
Spectral Graph Theory and Applications WS 2011/2012

Lecture 9: Undirected Connectivity in Log-Space

Lecturer: Thomas Sauerwald & He Sun

We consider the undirected connectivity problem. Given an undirected graph G represented
by an adjacency matrix and two vertices u and v, the undirected connectivity problem is to decide
whether there is a path from u to v. Formally we define the language USTCON as follows.

Definition 9.1. USTCON is defined as a set of triples (G, s, t) where G = (V,E) is an undirected
graph, s, t are two vertices in G so that there is a path from t to t in G.

This problem has received a lot of attention in the past few decades and the complexity of
USTCON has been well studied. The first randomized log-space algorithm for USTCON was
shown in 1979 by Aleliunas, Karp, Lipton, Lovász and Rackoff. In 1970, Savitch demonstrated
a simulation of a non-deterministic space S machine by a deterministic space S2 machine. Thus
USTCON ∈ SPACE

(
log2 n

)
. Nisan, Szemerdi and Wigderson in 1989 showed that USTCON ∈

SPACE
(

log3/2 n
)
. Armoni, Ta-Shma, Wigderson and Zhou in 2000 proved that USTCON ∈

SPACE
(

log4/3 n
)
. In 2005, Reingold presented a log-space algorithm for solving USTCON. Since

USTCON is complete for the class SL of problems solvable by symmetric, non-deterministic,
log-space computation, this result implies SL = L.

It is easy to see that USTCON can be solved in linear-time using breadth-first or depth-first
search. Moreover, the theorem below shows that we can solve USTCON in O(log2 n) space.

Theorem 9.2. There is an algorithm deciding USTCON using O(log2 n) space.

Proof. We design the recursive procedure IsPath(G, u, v, k) which decides if there is a path
between u and v of length at most k. The algorithm description is as follows:

• If k = 0, accept if u = v;

• If k = 1, accept if u = v or (u, v) is an edge in G;

• Otherwise, loop through all vertices w of G and accept if both IsPath(G, u,w, dk/2e) and
IsPath(G, v,w, bk/2c) accept for some w.

Hence we can solve the USTCON problem by running IsPath(G, s, t, n). The algorithm uses log n
levels and O(log n) bits in every level to store the vertex w. Therefore the space complexity is
O(log2 n).

1 Algorithm

We first give the intuitions behind the algorithms. Two main insights are: (1) USTCON can
be solved in log-space on constant-degree graphs in which every connected-component is an
expander. Since every expander graph has logarithmic diameter, it is enough to enumerate all
logarithmical paths starting from s and to see if one of these paths visits t. (2) Any graph can
be reduced to constant-degree expanders in logarithmic space.

More precisely, the algorithm reduces the input G to an expander G` such that

• The size of G` does not increase too much, i. e. |V [G`]| = poly(|V [G]|).

1

Lecture 9: Undirected Connectivity in Log-Space 2

• G` is regular and the degree of G` is constant.

• For any two vertices u and v in G, u and v are connected if and only if the vertices in G`

that correspond to u and v are also connected.

• Each connected component of G` is an expander. (The spectral expansion is at most 1/2.)

Therefore for any two vertices u and v in G, u and v are connected if and only if there is a path
of length O (log |V [G`]|) = O(log |V [G]|) to connect the vertices in G` that correspond to u and
v.

In the preprocessing step, we would like to transform the input graph G into a D16-regular
graph G1 and transform s, t ∈ V [G] into vertices s1, t1 ∈ V [G1] such that s, t are connected
if and only if s1, t1 are connected in G1. Now let G1 be a D16-regular graph on [n] and H is
a
(
D16, D, 1/2

)
-graph. The existence of such graphs is proven by probabilistic methods and

for a constant D, we can find H by exhaustive search in constant time (since D is constant).
Moreover, we can express H by the rotation map in constant time.

Let ` be the smallest integer such that
(
1− 1

Dn2

)2` ≤ 1/2. The algorithm is as follows.

• For i=1 to ` = O(log |V [G0]|) do Gi+1 = (Gi©z H)8

• Check if s and t are connected in G` by enumerating over all paths of length O(log n)
originating at s.

Note that each Gi is a D16-regular graph over [n] ×
([
D16

])i
. Since D is constant and

` = O(log n), G` has poly(n) vertices.

2 Analysis

The working space of the algorithm depends on two things: The space for calculating Gi

iteratively and the space for deciding the connectivity between s and t in G`.
Now assume that the input graph G is connected and we prove that G` is an expander.

Lemma 9.3. Let G be a d-regular, connected, non-bipartite graph with n vertices. Then λ(G) ≤
1− 1/D · n2.

Theorem 9.4. If λ(H) ≤ 1/2, then 1− λ(G©z H) ≥ 1/3 · (1− λ(G)).

Theorem 9.5. For i = 2, · · · , `, we have λ(Gi) ≤ max
{
λ2(Gi−1), 1/2

}
.

Proof. Since Gi = (Gi−1©z H)8, by Theorem 9.4 we have

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
· (1− λ(Gi−1))

)8

.

We consider the following two cases.
(1) λ(Gi) ≤ 1/2. Then

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
·
(

1− 1

2

))8

≤
(

5

6

)8

≤ 1

2
.

(2) λ(Gi) > 1/2. Because for any x ∈ [1/2, 1] it holds that(
1− 1

3
· (1− x)

)4

≤ x,

we have

λ(Gi) = λ8(Gi−1©z H) ≤
(

1− 1

3
· (1− λ(Gi−1))

)8

≤ λ2(Gi−1).

Therefore for any i ∈ {2, . . . , `}, λ(Gi) ≤ max
{
λ2(Gi−1), 1/2

}
.

Lecture 9: Undirected Connectivity in Log-Space 3

Corollary 9.6. The spectral expansion of each connected component of G` is at most 1/2.

Proof. By Lemma 9.3 and Theorem 9.5.

Lemma 9.7. For every constant D, the transformation of Gi can be computed in space O(log n)
on inputs G and H, where G is a D16-regular graphs on [n] and H is a D-regular graph on[
D16

]
.

Note that we cannot generate the whole graph G` off-line because of the memory restriction.
Instead of that, we require the expander graphs constructed by the Zig-Zag product to be very
explicit. We will skip this in our course.

Theorem 9.8. USTCON ∈ L.

Since USTCON is complete of SL, an logarithmic-space algorithm for USTCON implies
SL = L. Given this result, the current view of log-space complexity classes is

L = SL ⊆ RL ⊆ NL ⊆ L2.

As mentioned in Reingold’s paper on SL = L, a very natural question is whether the technique
of proving SL = L can be used towards a proof of RL = L. So far, the best deterministic
simulation known for RL is DSPACE(log3/2 n), which is based on the pseudorandom generators
for log-space computation.

Appendix

Definition 9.9. The complexity class L consists of the language decidable within deterministic
logarithmic space.

Definition 9.10. SL is the class of problems solvable by a nondeterministic Turing machine
in logarithmic space, such that:

1. If the answer is ‘yes’, one or more computation paths accept.

2. If the answer is ‘no’, all paths reject.

3. If the machine can make a nondeterministic transition from configuration A to configura-
tion B, then it can also transition from B to A. (This is what ‘symmetric’ means.)

