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Abstract. Consider video ad placement into commercial breaks in a
television channel. The ads arrive online over time and each has an
expiration date. The commercial breaks are typically of some uniform
duration; however, the video ads may have an arbitrary size. Each ad
has a private value and should be posted into some break at most once
by its expiration date. The player who own the ad gets her value if
her ad had been broadcasted by the ad’s expiration date (obviously, af-
ter ad’s arrival date), and zero value otherwise. Arranging the ads into
the commercial breaks while maximizing the players’ profit is a classical
problem of ad placement subject to the capacity constraint that should
be solved truthfully. However, we are interested not only in truthfulness
but also in a prompt mechanism where the payment is determined for
an agent at the very moment of the broadcast. The promptness of the
mechanism is a crucial requirement for our algorithm, since it allows a
payment process without any redundant relation between an auctioneer
and players. An inability to resolve this problem could even prevent the
application of such mechanisms in a real marketing process. We design
a 6-approximation prompt mechanism for the problem. Previously Cole
et al considered a special case where all ads have the same size which
is equal to the break duration. For this particular case they achieved a
2-approximation prompt mechanism. The general case of ads with ar-
bitrary size is considerably more involved and requires designing a new
algorithm, which we call the Gravity Algorithm.

1 Introduction

Advertising has long since been ubiquitous in the world of trade activities. Re-
cently, with online technologies participating in and transforming the economics
realm, the WEB space naturally becomes an ads space. Consequently, mecha-
nisms that help to arrange ads in physical and online space draw our attention.
Consider a display ad space with fixed capacity, which contains a new set of ads
every day. The ads arrive online over time, each one has parameters of size, value,
arrival and expiration date before which it should be posted. Each day ads of a
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fixed total size can be published. It is natural to assume that the size, arrival and
expiration date are fixed parameters of the ad and cannot be reported falsely.
Therefore we regard these parameters as public information. One may think for
example of a poster advertising a concert. It has a fixed physical size and the
date of the concert event determines the ad’s expiration date. The only private
information of an ad is its value. The ads are published for the entire day. The
player gets her value if her ad had been published by the ad’s expiration date
(obviously, after the ad’s arrival date), and zero value otherwise.

We are interested in a truthful (incentive compatible) mechanism. This is
an algorithm which gets an input from selfish players who try to maximize
their profit, and motivates them to report their private information truthfully.
This goal is usually achieved by means of manipulating the payments collected
from players depending on the algorithm’s outcome. Our mechanism belongs to
the single parameter problems domain, which is a well studied and understood
class of problems. The single parameter truthful mechanisms are equivalent to
monotone algorithms, which means that the winner would still win if she reports
a higher value (keeping other players’ values fixed). The mechanism charges every
winner a critical price that is determined by a threshold, below which the player
loses and above which wins. This critical price can be computed in polynomial
time.

A classical technique to achieve truthfulness involves using VCG. Unfortu-
nately, VCG often cannot be applied to online models, since it requires the
exact optimality which rarely can be achieved in an online fashion, even with
unbounded computational power. Moreover, even when exact optimality can be
achieved, the payment cannot be determined at the time of service, since it de-
pends on future events. This suggests the design of prompt mechanisms, meaning
that a player gets to know the price at the time of publication - unlike the stan-
dard online truthful algorithm where the critical price may be determined only
in the future.

This model is general and may have numerous and various applications. The
ad space may be a physical newspaper sheet with new ads being published on it
daily. Another example is a billboard that displays a set of ads on a fixed space
with changes every specific time period.

Also, the given space may be a virtual one, and applied to online marketing.
For example, Google TV deals with TV companies that offer ad slots, and ad-
vertisers that have ads to be published. Google puts together a schedule of ads
that fills a commercial break (ads may have different length, but the breaks are
typically of the same duration), and sends this schedule to a TV company, which
broadcasts it as it is.

