Problem Set 2

Due: Jan. 11, 2012

Note: Please send the solutions to hsun@mpi-inf.mpg.de or sauerwal@mpi-inf.mpg.de before the deadline.

Problem 1 Prove that the transition matrix M of a random walk on an undirected graph G is irreducible if and only if G is connected.

Problem 2 Let G=(V,E) be any undirected graph. Prove that the following three statements are equivalent:

- 1. The Markov chain corresponding to a random walk with transition matrix **M** is **periodic**,
- 2. -1 is an eigenvalue of \mathbf{M} ,
- 3. The graph G is bipartite.

Problem 3 Consider a random walk on a path with nodes 0, 1, ..., n. Prove that for any $0 \le i < k \le n$ that

$$\mathbf{H}(i,k) = k^2 - i^2.$$

Hint: First compute $\mathbf{H}(n-1,n)$ with the help of $\mathbf{H}(n,n)$ and then generalize it to $\mathbf{H}(i,k)$ for $i < k \le n$.

Problem 4 Let **P** be a transition matrix which is reversible w.r.t. π . Show that **P**² is also reversible w.r.t. π .