Christodoulou et al. [3].

2 Preliminaries

We provide formal definitions of the concepts introducechia Introduction. Suppose we are
given an instance = (G, (¢a)aca, (St )icj (T )ie[y) Of the non-atomic network routing game.
Let #; denote the set of all simple directgd;-paths inG and definer := Uick %i- An outcome
of the game is a flowf : » — R, that is feasible, i.e.Jpcy, fp = ri for everyi € [k]. Given

a flow f, the total flow on ar@ € A is defined asfa := S pcy-acp fr. We define the latency of
a pathP € 2 with respect tof as{p(f) := S cpla(fa). The total cosC(f) of f is given by
its average latency, i.eG(f) := Ypcp frlp(f). A flow that minimizesC(-) is called optimal
and denoted by *. A feasible flowf is called aNash flow(or Wardrop flowy with respect to

0 := (la)aca if and only if

Vie [k, VPep, fp>0: lp(f) <tp(f) VP €m. €N}

Throughout this paper, we assume that the latency funcimmaon-negative, monotone non-
decreasing, differentiable and semi-convex, ke/a(x) is convex for every ara € A; such
latency functions are also callsthndard[14]. The cost of a Nash flow is unique if the latency
functions are standard.

In arestricted network toll problemwe are given an instanaeof the network routing game
and threshold functior$:= (8;)aca On the arcs. In this setting, non-negative tolls- (ta)aca
can be imposed on the arcs that have to obey the bounds defirtbe kthreshold functions
(Ba)aca. In the most general setting, both tolls and threshold fonstare flow-dependent.
Given a feasible flowf, we define the combined cost that a player experiences bgrtiag
arcac Aas@a(fa) = a(fa) +ata(fa). We assume that every players’ goal is to choose aPpath
that minimizes the combined co&t(f) + atp(f), wheretp(f) := S ocpTa(fa). For notational
convenience, we assume thlats normalized to 1. This is without loss of generality be@us
we can always divide all toll functions ly.

The tollst = (1a)aca are called-restrictedif for every arca € A, 0 < 14(X) < 84(x) for all
flow valuesx > 0. We definer (8) as the set of alb-restricted tolls, i.e.,

7(0) :={(Ta)aca | Vac€ A : 0<1a(X) < Ba(X) ¥x > 0}.

Given®6-restricted tollst, let f' denote a Nash flow that is induced byi.e., f' is a Nash
flow with respect tap = ¢ + 1. The efficiencyof B-restricted tolls for a given instance of the



restricted network toll problem is defined as

min C(f)
ter (8) C(f*)’

)

That is, we relate the cost of the best Nash flithat is inducible byd-restricted tollst to
the cost of an optimal flow. Note that we account for the avetatency of the network here
rather than the total disutility (latency plus toll) of thiapers. The reason for that is that we are
interested in characterizing the effect of tolls on the perfance (measured in terms of average
latency) of the network.

Given the restriction® = (8a)aca 0On the arcsp-restricted tollst areoptimalif the Nash
flow fT induced byt satisfieC(f') < C(f") for all Nash flowsf' induced byB-restricted tolls
1. Similarly, 6-restricted tollst are A\-approximatefor someh > 1 if C(f?) < AC(fT) for all

Nash flowsf® induced byb-restricted tollst.

3 Computing optimal 6-restricted tolls

We first give a characterization of the flows that are indwctyf 6-restricted tolls for single-
commodity networks. This characterization will be the keyéerive an algorithm that computes
optimal6-restricted tolls for parallel-arc networks. All resultepented in this section hold for
flow-dependent threshold functiofis

3.1 Characterization of inducible flows for single-commodiy networks

We consider the problem of determining whether a given ffois inducible by6-restricted
tolls. We focus on the single-commodity case. As we will $leis,problem reduces to verifying
whether there is a negative cycle in a properly constructegiy

Suppose we are given a flofv Recall thatf is a Nash flow with respect tb6+ 1 iff for
every twos,t-pathsP,P’ € ¢ with fp > 0 it holds/p(f) +1p < fp/(f) + Tp. Said differently,
every flow-carrying path must be a shortest path with resjoettte combined cosp:= ¢+ .
Subsequently, lefy, Ta andB, refer tola(fa), Ta( fa) andBa(fa), respectively. (In the discussion
below, several definitions will depend on the fldwhowever, for notational convenience we
often do not state this dependence explicitly.)