It is also worthwhile to mention that our problem can model a buffer man-
agement or a broadcast problem. Specifically, we consider the classical model of
packets that need to be transmitted through an output port. Each player has
a packet with value, length, arrival and expiration date. Every time step pack-
ets with bounded total size can be transmitted. The switch has to decide which
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packets would be transmitted at each time step while maintaining the size con-
straint. The goal is to design a truthful algorithm which transmits packets with
(approximate) maximum total value.

Prompt mechanisms were introduced in [11]. As discussed there, several rea-
sons for determining the payment at the time of the service exist: first, a player
does not know how much money she has after winning until she leaves, and
hence cannot participate in another auction. Second, prompt mechanisms can
help to resolve some problems of the payment verification. There are two possi-
ble ways to ensure a payment and each of them is problematic in a distinct way:
for example, if a player pays long after she had won, she may try to get out of
the payment. Otherwise, a winner can be demanded to submit an empty check,
and the real amount will be deducted later, which requires a considerable trust
from the player. In prompt algorithms these situations are avoided, allowing a
player to know the price at the moment of her win. Although the concept of
prompt models is quite new in the mechanism design field, it has already drawn
an attention as can be seen in [11,4].

The model studied in [11] is close to the particular case of ours - specifically,
they also consider ads arriving over time. In contrast to our model they consid-
ered the special case where the size of each ad is 1, and each day a single ad is
published. They have presented a prompt mechanism which yields the approx-
imation ratio of 2 and shown that this is the best possible result for prompt
mechanisms. It is natural to ask how to design an algorithm that deals with ads
of general sizes. We note that the algorithm of [11] is tailored to the unit size
case, hence extending the algorithm to deal with ads of arbitrary sizes is by no
means obvious. In addition, the problem of ads with arbitrary size is consider-
ably more complicated than the unit size case, as we would need to deal with
integrality issues. Note that the 2 lower bound for the unit size case naturally
holds for ads of arbitrary size.

Our Results. We solve the general problem with ads of different sizes.

– Our main result is a truthful, prompt algorithm for online ad placement over
time problem, which attains a 6-approximation ratio to the social welfare.

– For relatively small ads (size ≤ ε) the approximation ratio is 2 + O(ε).

We also extend the scope of our study to a more general model, the restricted
assignment model, where each ad has a finite set of time periods at which it
could be posted. Taking TV ads for example, there are some ads that should
be published in mornings or at peak hours only (each time unit is a commercial
break). Every player wants her ad to be published during one of those time
periods, otherwise she gets zero value. Our algorithm can be easily generalized
and modified to answer this case, and attain a 6-approximation ratio (and 2 +
O(ε) ratio for small ads of size at most ε ).

Typically, the approximation ratio is calculated for an integral mechanism
versus an integral optimum solution. In our case, the achieved approximation
ratio also holds for an integral mechanism versus fractional optimum (mean-
ing optimal algorithm that can accept parts of the ads and gain partial profit
respectively).
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The algorithm treats ads with size > 1
2 and size ≤ 1

2 separately. The big
size ads are treated similarly to the uniform unit size case ( [11]). Our main
contribution is designing the Gravity Algorithm which focuses on the small ads.
It has a tentative schedule of small ads for each day, and always prefers ads
with higher density (i.e., the ratio of value to size) even if ad’s value is small.
The crucial detail of the algorithm is a choice of the time step which a newly
arriving ad would be assigned to. It is determined by comparing the densities in
the available time steps at a ”depth” which depends on the size of the new ad.

