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Abstract

In this summary, we give the short proof about Kuratowski’s theorem
which states the theorem of planar graph existing conditions. A planar
graph excludes some forbidden structures as the subdivision ofK5 orK3,3.
We prove Kuratowski’s Theorem based on 3-connected graph case firstly,
then the proof is extended to general graph. Furthermore, we introduce
the concept and relation about combinatorial duals and geometric dual.
Finally Whitney’ duality for the 2-connected multi-graph which illustrates
the connection between planar embedding and duality has been given with
short proof.

1 Planar Graph
we explain our proof on basis of the multi-graph, which allows distinct edges to
have the same pair of end-vertices in a general graph. In this case, such edges
may be parallel and form multiple edges. Hereinafter, when we use graph which
also could be meaning of multi-graph, we don’t distinguish them very precisely
below. The minimum cut of a graph is a set of edges E of a graph G and G−E
will disconnect two non-empty disjoint sets of vertices, meanwhile you cannot
find another set of edges with less cardinality to do this.

Simply, a graph is planar graph if it can be drawn on the plane in such a
way that no edges intersect. Any cycle in the graph that surrounds a region
without any edges reaching from the cycle into the region forms a face. In a
planar graph, there always exists an external or unbounded face as the outer
face. Euler’s formula states that if a finite, connected, planar graph must have
v − e + f = 2, here v is the number of vertices, e is the number of edges and
f is the number of faces. However, a more elegant characterization of planar
graphs in terms of forbidden graphs was provided by the Polish mathematician
Kazimierz Kuratowski, now known as Kuratowski’s theorem. The complete
graph K5 Figure 3.1 and the bipartite graph K3,3 Figure 3.2 are these forbidden
graphs for planar graphs. A subdivision of a graph G is a graph resulting from
an addition of a new vertex between two vertices and the replacement of the
edge with two new edges.
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2 Kuratowski’s Theorem
After introducing above concepts, now we come to our theorem and proof part.

Theorem 1 (Kuratowski’s theorem). A graph is planar if and only if it does
not contain a subdivision of K5 or a subdivision of K3,3 as a subgraph.

Lemma 1. Every 3-connected graph of order at least five contains an edge e
such that the graph G//e is 3-connected graph.

The forbidden subgraphs K5 and K3,3 are called Kuratowski’s graphs. It is
easy to find that K3,3 and K5 are nonplanar, and also their subdivisions cannot
be represented in the plane. Due to this fact, the “easy part” of Kuratowski’s
theorem has been proved. Now we focus on the proof of converse part. We
have to derive some new results about planar graphs in order to proceed in
our proof. A graph G is straight line embedded if each edge is a straight line
segment. If each bounded face of a straight embedded graph is convex, and the
unbounded face is a complement of a convex set, then the embedding of G is
said to be convex. We will prove Kuratowski’s theorem for 3-connected graphs,
which states a 3-connected graph can have a convex embedding in the plane
then it is a planar embedding. The proof will be given in induction way, and we
increase the number of vertices by induction. we have to use Lemma 1 in our
proof, which requests a operation G//e . Here G/e is the graph obtained from
G by edge-contracted on edge e, then G//e is a graph generated from edge-
contracted graph G/e by replacing all multiple edges by single edges joining the
same pairs of vertices.

Lemma 2. If G is a 3-connected graph with no subdivision of K3,3 and K5 as
a subgraph, then G has a convex embedding in the plane.

Proof. Our proof is given by induction on n = |V (G)|. It is trivial to verify
the cases when n = 4 and 5. We continue our induction step by assuming that
n ≥ 6.

Since it is a 3-connected graph, by our Lemma 1, graph G must contain
e = xy such that G′ = G//e is 3-connected. Let z be the vertex in G′ obtained
by identifying x and y, see example in Figure 3.3. If G′ contains a subdivision
of forbidden graphs, then such a forbidden graph must be observed in G as
well. Accordingly, we can assume G′ is a convex embedded plane graph. As
G′ is 3-connected, then G′ − z is 2-connected graph. Thus, G′ − z containing
the vertex z is bounded by a cycle C of G′, and this cycle also can be found
in graph G as Figure 3.4. The neighbors of x , x1, . . . , x2 occurring on C are
in the cyclic order. Pi is the path of C joining xi and xi+1, no any other xj

intersects them for example in Figure 3.7. If the neighbors of y only belong to
a single path Pi then the graph G has a convex embedding referring to Figure
3.5 3.6. On the other hand, if this is not the case, then either the neighbors of
y span more than one path in which case C together with x and y determines
a subdivision of K5 in Figure 3.8, or else the neighbors of y alternate with the
neighbors of x on cycle C. In the later case, C together with x and y determine
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a subdivision of K3,3 in Figure 3.9. So the other hand contradict with our
assumption. Thus we always can have a convex embedding for a 3-connected
graph without subdivision of K5 or K3,3. This completes our proof.