We use the following alternative characterization of Nast§l (see, e.g., [15]). For every
vertexu € V, let &, be the length of a shortest path frao u with respect to? 4 1. Define
AT as the set of arcs with positive flow, i.& := {a€ A: f; > 0}. Thenf is a Nash flow
with respect tap= ¢+t if and only if (i) 8y < Oy + ¢a+ T4 for every arca= (u,v) € A, and (ii)
Oy = Oy + £a+ T, for every arca= (u,v) € A™.

We can thus express the get0) of 6-restricted tolls that induce as follows:

F(8) :={(Ta)aca | O —0u < la+Ta Va=(uv) € A\A"
O — 0y = la+T1q Va=(uv) € At 3)
o, free VYueV
0<1,<6; VacA}.

Note that thed,)ycv are unrestricted in this formulation. Alternatively, wautdhave required
thatds = 0 andd, > 0 for everyu € V. However, this is equivalent to the formulation (3) stated
above.



We define a grapts = G(f) = (V,A) with arc-costx : A — R as follows:G contains all
arcsa = (u,v) € A and, additionally, for every ara = (u,v) € A" the reversed artv,u). We
call the former type of arcforward arcsand the latter type of ardsackward arcsThe cost of
each forward ara = (u,v) € Ais equal toc, := /4 + 8. Every backward ara = (v,u) € A has
a cost equal to the negative of the latency of its reversedaw € A, i.e.,Ca 1= —{(y).

Given some subset of arcs and function&da)acx, we defineg(X) as a short fofy 4cx ga.

Theorem 1. Let f be an arbitrary feasible flow. Then f is induciblefByestricted tolls if and
only if G(f) does not contain a cycle of negative cost.

Proof. Supposes = é(f) contains a cycl€ C A of negative cost. Since only backward arcs
have negative cost, at least one backward arc is p&t BhrtitionC into the sef of forward
arcs and the se® of backward arcs, respectively. LBtdenote the set of reversed arcsBn
Note thatB C A*. We have

c(C)=c(F)+c(B)=4(F)+06(F)—¢(B) <0. (4)

Suppose for the sake of contradiction that (ta)aca € # () are feasible tolls that inducke
By the feasibility oft, we have for every forward a@ = (u,v) € F, & — &y < £yy) + T(uy)
and for every backward a= (u,v) € B, 8, — & = {(yy) + T(yu), OF equivalentlyd, — &, =
—Lyu) — T(vu)- Summing over all arcs i€, we obtain:

0= Z O —0y= Z oy —Oy+ Z Oy — Oy

(uv)eC (uv)eF (u,v)eB
< Y lwytTuy— Y fuw T
(uv)eF (uv)eB

< ((F)+6(F)—£(B) —1(B) < —1(B),

where the last inequality follows from (4). Thu@) < 0 which is a contradiction sincg > 0
for every arca € A.

Next suppose th&b does not contain a negative cycle. We can then determinétireest
path distancé, from sto every nodai € V in G with respect ta. (These distances are well-
defined becaus® does not contain a negative cycle.) Note that for everyaardqu,v) € Awe
haved, < &, + Cluy)- Based on these distances, we extract tolls (Ta)aca as follows: For
every ara = (u,v) € A, we define

Ta:= max{0,0, — &y — la}. (5)

We show that inducesf. By definition, we have for every aec= (u,v) € A: &y — Oy — Ta < a.
Consider an ara = (u,v) € A™. Thend, — &, < —¥¢4, or equivalentlyd, — &, — £5 > 0. Thus,
Oy — Oy — Ta = £a. Clearly, 15 > O for everya € A. Moreover, for every ara= (u,v) € Awe have
Oy — Oy < £3+ 65 and thusd, — 8, — £a < B5. We can infer that, < 6, for everya= (u,v) € A.
O

Note that the proof of the theorem also provides a way to exthe respective tolls if is
inducible byB-restricted tolls: Giverf, we compute the shortest path distadgavith respect
to c from sto u for everyu € V and define the tolt, for every arca = (u,v) € Aas in (5).