Related Works. In a generalized full information setting, the problem is
similar to the Multiple Knapsack problem. Multiple Knapsack is a well known
problem with a lot of peculiar variations and useful applications ( [13]). Its basis,
the Knapsack problem, is NPC hard, therefore only approximation algorithms
exist. For the Knapsack problem a FPTAS algorithm is available [16] while for
the Multiple Knapsack problem there is a PTAS algorithm [8,14]. Our model is
intimately related to online MKP with preemption. Designing a truthful model
for MKP problem has been considered: the authors of [7] have obtained an
approximation ratio of e

e−1 ≈ 1.582 in an offline fashion with bins of the same
capacity (this case was also studied by [3]). In an online fashion a 2 + ε approx-
imation ratio is achieved in [7]. Note that the latter model is very similar to
ours; however, our algorithm is prompt while their algorithm does not seem to
be extendable to satisfy the promptness requirement.

The special case of our model with uniform unit size ads received a lot of
attention in scheduling, packet management and multiple unit auctions frame-
works. Online, truthful auction with expiring items was studied by [7], who pre-
sented a truthful 2-competitive mechanism. Non-truthful online model of unit
jobs scheduling is more widely studied with more thorough results being ob-
tained: the best known deterministic online algorithm has 1.828 competitive
ratio [12,17], the lower bound for competitive ratio of deterministic online al-
gorithm is 2√

5+1
≈ 1.618 [2,10]. Giving the randomized setting, the best known

online algorithm yields a competitive ratio of e
e−1 ≈ 1.582 [9,5], and it is known

that no online algorithm can obtain a ratio better than 1.25 [10]. Note that in
offline settings this problem can be solved optimally. If the ads are not of size
1 but of any other uniform size 1

k then [9,5] obtain an approximation ratio of
(1 − ( k

k+1 )k)−1; with k → ∞ the ratio tends to e
e−1 ≈ 1.582. The lower bound

for this case is 1.17 [15].
The ad placement problem has already been widely studied in various fash-

ions, including online algorithms and truthful mechanisms, for example [6,1,18].
One of the closest works is [1], studying an online model of ad auctions as
a single knapsack problem, and designing a truthful mechanism that maxi-
mizes the revenue for this problem. However, most of those works have some
differences from ours model. In most of them, for example, there is a factor
of frequency (the number of times a single ad should appear), or some other
distinctions.
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2 The Model

Consider an ads display space of size 1 for a period of n days. Different ads of
total size of at most 1 can be published each day. There are players arriving
online, each has an ad to be published. An ad is represent by a tuple (s, v, a, e)
where s ∈ (0, 1] refers to its size, v ∈ R

+ - the players value, and a, e - are the
arrival and expiration time. A player wants her ad to be published once before
the expiration time. If so, the benefit v is gained; otherwise, the player gets no
benefit. The ad’s value is a private information of a player, while the rest of
the information is public. The algorithm should be incentive compatible. In a
single parameter environment it is well that it is equivalent to being a monotone
algorithm. Specifically, there is a threshold value above which the player wins
and below which she loses. Also, the algorithm has to be prompt, which means
the threshold value can be calculated at the very publishing moment. The goal
of the algorithm is to maximize the social welfare which is the total value of all
published ads.

The further structure of the paper: in the section 2.2 we describe the Gravity
algorithm. In the section 3 we prove its truthfulness and promptness. In the
section 4 a proof of the approximation ratio is supplied.

2.1 The Gravity Algorithm

Definition 1. Publishing window of an ad is the time period between its arrival
and expiration time.

Definition 2. Let density of an ad be d = v/s. When comparing two distinct
ads, we call an heavier ad to the one with the higher density.

