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Abstract

A planarization technique applied to embeddings of graphs on surfaces of bounded
genus makes it possible to use a fast subexponential algorithm based on Dynamic
Programming on the planarized graph. The result of these computations then can be
used to find solutions for non-local hard graph problems in the original graph. As
an example this general framework is applied to HAMILTONIAN-CYCLE for torus-
embedded graphs. It provides us with subexponential algorithms for a wide class of
computationally hard problems in graphs embedded on surfaces.

Some computationally hard graph problems have subexponential-time solutions obtain-
able with Dynamic Programming and Sphere-Cut-Decompositions, if the processed graphs
are planar.

A Y-embedded graph G is a graph that can be drawn on a compact, connected 2-manifold
>’ such that edges only meet at vertices.

Planarity means that the graph is Sp-embedded on the surface of the sphere.

Dynamic Programming is a fast problem solving technique for combinatorial opti-
mization problems.

A Sphere-Cut-Decomposition is a special Branch-Decomposition of an Sp-embedded
graph G such that the vertices of each middle set define a tight noose on Sy.

A Branch-Decomposition of a graph G is a ternary tree T' where there exists a bijection
between the edges of G and the leaves of T'. Cutting the edges of T" therefore partitions the
edges of GG into two disjoint sets, which have common incident vertices. This set of common
vertices is called the middle set of the edge of T that generated it.

A noose on the sphere Sy or on the torus S; is a subset of the surface of the sphere or a
subset of the surface of the torus that is both an O-arc and G-normal. An O-arc is a subset
of the surface of the sphere/torus that is homeomorphic to a circle. A subset of the surface
of the sphere/torus is called G-normal if it meets an Sp-embedded graph/an S;-embedded
graph only at points that are vertices.
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Figure 1: Cutting along a noncontractible tight noose of a S;-embedded graph

A noose that visits any region defined by the embedding only once is called a tight
noose. A noose that is null-homotopic is called a contractible noose.

Definition 1 (Cutting along a noose N). Let G’ be the graph obtained from G by
replacing N with two copies of N such that all edges on the left side of N incident to N are
now incident to one copy of N and all edges on the right side of N are incident with the
other copy of N. We say that G’ is obtained from G by cutting along N. The copies Nx
and Ny of N are called cut-nooses.

Proposition 1. Let G be a torus-embedded graph, let G' be the graph obtained from G by
cutting along a noncontractible tight noose N on G. Then G is planar. (cf. Figure 1) !

Definition 2. HAMILTONIAN-CYCLE-Problem: Given a graph G, is there a cycle
that visits each vertex exactly once?
HAMILTOR: HAMILTONIAN-CYCLE-Problem for a torus-embedded graph G.

Since a cut as shown in Figure 1 is along vertices, a possible Hamiltonian cycle in G will
be disconnected.

Definition 3. A cut of a Hamiltonian cycle C' in G along a tight noose N is a set of
disjoint paths in G .

After identifying the components of a Hamiltonian cycle in the planar graph G’ they
can be used to reconstruct the Hamiltonian cycle in G. Let Ny and Ny be the cut-nooses
obtained from cutting G along N. Also let x; € Nx and y; € Ny be duplicated vertices of
the same vertex in N.

Definition 4 (Relaxed Hamiltonian Set of Paths). We call a set of disjoint paths P in
G’ relaxed Hamiltonian if:

1. Every path has its endpoints in Nx and Ny-.

2. Vertex ; is an endpoint of some path P, iff 3; is an endpoint of a path P' # P.

'Figure 1 from Frederic Dorn, 'Designing Subexponential Algorithms: Problems, Techniques and Struc-
tures’; Thesis for the degree of Philosophiae Doctor (PhD), Department of Informatics, UNIVERSITY OF
BERGEN, Bergen, Norway July 2007, p.18



Figure 2: Combining two cut-nooses

3. If one of x; ,y; is an inner vertex of a path, the other one is not in any path.
4. Every vertex of G’ \ Nx U Ny is in some path.

A cut of a Hamiltonian cycle in G must have a corresponding relaxed Hamiltonian set of
paths in G', but not vice versa. Checking in linear time for a single relaxed Hamiltonian set
if it is also a solution for HAMILTOR is possible, by identifying the corresponding vertices
of Nx and Ny. From this follows that checking all possible relaxed Hamiltonian sets in G
will answer the question, whether a Hamiltonian cycle exists in G or not, and will return
one, in case of existence.

But only equivalence classes on the set HS(G') of all of relaxed Hamiltonian sets have to be
checked:

Definition 5. For any two sets Py, P, € HS(G'), P, ~ P, if for every path in P; there is a
path in P; with the same endpoints (1 < 1,5 < 2).

Lemma 1. The number of different equivalence classes of relaxed Hamiltonian sets in G’
is in O(2%F) where k is the length of the tight noose N.

The proof of Lemma 1 is based upon the fact that the number of non-crossing paths with
its endpoints in one noose corresponds in a way to the Catalan numbers. The two cut-nooses
here are melted into one cut-noose by looking at one path in the relaxed Hamiltonian set
and cutting the sphere along this path, cf. Figure 2. 2

For reconstructing a possible Hamiltonian cycle, we start with a set of vertex tuples in
G called a candidate K = {(s1,t1), - (S, t) } with s;,t; € Nx U Ny,i = 1,..,k and a
vertex set [ C Ny U Ny. If there exists a relaxed Hamiltonian set P such that every (s;, ;)
marks the endpoints of a path and the vertices of I are inner vertices of some paths, we
can rebuild a Hamiltonian cycle in G from P. By using dynamic programming on Sphere-
Cut-Decompostions it is checked for every candidate if there is a spanning subgraph of G’
isomorphic to a Hamiltonian set P ~ K.

The framework above can - after some careful modifications - also be used for solving
non-local problems on graphs of bounded genus. The main result is that in all cases the
resulting algorithm has running time 20V,

2Figure 2 from Frederic Dorn, Fedor V. Fomin, Dimitrios M. Thilikos: 'Fast subexponential algorithm
for non-local problems on graphs of bounded genus’, p.6



Parameterized problems in graphs embedded in surfaces of bounded genus can also be
solved with this technique with running time 2°0?) . n©) (for example: finding a cycle of
length p, if it exists).



