
  

Performance Paradigma

How to avoid multi-threading performance breaks, in 
general and particularly in Java

How to help the JVM understanding your goal

How to get pointers in the JVM, bypass security 
handlers and use low-level commands

(how to invite the „there be dragons“ from C)
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Synchronization / Locks
● Avoid critical sections as much as possible
● Prefer hardware locks over system locks
● Prefer system locks over software locks
● Design your code to support arbitrary 

asynchronous scheduling
● Prefer parametrized algorithms in an early 

development stage to (quickly / automatically)   
test scaling
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Execution Flow Analysis
● Simulate how your program should run and how it 

will run in best/worst case
● Try to optimize the program to fit your expected 

design: parallelism, dependency
● Avoid wait&hold, prefer dedicate&sleep pattern (my 

kids will wake me when done)
● The hardware offers extremely fast units, use them 

(Branch prediction, Pre Caching, Local Allocation,...)
● If you can't access the devices manually, play into 

their hands³
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Java & the JVM
● Avoid calling functions within loops
● Declare as much fields/methods private as you can
● Avoid static, it forces non-local storage access¹
● Inline your code as much as you can, linearise it if 

possible
● Prefer passing deep copies to sharing a variable
● Primitives are faster than wrappers or classes
● Make use of the CAS-ISA (Compare&Swap-

Instructions)
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Java & the JVM
● Use Java7, use its documentation, use Eclipse Juno, 

code in 64bit
● Fork&Join framework for functional recursion or work 

stealing pattern, since its threads are „lightweight“
● „java.util.concurrent.atomic“ - for shared variables
● ¹ThreadLocals , TLRandom, make use of thread local 

allocation²
● Stay away from „Services“ and high level constructs, 

they are fine for academic and general purposes but 
they are slow and don't work as you think they do
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Java & the JVM
● The JVM offers command line options that are, by 

default, balanced between safety and performance
– -XX:+UseStringCache

– -XX:+UseCompressedStrings

– -XX:+OptimizeStringConcat

– …

– ²-XX:PreBlockSpin=10

– ²-XX:+UseSpinning

–  -XX:+RelaxAccessControlCheck

– ²-XX:+UseTLAB

– ²-XX:AllocatePrefetchStyle=2

–  -XX:+UseSplitVerifier

–  -XX:+UseThreadPriorities

– ²-XX:+UseBiasedLocking

–  -XX:+UseFastAccessorMethods

The dragons …

better switch to C/C++ if 
you really want to do this ;)

I am a link
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