The following corollary is an immediate consequence of theva theorem and the fact
that negative cycles can be detected efficiently (e.g., &yB#dlman-Ford algorithm).

Corollary 1. Given a flow f, we can determine in polynomial time whetherihdsicible by
B-restricted tolls.



3.2 Computing optimal tolls in paralle-arc networks

In light of the above characterization, the problem of cotimgB-restricted tolls such that the
costC(fT) of the induced Nash floi’" is minimized is equivalent to the problem of computing
a minimum cost flowf such thatG(f) does not contain a negative cost cycle. Once we have
determinedf, we can extract the optim8lrestricted tollst as defined in (5). This equivalence
constitutes the basis of our algorithm to compute optimid to parallel-arc networks.

Let G = (V,A) be a parallel-arc network and Iétbe a feasible flow. The condition of
Theorem 1 then reduces to the following propeiftyis inducible by6-restricted tolls if and
only if

VaeA, fa>0: la(fa) < ly(fy)+04(fy) Va €A (6)

Note that these conditions are similar to the Nash flow cosmtin (1) (specialized to parallel-
arc networks) with the difference that we allow some addaislackdy () on the right-hand
side. Thus, our goal is to determine a minimum cost ffommong all flows that satisfy (6).

Corollary 2. The problem of computing optim&krestricted tolls for the parallel-arc re-
stricted network toll problem is equivalent to computing amimum cost flow f satisfying

(6).

Computing a minimum cost flow can be done efficiently by sajvanconvex program.
However, here we need to ensure (6) additionally and it is@imot clear how to encode these
constraints. Note that for Nash flows the corresponding itiomd are ensured by applying the
Karush-Kuhn-Tucker conditions to a convex program with pprapriately chosen objective
function. A similar approach does not work here because weaatadeliberately choose an
objective function and because of the asymmetry in (6) (duké slack).

Our approach exploits the following key insight. Fix somaimum cost flowf * satisfying
(6) and suppose we knew the minimum vakure min{¢5(0) + 68,(0) | a€ A, f; =0} among
all zero-flow arcs inf*. Letz= oo if all arcs have positive flow irf*. We can then compute an
minimum cost flowfZ = (f2)aca satisfying (6) as follows. From (6) we infer th&f = O for
every arca € Awith £5(0) > z LetA>= {ac€ A| ¢5(0) < z} be the remaining arcs. On the arcs
in A%, we compute a feasible flowfZ)acaz of minimum cost satisfyinga(f3) < z for every
ae A*and/y(fF) < ly(f7)+04(f7) for everya,a € A” The latter can be done by solving
the program:

C*=min Sacpe fila(f2)
St Saemfi=r
fZ2>0 Vae A* @)
la(f3) <z Vae A
Ca(f2) < Ly (f3)+64(f2) Vaa €A

The only remaining problem is that we do not kneviHowever, because there are at most
|A| + 1 different possibilities (including the cage= ), we can simply compute a flof# for
each possible valueand finally return the best flothat has been encountered. The complete
algorithm is summarized in Algorithm 1.

Theorem 2. Algorithm 1 computes a minimum cost flow f satisfyig)y

Proof. Let f = fZ be the flow returned by Algorithm 1. Clearly, is a feasible flow by
construction. We argue thdt satisfies (6). Consider sonmsec A*. Note thatfy = 0 for
every arca’ ¢ A and thusa € A% Because(fa)acaz is a feasible solution to (7), we have



Algorithm 1: Algorithm to compute minimum cost flow satisfying (6)

1 LetZ = {(4(0)+6a(0) | ac A}.

2 for every z= ZU {0} do

3 DefineA? := {a€ A| (a(0) < z}.

4 SetfZz =0 for everya ¢ A%

5 Let (fZ)acaz be an optimal solution of co§i to the program in (7).
(Remark:(f2)aea is undefined and €=  if (7) is infeasible.)

