
Spectral Graph Theory and Applications WS 2011/2012

Lecture 8: Construction of Expanders

Lecturer: Thomas Sauerwald & He Sun

In this lecture we study the explicit constructions of expander graphs. Although we can
construct expanders probabilistically, this does not suffice for many applications.

• One applications of expander graphs is for reducing the randomness complexity of algo-
rithms (cmp. Lecture 6), thus constructing the graph itself randomly does not serve this
purpose.

• Sometimes we may even need expanders of exponential size. In this case, we cannot store
the whole description of the graph.

Hence we need a more explicit version of expanders. We call a family of expander graphs
explicitly constructible if the construction satisfies the following properties:

1. We can construct the whole graph in time poly(n), where n is the number of vertices in
a graph.

2. For any vertex v and integer i ∈ {1, · · · , d}, we can find the i-th neighbor of v in time
poly(log n, log d).

3. For any vertices v and u, we can determine if they are adjacent in time poly(log n).

Let G = (V,E) be a d-regular graph. For each vertex v ∈ V , we label the edges adjacent
to v and let v[i] be the i-th edge of v. Define a rotation map RotG : V × [d] → V × [d] by
RotG(u, i) = (v, j) where v is the i-th neighbor of u and u is the j-th neighbor of v.

Example: For the graph shown in Figure 1, we have Rot(a, 3) = (h, 1).
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Figure 1: Rotation Map
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1 Graph Powering

We know that if G is an (N, d, λ)-graph, then Gk, the k-th powering of the adjacency matrix
of G, represents an (N, dk, λk)-graph. From the rotation map’s perspective, if G is a d-regular
graph with rotation map RotG, then the k-th powering of G is a dk-regular graph whose rotation
map is given by RotGk(v0, (a1, · · · , ak)) = (vk, (bk, · · · , b1)), where the values b1, · · · , bk and vk
are computed via the rule (vi, bi) = RotG(vi−1, ai).

2 Replacement Product

For a D-regular graph G with N vertices and a d-regular graph H with D vertices, the replace-
ment product, denoted as G©r H, is a (d + 1)-regular graph with N ·D vertices. Each vertex
in G is replaced by a graph H, called a cloud. Moreover, RotG©r H((u, k), i) = ((v, `), j) if and
only if u = v and RotH(k, i) = (`, j), or i = j = d+ 1 and RotG(u, k) = (v, `).
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Figure 2: Replacement Product

Some comments:

• Replacement product depends on the arbitrary labels for the vertices and the edges.

• Replacement product reduces the (relative) vertex degree without losing the connectivity.

• For several problems in graph theory it can be shown that it suffices to solve them for
graphs obtained by the Replacement product.

3 Zig-Zag Product

Based on rotation maps, the zig-zag product is defined as follows.

Definition 8.1. [RVW00] Let G be a D-regular graph on [N ] with rotation map RotG and H be
a d-regular graph on [D] with rotation map RotH . Then their zig-zag product G©z H is defined
to be the d2-regular graph on [N ]× [D] whose rotation map RotG©z H is as follows:

1. Let (a′, i′) = RotH(a, i)

2. Let (w, b′) = RotG(v, a′)

3. Let (b, j′) = RotH(b′, j)

4. Output ((w, b), (j′, i′)) as the value of RotG©z H((v, a), (i, j)).

Example: Let G and H be two graphs shown in Figure 3. Then RotG©z H((C, z), (1, 2)) =
((F, z), (1, 2)).
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Figure 3: An example of the zig-zag product

u v

Figure 4: Intuition behind the zig-zag product

The intuition behind the zig-zag product is shown in Figure 4.
The zig-zag product corresponds to 3-step walks on the replacement product graph, where

the first and the last steps are along the inner-cloud edges and the middle step is along an
inter-cloud edge, and each vertex in the cloud corresponds to an edge starting from the vertex
which the cloud represents.

Theorem 8.2. Suppose that G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-expander.
Then G©z H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where f(λ1, λ2) ≤ λ1 + λ2 + λ22.

Proof. The number of vertices and degree of G©z H are obtained directly from the definition of
the zig-zag product and we only need to analyze the spectral expansion of G©z H. Let M be the
normalized adjacency matrix of G©z H. It suffices to show that for any α ⊥ 1N1d1 , α ∈ RN1d1 ,
it holds that

|〈Mα,α〉| ≤ f(λ1, λ2) · |〈α, α〉|.

Let α ∈ RN1d1 with the property that α ⊥ 1N1d1 . For any vertex v ∈ [N1], define αv ∈ Rd1
by (αv)k = αvk. Also, let C : RN1d1 → RN1 be a linear mapping such that (Cα)v =

∑d1
k=1 αvk.

Then we can express α as

α =
∑
v∈[N1]

ev ⊗ αv.
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Let αv = α
‖
v + α⊥v where α⊥v ⊥ 1d1 . Then

α =
∑
v

(
ev ⊗ α‖v

)
+
∑
v

(
ev ⊗ α⊥v

)
:= α‖ + α⊥.