The Gravity algorithm maintains a tentative ads schedule for each day. Whenever
it handles a new ad’s arrival event, it assigns it to one of those days. After the
assignment there is a test for the ad to enters to the day schedule. If it passes the
test it is incorporated into this schedule of that day, otherwise it is rejected. The
assignment of the ad to a day is final. Once an ad is assigned to some day either
it will be published at that day or it will be rejected. Our algorithm treats big
ads (ads of size s > 1/2) and small (ads of size s ≤ 1/2) separately. Hence, for
every day it maintains two alternative schedules: one with a single big ad, and
the other one of some small ads. At the daily publishing event only one of those
daily schedules is actually published. The algorithm deals with the tentative
daily schedule as if it is a physical bins (with fixed capacity 1). Whenever an ad
is assigned to some day t, we say that it is assigned to bin b, where b is binsmall or
binbig depending on the ad’s size. When a new big ad enters a bin, the previous
ad in that bin is rejected. For the small bins, the algorithm maintains the ad of
a daily schedule sorted by density. An heavier ad sinks deeper inside the bin and
the possibly empty space in the bin is at the top. Every ad in the bin defines
an interval in [0, 1] where it is located. When a new small ad enters the bin, the
algorithm inserts the ad to the sorted by density list. Note that the interval of the
lighter ads in the bin will shift upwards. Moreover, that at this moment the total
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size of the ads may exceed 1. Hence all ads above 1 are rejected. There can be at
most one ad whose open interval contains 1 and hence it fits the bin’s capacity
only partially. We call it a partial ad and it is also rejected. Yet, the algorithm
treats it as if it remained inside, while being ”cut” at 1. Its value is reduced
so that its density remains the same. Note that although the algorithm treats
a partial ad as if it is inside the bin, it does not participate in the publishing
event.

Definition 3. Define Dx
b to be the density at the depth x in the bin b which is

the density of the ad whose interval in [0,1] contains the point 1−x. If the depth
x is between two ads, then the it is the lighter density between the two.

Definition 4. For any bin b define Vb to be the sum of values of all ads in b.

Algorithm 1. Gravity Algorithm - contains two parts: Publishing event and
Ad arrival event.

Publishing Event: Day t publishing - let b be bin(t)
if

∑
p∈bsmall

v(p) ≥ v(bbig) then
ads in bsmall are published and ad in bbig is rejected

else
ad in bbig is published and ads in bsmall are rejected

end if

Ad Arrival Event: An ad p = (s, v, a, e) just arrived
if s ≤ 1/2 then

Let bsmall be the bin for which Ds
b is minimal in publishing window of p

if Ds
bsmall

< dp then p enters the bin bsmall

(ads in this bin are reordered, and some possibly rejected or become partial)
else p is rejected
end if

else
Let bbig be the bin for which Vb is minimal in publishing window of p
if Vbbig

< v then p enters the bin bbig and the current ad in bbig is rejected
else p is rejected
end if

end if

The following observation follows from the definition of the algorithm and the
usage of partial ad.

Observation 1. The density Dx
b for any bin b and 0 ≤ x ≤ 1 is non decreasing

function throughout the execution of the algorithm.

Our main result is the following theorem:

Theorem 2. The Gravity Algorithm is truthful, prompt and 6-competitive.

The theorem is proved in sections 3 and 4. In section 3 we show truthfulness and
promptness. In section 4 we analyze the approximation ratio.
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3 Truthfulness

In this section we prove the truthfulness and the promptness of the algorithm.

Lemma 1. The Gravity Algorithm is truthful (i.e. monotone).

Proof. We will prove that the algorithm is truthful by showing it is monotone.
Suppose that a player i with an ad p = (s, v, a, e) is published as a part of the
bin b. We have to show that if she reports v′ ≥ v then her ad is still published. If
s > 1/2, then the proof is identical to the one provided in [11] and it is omitted.

Next we focus on small ads, i.e. s ≤ 1/2. We prove by induction on all ads
arriving after p, that the state of all the bins remains exactly the same (albeit
the false value report) up to the ads’ order inside b. That means that the bin b
contains the same ads at the publishing event, and p is published again. Before
the arrival of p the flow of the algorithm is exactly as before. At its arrival p is
assigned to a certain bin independently of its value. As p would be accepted with
the original value, it will also be accepted with a new higher value and density.
Now we will consider one by one all further arriving ads and prove that the state
after each arrival stays the same as in the original case.