6 end

7 Returnf = 2 with C* minimum among alz € ZU {}.

la(fa) <2< 4(0) = £y (fy) for everya' ¢ AZ Moreover/fa(fa) < ly(fy)+6y(fy) for every
a € A% Thus,f satisfies (6).

Let f* be an optimal flow. We show th&(f) < C(f*). Definez as the minimum value
la(f3) +0a(f3) of a zero-flowar@ae A, i.e.,z=min{¢3(0) 4+ 0,(0) |ac A, f; =0}.Letz=o0
if all arcs have positive flow. Note th&f = 0 for everya ¢ A?and thusC(f*) = Y jcpz fala(f2).
Observe tha{ f;)acaz is a feasible solution for the program in (7) with respectztd@hus
C(f%) < C(f*). Becaus€(f) < C(f?), this concludes the proof. O

Finally, observe that the program in (7) is convex if all tatg and threshold functions are
affine, i.e., of the formgix+ qgo with q1,go > 0. In particular, the constraints of (7) are linear
and the objective function is convex quadratic in this casehe program can be solved exactly
in polynomial time [13].

Corollary 3. Algorithm 1 computes a minimum cost flow f satisfy{ign polynomial time if
all latency and threshold functions are affine.

Hoefer et al. [10] derived a similar result for the speciaethat, € {0,»} for every arc
acA

4 General efficiency ofo-restricted tolls

We provide bounds on the efficiency @frestricted tolls for multi-commodity networks with
polynomial latency functions of degrge Our approach is algorithmic: We show how to com-
puteb-restricted tolls for a given instance of the restrictedvoek toll problem that guarantee
the claimed efficiency bound. The results given in this sedtiold for dynamic threshold func-
tions.

Let £, be defined as the set of all polynomial functiansf the formg(x) = zgzoqud
with non-negative coefficientyy, d = 0,..., p. Moreover, letary refer to the set of all mono-
mial functions of the fornt,(x) = ggx? with non-negative coefficiemy. Suppose we are given
an arca € Awith /3 € £,. We can replaca by a sequence g+ 1 arcs with latency functions
in ap, ..., Mo, respectively, in the obvious way. We can therefore assuitiwut loss of gen-
erality that all latency function&s)aca Of the given instance are monomials. Subsequently, we
used(a) to refer to the degree of the (monomial) latency functignfa € A, i.e.,d(a) = d iff
la € My.

The basic idea is very simple. We define toll functidng)aca as follows:

Ta(X) = min{x- £3(x), 6a(x)}. 8)



That is, on each ara € A, we impose marginal cost tols /;(x) if this does not exceed the
thresholdB,(x) and otherwise charge the maximum possiblefg(k). Clearly, these tolls are
B-restricted. Note that these tolls are dynamic. We showeaéiid of the section how to derive
static tolls that achieve the same efficiency.

Let@:= (@,)aca be the combined cost, i.e., for everg A, @a(X) := £a(X) + Ta(X) for every
x>0, and letf = fT be a Nash flow with respect ta We next derive a bound on the ratio
C(f)/C(f*), wheref* is an optimal flow. We adapt th@, p)-smoothnesapproach [16] which
was previously used successfully to bound the price of &yast network routing games [2,
8] and in a more general context in [16].

Becausef is a Nash flow with respect tp, it satisfies the followingariational inequality
i.e., for every feasible flow

a;%(fa) fa < a;%( fa)a. 9)
By the definition ofp,
C(f) = aéﬁa( fa)fa < a;ea( fa)Xa+ Ta(fa) (Xa — fa)
< a;m(éa,)\)éa( fa) fa+ Mla(Xa)Xa, (10)

where we define

o (€a(fa) + Ta(fa) — Ma(Xa))%a — Ta(fa) fa
w(ﬂaj\) . ffzgo ga(fa) fa .

