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Abstract

A planarization technique applied to embeddings of graphs on surfaces of bounded
genus makes it possible to use a fast subexponential algorithm based on Dynamic
Programming on the planarized graph. The result of these computations then can be
used to find solutions for non-local hard graph problems in the original graph. As
an example this general framework is applied to HAMILTONIAN-CYCLE for torus-
embedded graphs. It provides us with subexponential algorithms for a wide class of
computationally hard problems in graphs embedded on surfaces.

Some computationally hard graph problems have subexponential-time solutions obtain-
able with Dynamic Programming and Sphere-Cut-Decompositions, if the processed graphs
are planar.

A Σ-embedded graph G is a graph that can be drawn on a compact, connected 2-manifold
Σ such that edges only meet at vertices.

Planarity means that the graph is S0-embedded on the surface of the sphere.
Dynamic Programming is a fast problem solving technique for combinatorial opti-

mization problems.
A Sphere-Cut-Decomposition is a special Branch-Decomposition of an S0-embedded

graph G such that the vertices of each middle set define a tight noose on S0.
A Branch-Decomposition of a graph G is a ternary tree T where there exists a bijection

between the edges of G and the leaves of T . Cutting the edges of T therefore partitions the
edges of G into two disjoint sets, which have common incident vertices. This set of common
vertices is called the middle set of the edge of T that generated it.

A noose on the sphere S0 or on the torus S1 is a subset of the surface of the sphere or a
subset of the surface of the torus that is both an O-arc and G-normal. An O-arc is a subset
of the surface of the sphere/torus that is homeomorphic to a circle. A subset of the surface
of the sphere/torus is called G-normal if it meets an S0-embedded graph/an S1-embedded
graph only at points that are vertices.
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Figure 1: Cutting along a noncontractible tight noose of a S1-embedded graph

A noose that visits any region defined by the embedding only once is called a tight
noose. A noose that is null-homotopic is called a contractible noose.

Definition 1 (Cutting along a noose N). Let G
′

be the graph obtained from G by
replacing N with two copies of N such that all edges on the left side of N incident to N are
now incident to one copy of N and all edges on the right side of N are incident with the
other copy of N . We say that G

′
is obtained from G by cutting along N . The copies NX

and NY of N are called cut-nooses.

Proposition 1. Let G be a torus-embedded graph, let G
′

be the graph obtained from G by
cutting along a noncontractible tight noose N on G. Then G

′
is planar. (cf. Figure 1) 1

Definition 2. HAMILTONIAN-CYCLE-Problem: Given a graph G, is there a cycle
that visits each vertex exactly once?
HAMILTOR: HAMILTONIAN-CYCLE-Problem for a torus-embedded graph G.

Since a cut as shown in Figure 1 is along vertices, a possible Hamiltonian cycle in G will
be disconnected.

Definition 3. A cut of a Hamiltonian cycle C in G along a tight noose N is a set of
disjoint paths in G

′
.

After identifying the components of a Hamiltonian cycle in the planar graph G
′

they
can be used to reconstruct the Hamiltonian cycle in G. Let NX and NY be the cut-nooses
obtained from cutting G along N . Also let xi ∈ NX and yi ∈ NY be duplicated vertices of
the same vertex in N.

Definition 4 (Relaxed Hamiltonian Set of Paths). We call a set of disjoint paths P in
G

′
relaxed Hamiltonian if:

1. Every path has its endpoints in NX and NY .

2. Vertex xi is an endpoint of some path Pi iff yi is an endpoint of a path P
′ 6= P .

1Figure 1 from Frederic Dorn, ’Designing Subexponential Algorithms: Problems, Techniques and Struc-
tures’, Thesis for the degree of Philosophiae Doctor (PhD), Department of Informatics, UNIVERSITY OF
BERGEN, Bergen, Norway July 2007, p.18
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Figure 2: Combining two cut-nooses

3. If one of xi ,yi is an inner vertex of a path, the other one is not in any path.

4. Every vertex of G
′ \NX ∪NY is in some path.

A cut of a Hamiltonian cycle in G must have a corresponding relaxed Hamiltonian set of
paths in G

′
, but not vice versa. Checking in linear time for a single relaxed Hamiltonian set

if it is also a solution for HAMILTOR is possible, by identifying the corresponding vertices
of NX and NY . From this follows that checking all possible relaxed Hamiltonian sets in G

′

will answer the question, whether a Hamiltonian cycle exists in G or not, and will return
one, in case of existence.
But only equivalence classes on the set HS(G

′
) of all of relaxed Hamiltonian sets have to be

checked:

Definition 5. For any two sets P1, P2 ∈ HS(G
′
), P1 ∼ P2 if for every path in Pi there is a

path in Pj with the same endpoints (1 ≤ i, j ≤ 2).

Lemma 1. The number of different equivalence classes of relaxed Hamiltonian sets in G
′

is in O(23k) where k is the length of the tight noose N.

The proof of Lemma 1 is based upon the fact that the number of non-crossing paths with
its endpoints in one noose corresponds in a way to the Catalan numbers. The two cut-nooses
here are melted into one cut-noose by looking at one path in the relaxed Hamiltonian set
and cutting the sphere along this path, cf. Figure 2. 2

For reconstructing a possible Hamiltonian cycle, we start with a set of vertex tuples in
G

′
called a candidate K = {(s1, t1), ..., (sk, tk)} with si, ti ∈ NX ∪ NY , i = 1, ..., k and a

vertex set I ⊂ NX ∪NY . If there exists a relaxed Hamiltonian set P such that every (si, ti)
marks the endpoints of a path and the vertices of I are inner vertices of some paths, we
can rebuild a Hamiltonian cycle in G from P . By using dynamic programming on Sphere-
Cut-Decompostions it is checked for every candidate if there is a spanning subgraph of G

′

isomorphic to a Hamiltonian set P ∼ K.
The framework above can - after some careful modifications - also be used for solving

non-local problems on graphs of bounded genus. The main result is that in all cases the
resulting algorithm has running time 2O(

√
n).

2Figure 2 from Frederic Dorn, Fedor V. Fomin, Dimitrios M. Thilikos: ’Fast subexponential algorithm
for non-local problems on graphs of bounded genus’, p.6
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Parameterized problems in graphs embedded in surfaces of bounded genus can also be
solved with this technique with running time 2O(

√
p) · nO(1) (for example: finding a cycle of

length p, if it exists).
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