Let c = (sc, vc, ac, ec) be an arbitrary ad arriving after p. Note that the density at
depth sc in the bin b became larger after p’s value increased. One of the following
three cases holds:

– If originally c is assigned to other bin, it will be assigned there again, and
the algorithm takes care of c in the same way.

– If originally c is assigned to the bin b, and ad p is deeper inside the bin
than sc (i.e. the interval of p ends below 1 − sc), then we know that c does
not compete with p. In the untruthful case, since p is in the same place or
perhaps deeper, the algorithm acts in the same way as before.

– If originally c is assigned to the bin b and competes with p then there can
be 2 possibilities (notice that in original case p wins, which means that c is
rejected when arrived):
• Ad c is assigned to bin b again; then it will be rejected again.
• Ad c is assigned now to some other bin h: that means that

Dsc

b ≤ Dsc

h ≤ D′sc

b . We know that originally c was rejected, which means
dc ≤ Dsc

b , then dc ≤ Dsc

h thus c is rejected from bin h as in the original
case.

This flow works for all ads that arrive after p, and then p is still published with
the increased value. The algorithm is monotone, and consequently, truthful.

3.1 Promptness

Recall that the algorithm is monotone; hence, the critical price is well defined. It
is easy to see that every ad can be published only within the bin it was assigned
to. Moreover, the publishing of this ad does not depend on the ads that would
arrive after the publishing moment. This means that the critical price can be
calculated at the very publishing moment - which makes the algorithm prompt.
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4 Approximation Ratio

In this section we compute the approximation ratio. We do it separately for big
and small ads, and show that for small ads the ratio is 4, and for big ads it is 2.
Then we show how to combine the analysis and achieve the total approximation
ratio of 6 for the entire algorithm.

4.1 Big Ads Approximation Ratio

In this subsection we assume that all ads are big (i.e. of sizes larger than 1
2 ).

For the big ads the proof is identical to proof in [11], in which they prove that
Optbig ≤ 2 · Algbig. Here the proof is omitted.

4.2 Small Ads Approximation Ratio

Within this subsection we assume that all ads are small (i.e. of sizes smaller
than or equal to 1

2 ).

Theorem 3. Optsmall ≤ 4 · Algsmall.

Proof. We fractionally match every ad that was published in Opt to some bin.
Then for every bin we prove that the total value of all ads that were matched to
that bin is at most 4 times the total value of ads in the bin of Alg .By summing
by all ads of Opt and all bins of Alg we get a ratio of at most 4 between the
total social benefit and Alg.

Definition 5. Let O be the set of all ads that were published in Opt. Specifically
O = ∪i=n

i=1 Oi where Oi is the set of ads that were assigned to bin i in Alg.

Definition 6. Given o ∈ O, define Home(o) as the bin where o was published
in Opt.

Now we will describe the fractional matching. An ad o in Oi will be matched by
one (or sometimes two) of those rules:

Rule 1. If an ad o was rejected at arrival event then it is matched to the bin
Home(o).

Rule 2. If an ad o had entered to bin i but was preempted later, then it is
fractionally matched to the Home bins (in Opt) of the ads in O that entered
the bin after o’s preemption. Let Oi = (o1, o2, ...olast) be an ordered set,
ordered by arriving timer and assume o is r’th in the order so o = or. For
every k > r we define the paying function. Let ok ∈ Oi be an ad that was
in the bin i and arrived after the ad or had been preempted; ok will pay for
or a fractional part as described below. Note that some fraction of the ad or

may remain ”unpaid” for, and it is the rule 3 that will take care of it. Pay
is a recursive function defined as follows (it is defined only for k > r):

pay(or, ok) = Min(size(ok) −
r−1∑

l=1

pay(ol, ok), size(or) −
k−1∑

l=r+1

pay(or, ol)).
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Whenever we say that the ad ok pays for a part of the ad or, the meaning is
that the part of oi is viewed as a separate ad of size pay(or, ok) and matched
to Home(ok). Several ads can pay for or, so that the sum of parts they paid
for is up to the size of or. It may happen as well that one ad pays for several
ads but the sum of these ads or ads’ parts is always up to the paying ad’s
size. If no one pays for a part of some ad, this part would be matched by the
rule 3.