We assume by convention that®@= 0. Finally, letw(A) := sup,ca W(¢a,A). With this defini-
tion, (10) implies

C(f) < 0(N\)C(f) +AC(X). (11)

Becausan(A) depends o\, let A refer to the values of such thato(A) < 1. Then for every
A €N, (11) is equivalent to
C(f) SA1-w(A))'C(x). (12)

The goal is to find\ € A that provides the best upper bound.
Lemma 1. Letl, € My and define, ;= 1a(fa)/la(fa). We have

W(la,N) = (d(jj_— ia)) ((jj_— i‘;\) v —&a

l+eg, d d
> T .
v (555) (a53)

Proof. Definep := xa/ fa. Then

Moreover,w({a,\) < 1 for

W(la,\) = sup (Ca(fa) +Ta(fa) —Ma(pfa))ufa — Ta(fa) fa
fa,Xa>0 La( fa) fa

= sup(1— A )p— (1—pea
p>0



The last expression attains its maximum at

L[ 1tea 1/d
W=\t )

Substituting yields the claim. Note that the restrictioffa,A) < 1 implies that
d
A> l+e, d .
~—\d+1 d+1

We continue to study the values fax¢,;,A) andA. Observe that for every age A with
U4 € My there are two possibilities fa = Ta(fa)/la(fa): If Ta(fa) = fa- (5(fa) thenea =d;
otherwisefa(fa) = 0a(fa) < fa- £5(fa) and thusa = 8a(fa)/fa(fa) < d.

We thus obtain
1+¢, d d< 1+d d \¢
d+1 d+1 —\d+1 d+1/

Choosingh = 1 therefore satisfies the restrictions imposedian the above lemma (and is
tight for d = 0). Subsequently, we fix := 1.
We need to derive an upper bound®(’s, 1):

d(1+e¢ 1+g,\ Y
CN%JJ:( %+1d)(d+f) ~fa

O

Note thatw(¢a, 1) decreases as increases. This motivates the following definitions:

€q =min{ea |a€ A, la€ My}

and 11/
o (l+E\" —
w(d,l)_d<1+d) —&q (13)
With these definitions, we obtain
w(1l) = max w(d,1). (14)
d=0,...,p

Corollary 4. Supposegy = d. Thenw(d,1) = 0.

Observe that if we havey = d for everyd = 0, ..., p then the above corollary in combina-
tion with (12) implies thaC(f) < C(x) (which actually follows readily from the observation
that in this case marginal cost tolls &-eestricted and induce an optimal flow).

We obtain the following theorem.

Theorem 3. Given an instance of the restricted network toll problenmhvgiblynomial latency
functions of degree p, the efficiencybafestricted tolls as defined i(8) is no worse than

max | (1+&q) 1—i L) " h
d=0 .p d d+1\d+1
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Proof. The proof follows from (12) witth = 1 (A € A as argued above) and the definition of
(1) in (14). O

We give some interpretation of the above theorem. Our rasugjjests that it is more im-
portant to impose large tolls on arcs with high degree laténoctions than on the ones with
low degree functions. As an example, consider the follovarggeme situation: Suppose the
restrictions(8a)aca are such that we can impose marginal cost tolls on all are#\ with la-
tency functions of degree larger thgrand no tolls on all other arcs. The above bound then
proves that the tolls in (8) achieve an efficiency no worse tha price of anarchy for degrée

polynomials (see [17]), i.e.,
i 1\t -1
1- — (— .
< t+1 (t + 1) )

We next show that the bound in Theorem 3 is tight.

