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Section 1.3, Definition 1.2 (p. 5)
3. 0(f) = O(f) NQf) Ster,

Section 1.4.2, Lemma 1.10 (p. 8) Let g1,...,9¢ : N — N R=p be functions
such that ...

Section 3.1.1 (p. 17) The last layer might be shorter and is stored in
A[2"  heap-size]. Here h = log(heap-size) — 1 = |log,(heap-size)| is the
height of the tree, |...]|

Section 3.1.3 (p. 19) Now assume we have an array A[l..n] and we want to
convert it into a heap. We can use the procedure Heapify in a bottom-up man-
ner. Because the indices {2 ——rtare-atteaves—the {|n/2+1],...,n}
all represent leaves, each subtree with a root +=#+2+ at j > [n/2] is a
heap. Then we apply Heapify and ensure the heap property in a layer by
layer fashion. The correctness of the approach can be easily proven by reverse
induction on .

Section 4.2, Proof of Lemma 4.4 (p. 28) Since m is the median of the
medians, [(r — 1)] medians are larger and |4 (r — 1)|4 medians are smaller
than m.

Section 4.2, before Remark 4.6 (p. 29) We can use Lemma 4 5 to solve
( 1). We can bound ;5n+2 from above by 11 1z for n > 60. Since & + 5 12 60
2 <1, we get that t(n) < c-n Wlthe—I%Q c=102.

The parameter choices corresponding to equation (4.1) are
(=2, e=1%, e=1 d=%Y N=60, e=8.

157

Thus, ¢ = max{ = max{%, 8} = 102.

d
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Section 6.1 (p. 38) If Key(r) = k +, then we are done.
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Section 6.1, Algorithm 26 (p. 38)

Algorithm 26 BST-search

Input: node x, key k

Output: a node y € T'(z) with Key(y) = k if such a y exists,
NULL otherwise

if x = NULL or k = Key(z) #=-1<eyfz} then

return x

if k < Key(z) #—~<Jes{#} then
return BST-search(Left(x), k)

else
return BST-search(Right(z), k)

Section 7.1, Proof of Lemma 7.2 (p. 45) We show by induction on # h
that. ..

Section 7.2.2, before Observation 7.4 (p. 46—47) ...a virtual leaf is
replaced by an internal a—w#tad node. ..

Section 7.2.2, first table (p. 48)

before insertion after insertion after rotation
Bal(z) —1 —2 —30
Bal(y) 0 -1 0
Height(77) h h h
Height(T3) h——+ h A+ I A+ h
Height(73) h——+ I A2 h+ 1 A+2 h+1
Height(T'(z)) 3 h + 2 A—+4 h+ 3 A4+2h+1
Height(T'(y)) A2 h+1 A3 h + 2 A3 h + 2

All numbers in rows 4—7 were decreased by exactly one.

Section 9.1 (p. 61) Of course, in the worst case, every bit has to be changed
to 0 is-set—+e—+ and we have to flip all # ¢ bits (and get an overflow error).

Section 9.1.1 (p. 62) Therefore, the total time is

wl—1 wl—1 00
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=0

and the amortized costs are |...|



Chapter 10, Theorem 10.1 (p. 71)

3. If f(n) = Q(n'°8 37€) for some € > 0 and a{FrtbH—<-df-n} af([n/b])
< df(n) for some constant d < 1 and all sufficiently large n, then

t(n) = O(f(n)).

Chapter 10, Exercise 10.1 (p. 71) Let f: N — N, f £ 0. Show that if f
fulfills HFrto—<-dfmr af([n/b]) < df(n) for some constant d < 1 and all

sufficiently large n, then f(n) = Q(n!°8 3¢ for some ¢ > 0.

Chapter 10, Proof of Theorem 10.1 (p. 72) We start with the first two
cases. Let e :=logy, a and v := a/b°. rrespeetively-

Section 11.1, before Exercise 11.1 (p. 74) The chromatic number x(G)
of a graph G is the smallest number & such that there is a proper k-coloring
of G.

Section 11.1, after Exercise 11.1 (p. 74) |[...]| how can we decide whether
G has a proper k-coloring? First, we can try all preper k-colorings.

Chapter 12, after Exercise 12.1 (p. 80) A cycle is a walk such that vy = vy,
k>0 (if G is directed) or #=>—+ k > 2 (if G is undirected), ...

Section 12.1 (p. 81 bottom) With an adjacency-listmetsie-representation,
however, ...

Section 12.2.2 (p. 85) If we have an adjacency-matrixtst representation,
then the running time is O(|V|?).

Section 13.2, Proof of Theorem 13.2 (p. 90) |[...| It remains to prove
why this spanning tree is in fact minimal. Assume that e is not of minimal
weight, i.e. there exists an edge f with lower weight. Thus, f would have
been handled by the algorithm before e (line 5). Since S is a connected
component of Ep it holds that Ep U {e} used to be acyclic for all previous
iterations of the algorithm. But then, f would have already been added to
Er, contradicting the fact that f is an edge of the cut of S.

Hence, no f with lower weight exists, so e is an edge of minimal weight
in the cut (S,V '\ S), and by Theorem 13.1, the spanning tree augmented by
e is minimal.
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Section 14.1, Algorithm 52 (p. 94)

Algorithm 52 Relax
Input: nodes u and v with (u,v) € F
Output: d[v] and p[v] are updated
if d[v] > d[u] + w((u,v)) then
dv] := dlu] + w((u,v))
p[] = u

Section 14.2, after Algorithm 53 (p. 95) If we implement ) by an ordinary
array, then the Insert and Peerease—min Decrease-key operations that take
time O(1) while Extract-min takes O(|V]). [...]| If we implement @ with
birery binomial or binary heaps, then ...