Rule 3. If an ad o were not preempted, then it is matched to bin i. In addition,
the parts of ads which were not matched in rule 2 will also be matched to
the bin i.

This way, every ad in O is matched via one (or more) of those matching rules to
a bin (or fractionally to several bins). For every bin and every matching rule we
will calculate the ratio between the values of the ads that were matched to this
bin and the values of the ads published in the bin in Alg. Then we calculate the
general ratio.

Definition 7. Given a set of ads (or parts of ads) A. Then let S(A) =
∑

p∈A sp

be their total size and V (A) =
∑

p∈A vp be their total value. Let Zj be the set
of ads published at bin j by the algorithm not including the partial ad and let
Vj = V (Zj).

It is enough to show that the total value of all ads that were matched to bin j,
does not exceed 4Vj . We show it by bounding the total value of all ads that were
matched to j by every one of the rules:

Rule 1
Let G1(j) be the set of all ads that were matched by the first rule: they
were published in Opt at bin j (since we have fixed j we omit the index and
denote it as G1). These ads were assigned to some bins in Alg and rejected
immediately at their arrival event. Let dmax be the maximal density of an
ad in G1. We can conclude that dmax is at least as the average density of the
set G1. Let an ad p = (s, v, a, e) ∈ G1 be a one for which v/s = dmax}. The
ad p was assigned to some bin h. Note that p could have been assigned to
bin j, and hence Ds

h ≤ Ds
j (when p arrives). By that and by the fact that p

was rejected when arrived, we derive that dmax ≤ Ds
h ≤ Ds

j . Since s ≤ 1/2,
then at the moment of p’s arrival the bin j was filled up to a half with ads of
density at least dmax. The observation before implies that the density at any
depth the bin is non-decreasing. Hence, at j’s publishing event the bin was
full up to half with ads of density at least dmax (this half does not contain
the partial ad, so we can use Vj). Hence

Vj ≥ 1/2 · dmax → dmax ≤ 2Vj → V (G1) ≤ 2 · S(G1) · Vj .

Rule 2
Let G2(j) be the set of all ads or ads’ parts that have been matched by
the second rule: they were paid by ads or ads’ parts that were published
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at bin j in Opt (since we have fixed j we omit the index and denote it as
G2). We call the set of those paying ads or ads’ parts G′

2. For example, if
an ad of size 1/2 has paid for two other ads, each being of the size 1/6,
then the paying ad is divided into two different ads of size 1/6 and the same
density; the rest 1/6 is ignored. For each p ∈ G2, define Payers(p) = {q ∈
G′

2|q paid on p}. Notice that sp = S(Payers(p)) and S(G2) = S(G′
2). By

the monotone density observation the density of any ad in Payers(p) is at
least dp. Let dmax be the maximal density in G2 and p = (s, v, a, e) ∈ G2 for
which v/s = dmax. Ad p was assigned to a bin h. Let q ∈ Payers(p) such
that q was assigned to the bin h. Note that q could have been assigned to
the bin j and hence at the moment q’s arrival D

sq

h ≤ D
sq

j . At this moment
p has been preempted already; this means dmax ≤ D

sp

h and sq ≤ sp which
implies that dmax ≤ D

sq

h ≤ D
sq

j ≤ D
1/2
j . We conclude that at the moment

of q’s arrival, the bin j is full up to half with ads of density at least dmax.
The density inside the bin is monotone non-decreasing over time and at j’s
publishing event the bin is filled up to a half with ads of a density at least
dmax (this half does not contain the partial ad, so we can use Vj). Hence

Vj ≥ 1/2 · dmax → dmax ≤ 2Vj → V (G2) ≤ 2 · S(G2) · Vj .