After proving Lemma 2, we are going to extend our proof from 3-connected
graphs to general graphs. Lemma 3 gives the concept of maximal planar. Sup-
pose given any general graph G without containing subdivision K5 or K3,3. We
continue connecting the non-adjacent vertices by adding new edges in G. After
adding some new edges, the new graph G1 without containing subdivision K5

or K3,3 is generated but any one more new edge addition in G1 will obtain a for-
bidden subgraphs. Now our G1 is maximal planar graph, which is 3-connected
graph according to Lemma 3. Certainly by Lemma 2, this 3-connected graph G1

must have a convex embedding in the plane. Furthermore deleting all these new
adding edges will not change the convex embedding in the plane. Consequently,
the general graph G have the convex embedding in that plane, which completes
the proof for general graph.

Lemma 3. If a graph G of order >= 4 contains no subdivision of K5 or K3,3

and the addition of any out of every the possible edges makes the graph non
planar, then G is 3-connected.

3 Whitney’s Duality
We will introduce the concepts of combinatorial dual of graph and geometric
dual graph. Then we introduce a important theorem in 2-connected graph,
which illustrates the connection between planar graph and duality.

Proposition 1. If G∗ is a combinatorial dual of G and E ⊆ E(G) is a set
of edges of G such that G − E has only one component containing edges, then
G∗/E∗ is a combinatorial dual of G− E.

For a 2-connected plane multigraph G, then we define the geometric dual H
of G as a plane multigraph that has precisely one vertex in each face of G. If e is
an edge of G, then H has an edge e∗ crossing the edge e from G and joining the
two vertices of H in the two faces of G that contain e on the boundary. Now, we
have following properties between original graph and corresponding dual graph.

1. If E ⊆ E(G) is the edge set of a cycle in G, then E∗ is a cut in H.

2. If E is the edge set of a forest in G, then H − E∗ is connected.

Proposition 2. Let G be a 2-connected plane multigraph, and let H be its geo-
metric dual. Then H is a combinatorial dual of G. Moreover, G is a geometric
dual graph (and hence a combinatorial dual ) of H.

Here, we come to Whitney Theorem proof.
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Figure 3.1: Graph K5. Figure 3.2: Graph K3,3.

Theorem 2 (Whitney’s Duality). Let G be a 2-connected multigraph, then G is
planar if and only if it has a combinatorial dual. If G∗ is a combinatorial dual
of G, than G has an embedding in the plane such that G∗ is isomorphic to the
geometric dual of G. In particular, also G∗ is planar, and G is a combinatorial
dual of G∗.

Proof. by Proposition 2, we only need to prove the second part of the theorem.
We give proof by induction on the number of edges of G. If G is a simple cycle
dividing the plane in two faces, any two edges of G∗ are in a 2-cycle , therefore
G∗ has only two vertices. Clearly, G and G∗ can be represented as a geometric
dual pair. If G is not a cycle, then we can represent any non-cyclic G with a cycle
G′ and a path P connecting two vertices of G′. By the induction hypothesis,
H = G∗/E(P )∗ is a combinatorial dual of G′. G′ and H are geometric dual
pair, and G′ is also a combinatorial dual of H. If e1, e2 are two edges of P , then
e∗1, e∗2 are two edges of G∗ which belong to a cycle C∗ of G∗. Since P is not a
cycle the correspondent set of edges E∗ cannot be a minimal cut, so the all the
edges E(P )∗ of the G∗ must be parallel in G∗ and join two vertices z1, z2 in G∗.
The edges incident to the vertex z0 form a minimal cut in G∗, therefore G′ is a
cycle separating the vertex z0 from H − z0. We can draw P inside G′ defining
two cycles C1 and C2 respectively containing subset of edges E1 and E2, that
corresponds to E∗1 and E∗2 defining a cut for z1 and z2. This way we obtain a
representation of G∗ as a geometric dual of G. Finally, the combinatorial dual
implies an embedding in the plane of G, this complete the proof.
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Figure 3.3: Example of identifying x and y

Figure 3.4: The cycle in G′ − z

Figure 3.5: The neighbors of y. Figure 3.6: Convex embedding ofG.

Figure 3.7: Paths of neighbors of x.
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Figure 3.8: The neighbors of y in more than one path

Figure 3.9: The neighbors of y alternate with the neighbors of x
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