WS 2011/2012

Problem Set 1

Due: Nov. 25

Note: Please send the solutions to hsun@mpi-inf.mpg.de or sauerwal@mpi-inf.mpg.de before the deadline.

Problem 1 Let G be any n-vertex graph and define

$$\alpha = \min_{S \colon |S| \le n/2} \frac{|\Gamma(S) \setminus S|}{|S|}.$$

Prove that for any subset $S \subseteq V$,

$$|\Gamma(S) \setminus S| \ge (\alpha/2) \cdot \min\{|S|, |V \setminus S|\}.$$

Problem 2 Let G = (V, E) be any undirected graph with Laplacian matrix **L** and $f : V \to \mathbb{R}$ be any function. Prove that

$$f^{\mathrm{T}}\mathbf{L}f = \sum_{\{u,v\}\in E} (f(u) - f(v))^2.$$

Problem 3 Let G be any graph and consider its Laplace Matrix **L**. Prove that the number of connected components of G is equal to the multiplicity of the eigenvalue 0.

Problem 4 For any integer $d \in \mathbb{N}$, consider the *d*-dimensional hypercube H = (V, E) defined as $V = \{0, 1\}^d$, $n = 2^d$ and $E := \{\{u, v\} : u, v \in V \land |u - v|_1 = 1\}$. Prove that for any bitstring $x \in \{0, 1\}^d$, the vector v(x) defined as

$$(v(x))_u = (-1)^{\langle u, x \rangle}$$

is an eigenvector of **A** whose eigenvalue equals the number of ones in x (note that in the above notation, we replace the coordinates 1, 2, ..., n for u of the vector v(x) by the corresponding bitstrings).