That is, α‖ is uniform within any given cloud and can be expressed as

α‖ =
Cα⊗ 1d1

d1
.

Let A and B be the normalized adjacency matrices ofG andH, respectively. Let B̃ = IN1⊗B
and Ã be the permutation matrix corresponding to RotG, i. e. an N1d1 ×N1d1 matrix where

Ã(u,i)(v,j) =

{
1 if RotG(u, i) = RotG(v, j)

0 otherwise.

Then M = B̃ÃB̃. Since B̃ is real symmetric, we have

〈Mα,α〉 = 〈B̃ÃB̃α, α〉 = 〈ÃB̃α, B̃α〉.

On the other hand, we have B̃α = B̃(α‖ + α⊥) = α‖ + B̃α⊥. Thus

〈Mα,α〉 =
〈
Ã
(
α‖ + B̃α⊥

)
,
(
α‖ + B̃α⊥

)〉
= 〈Ãα‖, α‖〉+ 〈Ãα‖, B̃α⊥〉+ 〈ÃB̃α⊥, α‖〉+ 〈ÃB̃α⊥, B̃α⊥〉

and

|〈Mα,α〉| ≤
∣∣∣〈Ãα‖, α‖〉∣∣∣+ ‖Ãα‖‖ · ‖B̃α⊥‖+ ‖ÃB̃α⊥‖ · ‖α‖‖+ ‖ÃB̃α⊥‖ · ‖B̃α⊥‖

=
∣∣∣〈Ãα‖, α‖〉∣∣∣+ 2‖α‖‖ · ‖B̃α⊥‖+ ‖B̃α⊥‖2, (1)

where the last equality holds as Ã is a permutation and ‖Ãx‖ = ‖x‖ for any x ∈ NN1d1 .
Notice that

‖B̃α⊥‖2 =

∥∥∥∥∥B̃
(∑

v

ev ⊗ α⊥v

)∥∥∥∥∥
2

=

∥∥∥∥∥∑
v

ev ⊗Bα⊥v

∥∥∥∥∥
2

=
∑
v

∥∥∥Bα⊥v ∥∥∥2
≤
∑
v

λ22

∥∥∥α⊥v ∥∥∥2
≤ λ22

∥∥∥α⊥∥∥∥2 . (2)

So we only need to bound
∣∣∣〈Ãα‖, α‖〉∣∣∣.
〈
Ãα‖, α‖

〉
=
〈
Ãα‖, Cα⊗ 1d1

〉
/d1

=
〈
CÃα‖, Cα

〉
/d1

= 〈ACα,Cα〉 /d1
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and ∣∣∣〈Ãα‖, α‖〉∣∣∣ ≤ λ1〈Cα,Cα〉/d1
= λ1〈Cα⊗ 1d1 , Cα⊗ 1d1〉/d21
= λ1 · 〈α‖, α‖〉

= λ1

∥∥∥α‖∥∥∥2 . (3)

Combining equation (2) and equation (3), we have

|〈Mα,α〉| ≤ λ1
∥∥∥α‖∥∥∥2 + 2λ2

∥∥∥α‖∥∥∥ · ∥∥∥α⊥∥∥∥+ λ22

∥∥∥α⊥∥∥∥2 .
By taking p = ‖α‖‖

‖α‖ and q = ‖α⊥‖
‖α‖ , we have p2 + q2 = 1. Therefore

|〈Mα,α〉|
|〈α, α〉|

≤ λ1p2 + 2λ2pq + λ22q
2

≤ λ1 + λ2 + λ22,

which completes the proof.

Some comments on the zig-zag product.

• The edge labels in G©z H are just pairs of edges labeled in the small graph.

• By taking a product of a large graph with a small graph, the resulting graph inherits
(roughly) its size from the large one, its degree from the small one and its expansion
properties from both. This was the key to creating arbitrary large graphs with bounded
degree.

4 Construction of Expanders

In this section we use the zig-zag product to construct expander graphs.

Theorem 8.3. Let H be a (d4, d, λ0) graph for some λ0 ≤ 1/5. Define G1 = H2 and Gt+1 =
G2
t ©z H for t ≥ 1. Then for all t, Gt is a (d4t, d2, λ)-expander with λ ≤ 2/5.

Proof. We prove the theorem by induction. When t = 1, it is straightforward to see that G1

is a (d4, d2, λ20)-expander. Assume that Gt−1 is a (d4(t−1), d2, λ)-expander for λ ≤ 2/5. By
Definition 8.1, the number of vertices in Gt is d4t. So it suffices to show the spectral expansion
of Gt. By Theorem 8.2, the spectral expansion of Gt is

λ(Gt) ≤ λ(G2
t−1) + λ(H) + λ(H2)

=

(
2

5

)2

+
1

5
+

1

25

=
2

5
.

Remark. Since H is a graph of constant-size, we can find it in constant time by brute-force
search.

Generalization.
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