Errata to
Introduction to Algorithms and Data Structures
Markus Bläser February 2, 2012

Section 1.3, Definition 1.2 (p. 5) 3. $\Theta(f) = O(f) \cap \Omega(f) \Omega(g)$.

Section 1.4.2, Lemma 1.10 (p. 8) Let $g_1, \ldots, g_\ell : \mathbb{N} \rightarrow \mathbb{N}$ be functions such that ... reported on 2012-01-11

Section 3.1.1 (p. 17) The last layer might be shorter and is stored in $A[2^{h-1}..\text{heap-size}]$. Here $h = \log(\text{heap-size}) - 1 = \lfloor \log_2(\text{heap-size}) \rfloor$ is the height of the tree, [...]. reported on 2012-01-25

Section 3.1.3 (p. 19) Now assume we have an array $A[1..n]$ and we want to convert it into a heap. We can use the procedure Heapify in a bottom-up manner. Because the indices $[\lfloor n/2 \rfloor, \ldots, n]$ are all leaves, the $[\lfloor n/2 + 1 \rfloor, \ldots, n]$ all represent leaves, each subtree with a root $j > \lfloor n/2 \rfloor$ at $j > \lfloor n/2 \rfloor$ is a heap. Then we apply Heapify and ensure the heap property in a layer by layer fashion. The correctness of the approach can be easily proven by reverse induction on i. reported on 2011-11-18

Section 4.2, Proof of Lemma 4.4 (p. 28) Since m is the median of the medians, $\lceil \frac{1}{2}(r-1) \rceil$ medians are larger and $\lceil \frac{1}{2}(r-1) \rceil$ medians are smaller than m. reported on 2011-11-23

Section 4.2, before Remark 4.6 (p. 29) We can use Lemma 4.5 to solve (4.1). We can bound $\frac{1}{15}n + 2$ from above by $\frac{11}{15}n$ for $n > 60$. Since $\frac{1}{5} + \frac{11}{15} + \frac{2}{60} = \frac{29}{30} < 1$, we get that $t(n) \leq c \cdot n$ with $c = \max\{d - (\epsilon_1 + \epsilon_2 + + \frac{\ell}{n}), e\} = \max\{\frac{17}{15}, 8\} = 102$.

The parameter choices corresponding to equation (4.1) are

- $\ell = 2$, $\epsilon_1 = \frac{1}{5}$, $\epsilon_2 = \frac{11}{15}$, $d = \frac{17}{5}$, $N = 60$, $e = 8$.

Thus, $c = \max\{\frac{d}{1 - (\epsilon_1 + \epsilon_2 + + \frac{\ell}{n})}, e\} = \max\{\frac{17/5}{1-29/30}, 8\} = 102$.

Section 6.1 (p. 38) If $\text{Key}(r) = k^+$, then we are done. reported on 2011-12-12
Algorithm 26 BST-search

Input: node \(x \), key \(k \)

Output: a node \(y \in T(x) \) with \(\text{Key}(y) = k \) if such a \(y \) exists, NULL otherwise

1: if \(x = \text{NULL} \) or \(k = \text{Key}(x) \) then
2: \(k = \text{Key}(x) \)
3: if \(k < \text{Key}(x) \) then
4: return BST-search(Left(\(x \)), \(k \))
5: else
6: return BST-search(Right(\(x \)), \(k \))

Section 7.1, Proof of Lemma 7.2 (p. 45) We show by induction on \(h \) that...

Section 7.2.2, before Observation 7.4 (p. 46–47) ...a virtual leaf is replaced by an internal node...

Section 7.2.2, first table (p. 48)

<table>
<thead>
<tr>
<th></th>
<th>before insertion</th>
<th>after insertion</th>
<th>after rotation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Bal}(x))</td>
<td>(-1)</td>
<td>(-2)</td>
<td>(-0)</td>
</tr>
<tr>
<td>(\text{Bal}(y))</td>
<td>(0)</td>
<td>(-1)</td>
<td>(0)</td>
</tr>
<tr>
<td>(\text{Height}(T_1))</td>
<td>(h)</td>
<td>(h)</td>
<td>(h)</td>
</tr>
<tr>
<td>(\text{Height}(T_2))</td>
<td>(h+1)</td>
<td>(h)</td>
<td>(h)</td>
</tr>
<tr>
<td>(\text{Height}(T_3))</td>
<td>(h+2)</td>
<td>(h+1)</td>
<td>(h+1)</td>
</tr>
<tr>
<td>(\text{Height}(T(x)))</td>
<td>(h+2)</td>
<td>(h+1)</td>
<td>(h+1)</td>
</tr>
<tr>
<td>(\text{Height}(T(y)))</td>
<td>(h+3)</td>
<td>(h+2)</td>
<td>(h+2)</td>
</tr>
</tbody>
</table>

All numbers in rows 4–7 were decreased by exactly one.