Rule 3
Let G3(j) be the set of all ads (or parts of ads) that are currently matched
by third rule: they had entered bin j and were either published or preempted
but were not paid for (since we have fixed j we omit the index and denote
it as G3). Unlike G1 and G2, we view G3 as evolving over the time.

Lemma 2. At any time S(G3) ≤ 1 where S(G3) is the sum of the sizes of
the ads in G3. The proof is omitted.

Now, as we know that S(G3) ≤ 1, we will bound V (G3). We divide G3 into 2
sets: Gin∪Gout = G3 , Gin are the ads that have been finally published (may
include the partial ad), and Gout are ads that have been preempted. Let Pj be
the set of ads published at bin j including (incuding) the partial ad. Note that
Pj is Zj union with the the partial ad in j. We also divide Pj (ads that were
published in Alg at bin j), into 2 groups Pj = P 1

j ∪P 2
j such that Gin = P 1

j and
P 2

j = Pj −P 1
j . Clearly V (Gin) = V (P 1

j ) and we will show V (Gout) ≤ V (P 2
j ).

If Gout is empty we are done. Else we know that S(Pj) = 1, because if an
ad was preempted from a bin, this bin will be always filled with ads and
a partial ad. By Lemma 2, S(Gout) ≤ 1 − S(Gin) = 1 − S(P 1

j ) = S(P 2
j ).

Let dmax be the maximal density of ads in Gout, dmax ≥ V (Gout)/S(Gout).
Observe that every ad in P 2

j has at least density dmax. We obtain that
V (Gout) ≤ dmax · S(Gout) ≤ dmax · S(P 2

j ) ≤ V (P 2
j ). We put it together and

conclude:

V (G3) = V (Gin) + V (Gout) ≤ V (P 1
j ) + V (P 2

j ) = V (Pj)
= V (Zj) + vpartial ad = Vj + vpartial ad
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It remains to handle is the partial ad that was viewed as a regular ad but
eventually does not get published. The size of the partial ad is less than half
and it has the least density in the bin. Hence vpartial ad ≤ Vj which implies
that V (G3) ≤ 2 · Vj .

Summary
Now we sum these 3 results together. For all j we have
1. V (G1(j)) ≤ 2S(G1(j)) · Vj

2. V (G2(j)) ≤ 2S(G2(j)) · Vj

3. V (G3(j)) ≤ 2Vj

Notice that G1(j) and G′
2(j) both were published in Opt in bin j, meaning

that their size together is up to 1, and as we already know S(G2(j)) =
S(G′

2(j)). Then we get,

V (G1(j)) + V (G2(j)) + V (G3(j)) ≤ 2(S(G1(j)) + S(G2(j)))Vj + 2Vj

≤ 2Vj + 2Vj = 4Vj .

Now we sum over all j to obtain:

V small
OPT =

n∑

j=1

V (G1(j)) + V (G2(j)) + V (G3(j)) ≤ 4
n∑

j=1

Vj = 4V small
ALG .

Proof of Theorem 2. The Gravity Algorithm is truthful by the Lemma 1, and
also prompt. We have calculated the approximation ratio separately for big and
small ads, and shown that for small ads the ratio is 4 in Theorem 3, and for
big ads it is 2 (the proof for big ads is the same as in [11]). This implies that
the total approximation ratio of the algorithm is 6 - details are omitted.

5 Concluding Remarks

We designed a prompt mechanism for ads with arbitrary sizes that are placed
over time. Our mechanism is truthful, prompt and achieves 6-approximation. It
would be interesting to know the best approximation for prompt mechanism as
the best lower bound is 2. Moreover, for ads of relatively small sizes the lower
bound does not hold and it may be possible to get an approximation better than
2 for prompt mechanisms.
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