Theorem 4. For every p and every choice dfwith 0 < 6 < p there is a parallel-arc instance
of the restricted network toll problem with polynomial laty functions of degree p such that
the efficiency of the tolls defined(8) is equal to

p /(143 e\ \
(““”(‘ﬁ(m) ))

Proof. Consider a network consisting of two parallel aaca connectings andt. Suppose we
want to router = 1 units of flow fromsto t. Let the respective latency functions bgx) = 1
and/z(x) = xP. Define threshold functiorz(x) = 0 andBz(x) = &¢a(x). Let the tolls(Ta)aca
be defined as in (8). Note thgs = d.

Consider a Nash flovf = fT induced byr. If €, > pthenf is a Nash flow with respect to
marginal cost functions and thus an optimal flow. The claittoves.

Otherwisegp < p. Itis not hard to verify thafz = (gp + 1)*1/p andfy = 1— fz. The total
cost of f is

o) = 1 1+1/P+1 1 1/P71 gp 1 1/p
g+l gp+1 T gp+l\gp+l)

Consider an optimal flow*. We havefz = (p+1)~Y/P andf; = 1— f£. The total cost off*

is
1+1/p 1/p 1/p
c(f*)_<i) i1 <L> _1_L(L> .

p+1 p+1 p+1\p+1

Taking the ratidC(f)/C(f*) yields the claim. O

The next corollary characterizes the efficiencybatestricted tolls withB,(x) = €l,(x) for
every arca € A and a fixece > 0. Intuitively, such restrictions reflect the requireménstithe
toll on each arc does not exceedgfraction of the travel time along that arc.

Corollary 5. Given an instance of the restricted network toll problenhvaiblynomial latency
functions of degree p and threshold functions of the fBglx) = €/a(x), the efficiency 06-
restricted tolls as defined i(8) is no worse than if € > p and no worse than

p [1+e\YP -
(“*”(‘ﬁ(ﬁ) ))
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otherwise.

Proof. If € > pwe haveeg =d foreveryd =0, ..., pand thu<(f) < C(x). (This result actually
follows readily from the observation that in this case maagjicost tolls are-restricted and
induce an optimal flow.) Otherwise < p. Observe that fod < ¢, ¢4 = d and thusw(d,1) =0
by Corollary 4. Fore < d < p, g4 = €. Note thatw(d, 1) increases withd (for fixed g4 = €).

Thus, in this case
14g\H/P
w(l)=p(—— —E&.
w-p(1rs)
Substituting yields the claimed bound. O

This bound matches exactly tipeice of stabilityof e-Nash flows shown by Christodoulou,
Koutsoupias and Spirakis [3].

Computing static tolls: The tolls defined in (8) are dynamic. It is not hard to see, W&tan
also define static tolls achieving the same efficiency: Syrdgfine the dynamic tollsas in (8)
and compute a Nash flolv= f' with respect to the combined cost functiaps- ¢/ + 1. Note
that this can be done by solving the following convex program

Min 3 aca o2 @a(X)dx

St Ypey, fp =i Vi€ [K (15)
fa = Yic 2renace fP VAEA
fp>0 WP e o, Vi€ [K.

In order to being able to solve this program we need that eacttibnha(y) = [J @a(x)dx

is continuously differentiable and convex (see, e.g.,)i1This is the case becaugg(x) =
la(X) 4+ Ta(X) is continuous and non-decreasing. Otfideas been computed, we can extract the
respective static tolls inducinby definingty = 1a(fa) for every arca € A.

Computing approximatetolls: Observe that our results also yield an approach to confpute
restricted tolls that ark-approximate, wherg is the efficiency guarantee stated in Theorem 3:
Simply define the dynamic tolls as in (8) and compute a Nash floiv= T with respect to
the combined cost functiong= ¢+ 1 and the respective static toltsas described above. By
Theorem 3, the Nash flo#* induced byr satisfies

C(f7) < AC(f*) < AC(fY),
for every Nash flowf T induced byb-restricted tolls. Thus,T is A-approximate.

Corollary 6. There is an algorithm that computes in polynomial tikkepproximate6-
restricted tolls for the multi-commodity network toll pteln with monomial latency functions,
whereA is the efficiency guarantee stated in Theorem 3.
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