
Errata to
Introduction to Algorithms and Data Structures
Markus Bläser February 2, 2012

Section 1.3, Definition 1.2 (p. 5) reported on
2011-11-30

3. Θ(f) = O(f) ∩ Ω(f) Ω(g),

Section 1.4.2, Lemma 1.10 (p. 8) reported on
2012-01-11

Let g1, . . . , g` : N→ N R≥0 be functions
such that . . .

Section 3.1.1 (p. 17) reported on
2012-01-25

The last layer might be shorter and is stored in
A[2h−1..heap-size]. Here h = log(heap-size) − 1 = blog2(heap-size)c is the
height of the tree, [. . .]

Section 3.1.3 (p. 19) reported on
2011-11-18

Now assume we have an array A[1..n] and we want to
convert it into a heap. We can use the procedure Heapify in a bottom-up man-
ner. Because the indices {bn/2c, . . . , n} are all leaves, the {bn/2 + 1c, . . . , n}
all represent leaves, each subtree with a root j ≥ bn/2c at j > bn/2c is a
heap. Then we apply Heapify and ensure the heap property in a layer by
layer fashion. The correctness of the approach can be easily proven by reverse
induction on i.

Section 4.2, Proof of Lemma 4.4 (p. 28) reported on
2011-11-23

Since m is the median of the
medians, d12(r − 1)e medians are larger and b12(r − 1)ce medians are smaller
than m.

Section 4.2, before Remark 4.6 (p. 29) reported on
2011-11-23

We can use Lemma 4.5 to solve
(4.1). We can bound 7

10n+2 from above by 11
15n for n > 60. Since 1

5 + 11
15 + 2

60 =
29
30 < 1, we get that t(n) ≤ c · n with c = 132 c = 102.

The parameter choices corresponding to equation (4.1) are

` = 2, ε1 = 1
5 , ε2 = 11

15 , d = 17
5 , N = 60, e = 8.

Thus, c = max{ d
1−(ε1+ε2+

`
N)
, e} = max{ 17/5

1−29/30 , 8} = 102.

Section 6.1 (p. 38) reported on
2011-12-12

If Key(r) = k v, then we are done.

2

Section 6.1, Algorithm 26 (p. 38)reported on
2011-12-12 & 2011-12-13

Algorithm 26 BST-search

Input: node x, key k
Output: a node y ∈ T (x) with Key(y) = k if such a y exists,

NULL otherwise
1: if x = NULL or k = Key(x) k = Key[x] then
2: return x
3: if k < Key(x) k < Key(y) then
4: return BST-search(Left(x), k)
5: else
6: return BST-search(Right(x), k)

Section 7.1, Proof of Lemma 7.2 (p. 45)reported on
2011-12-14

We show by induction on n h
that. . .

Section 7.2.2, before Observation 7.4 (p. 46–47)reported on
2011-12-14

. . . a virtual leaf is
replaced by an internal a virtual node. . .

Section 7.2.2, first table (p. 48)reported on
2011-12-14

before insertion after insertion after rotation
Bal(x) −1 −2 −1 0
Bal(y) 0 −1 0
Height(T1) h h h
Height(T2) h+ 1 h h+ 1 h h+ 1 h
Height(T3) h+ 1 h h+ 2 h+ 1 h+ 2 h+ 1
Height(T (x)) h+ 3 h+ 2 h+ 4 h+ 3 h+ 2 h+ 1
Height(T (y)) h+ 2 h+ 1 h+ 3 h+ 2 h+ 3 h+ 2

All numbers in rows 4–7 were decreased by exactly one.

Section 9.1 (p. 61)reported on
2011-12-01 & 2011-12-03

Of course, in the worst case, every bit has to be changed
to 0 is set to 1 and we have to flip all n ` bits (and get an overflow error).

Section 9.1.1 (p. 62)reported on
2011-12-06

Therefore, the total time is

t(n) =
n `− 1∑
i=0

b n
2i
c ≤ n ·

n `− 1∑
i=0

b 1

2i
c ≤ n

∞∑
i=0

1

2i
= 2n

and the amortized costs are [. . .]

3

Chapter 10, Theorem 10.1 (p. 71) reported on
2011-11-23

3. If f(n) = Ω(nlogb a+ε) for some ε > 0 and a f(dn/be) ≤ df(n) af(dn/be)
≤ df(n) for some constant d < 1 and all sufficiently large n, then
t(n) = O(f(n)).

Chapter 10, Exercise 10.1 (p. 71) reported on
2011-11-23

Let f : N→ N, f 6≡ 0. Show that if f
fulfills f(dn/be) ≤ df(n) af(dn/be) ≤ df(n) for some constant d < 1 and all
sufficiently large n, then f(n) = Ω(nlogb a+ε) for some ε > 0.

Chapter 10, Proof of Theorem 10.1 (p. 72) reported on
2011-11-23

We start with the first two
cases. Let e := logb a and γ := a/be. , respectively.

Section 11.1, before Exercise 11.1 (p. 74) reported on
2012-01-29

The chromatic number χ(G)
of a graph G is the smallest number k such that there is a proper k-coloring
of G.

Section 11.1, after Exercise 11.1 (p. 74) reported on
2012-01-29

[. . .] how can we decide whether
G has a proper k-coloring? First, we can try all proper k-colorings.

Chapter 12, after Exercise 12.1 (p. 80) reported on
2012-01-11

A cycle is a walk such that v0 = vk,
k > 0 (if G is directed) or k > 1 k > 2 (if G is undirected), . . .

Section 12.1 (p. 81 bottom) reported on
2012-01-11

With an adjacency-listmatrix-representation,
however, . . .

Section 12.2.2 (p. 85) reported on
2012-01-11

If we have an adjacency-matrixlist representation,
then the running time is O(|V |2).

Section 13.2, Proof of Theorem 13.2 (p. 90) reported on
2012-01-19

[. . .] It remains to prove
why this spanning tree is in fact minimal. Assume that e is not of minimal
weight, i.e. there exists an edge f with lower weight. Thus, f would have
been handled by the algorithm before e (line 5). Since S is a connected
component of ET it holds that ET ∪ {e} used to be acyclic for all previous
iterations of the algorithm. But then, f would have already been added to
ET , contradicting the fact that f is an edge of the cut of S.

Hence, no f with lower weight exists, so e is an edge of minimal weight
in the cut (S, V \ S), and by Theorem 13.1, the spanning tree augmented by
e is minimal.

4

Section 14.1, Algorithm 52 (p. 94)reported on
2012-02-12

Algorithm 52 Relax
Input: nodes u and v with (u, v) ∈ E
Output: d[v] and p[v] are updated

if d[v] > d[u] + w((u, v)) then
d[v] := d[u] + w((u, v))
p[v] := u

Section 14.2, after Algorithm 53 (p. 95)reported on
2012-02-12

If we implementQ by an ordinary
array, then the Insert and Decrease-min Decrease-key operations that take
time O(1) while Extract-min takes O(|V |). [. . .] If we implement Q with
binary binomial or binary heaps, then . . .