Section 9.1 (p. 61) Of course, in the worst case, every bit has to be changed to \(0 \) and we have to flip all \(\ell \) bits (and get an overflow error).

Section 9.1.1 (p. 62) Therefore, the total time is

\[
t(n) = \sum_{i=0}^{\ell-1} \left\lfloor \frac{n}{2^i} \right\rfloor \leq n \cdot \sum_{i=0}^{\ell-1} \frac{1}{2^i} \leq n \cdot \sum_{i=0}^{\infty} \frac{1}{2^i} = 2n
\]
Chapter 10, Theorem 10.1 (p. 71)

3. If \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some \(\epsilon > 0 \) and \(a f([n/b]) \leq df(n) \) \(a f([n/b]) \leq df(n) \) for some constant \(d < 1 \) and all sufficiently large \(n \), then \(t(n) = O(f(n)) \).

Chapter 10, Exercise 10.1 (p. 71) Let \(f : \mathbb{N} \rightarrow \mathbb{N}, f \neq 0 \). Show that if \(f \) fulfills \(f([n/b]) \leq df(n) \) \(a f([n/b]) \leq df(n) \) for some constant \(d < 1 \) and all sufficiently large \(n \), then \(f(n) = \Omega(n^{\log_b a + \epsilon}) \) for some \(\epsilon > 0 \).

Chapter 10, Proof of Theorem 10.1 (p. 72) We start with the first two cases. Let \(e := \log_b a \) and \(\gamma := a/b^e \), respectively.

Section 11.1, before Exercise 11.1 (p. 74) The chromatic number \(\chi(G) \) of a graph \(G \) is the smallest number \(k \) such that there is a proper \(k \)-coloring of \(G \).

Section 11.1, after Exercise 11.1 (p. 74) \(\ldots \) how can we decide whether \(G \) has a proper \(k \)-coloring? First, we can try all proper \(k \)-colorings.

Chapter 12, after Exercise 12.1 (p. 80) A cycle is a walk such that \(v_0 = v_k \), \(k > 0 \) (if \(G \) is directed) or \(\rightarrow_k \), \(k > 2 \) (if \(G \) is undirected), \(\ldots \)

Section 12.1 (p. 81 bottom) With an adjacency-list matrix-representation, however, \(\ldots \)

Section 12.2.2 (p. 85) If we have an adjacency-matrix representation, then the running time is \(O(|V|^2) \).

Section 13.2, Proof of Theorem 13.2 (p. 90) \(\ldots \) It remains to prove why this spanning tree is in fact minimal. Assume that \(e \) is not of minimal weight, i.e. there exists an edge \(f \) with lower weight. Thus, \(f \) would have been handled by the algorithm before \(e \) (line 5). Since \(S \) is a connected component of \(E_T \) it holds that \(E_T \cup \{e\} \) used to be acyclic for all previous iterations of the algorithm. But then, \(f \) would have already been added to \(E_T \), contradicting the fact that \(f \) is an edge of the cut of \(S \).

Hence, no \(f \) with lower weight exists, so \(e \) is an edge of minimal weight in the cut \((S,V \setminus S)\), and by Theorem 13.1, the spanning tree augmented by \(e \) is minimal.
Section 14.1, Algorithm 52 (p. 94)

Algorithm 52 Relax

Input: nodes u and v with \((u, v) \in E\)

Output: \(d[v]\) and \(p[v]\) are updated

\[
\text{if } d[v] > d[u] + w((u, v)) \text{ then} \\
\quad d[v] := d[u] + w((u, v)) \\
\quad p[v] := u
\]

Section 14.2, after Algorithm 53 (p. 95)
If we implement \(Q\) by an ordinary array, then the Insert and Decrease-min Decrease-key operations that take time \(O(1)\) while Extract-min takes \(O(|V|)\). [...] If we implement \(Q\) with binary binomial or binary heaps, then ...