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Remember that a spanning tree of a connected undirected graph G =
(V,E) is a minimal set of edges, that connects all vertices. Equivalently, it
is a maximal set of edges, that contains no cycle.

Let Q be the Laplacian matrix of G. Kirchhoff’s matrix tree theorem
says that the number of spanning trees of G is equal to the absolute value of
any cofactor of Q.

We are intereested in upper bounding the grid size needed to embed 3D-
polytopes. To do this, it suffices to get upper bounds for the cofactors of the
Laplacian. By Kirchhoff’s theorem, we can do this by upper bounding the
number of spanning trees. In the figure below you can see an integer grid
embedding of the dodecahedron.

Figure 1: Integer embedding of the dodecahedron

We define the edge graph G(P ) of a convex polytope P as the connected
graph whose vertex set is the vertex set of the polytope P , and two vertices are
adjacent in the graph if they are endpoints of a 1-face of P .
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Also, remember that a graph G = (V,E) is 3-connected if the graph remains
connected when at most 2 vertices are deleted from the graph.

According to Steinitz’s theorem, a graph G is the edge graph of a convex
3D-polytope iff G is simple, planar and 3-connected. So, it suffices to obtain an
upper bound on the number of spanning trees of planar and 3-connected graphs.

We define a face cycle in a graph G as a cycle with edges in the boundary
of a face of G, i.e. it cannot surround ”interior” vertices and edges . If this face
cycle has exactly three edges, it is called a triangle. Note that not all 3-cycles
are triangles, as demonstrated in the figure below.

Figure 2: A 3-cycle that is not a triangle

Let Γn denote the set of planar graphs with n vertices. Also let t(G) be the
number of spanning trees of graph G. Then the maximum number of spanning
trees a graph G ∈ Γn can have is T (n) = maxG∈Γn

{t(G)} . Our goal is to find
some α such that T (n) ≤ αn.

A triangulation is a maximal planar graph; if any edge was added the graph
would no longer be planar. All the faces of such a graph are bounded by three
edges, and if it has at least 4 vertices, it is also 3-connected. Therefore, the
graph that will have t(G) = T (N) will be a triangulation. The idea of the paper
presented is to exploit the graph’s planarity to provide an improved upper bound
on T (n). This is achieved using the refined outgoing edge approach.

We call a directed graph outdegree-one if some vertex w has no outgoing
arcs, and every other vertex is incident to exactly one outgoing arc.

By transforming each edge of G to a pair of directed arcs, we have that every
spanning tree of G can be transformed into exactly one outdegree-one graph,
by selecting edges and orienting them towards a node w. Such an example is
provided in figure 3.

The converse is not always true, since a outdegree-one graph can contain
cycles. However, outdegree-one graphs without cycles are exactly the oriented
spanning trees of G. Thus, if Pnc is the probability that the random outdegree-
one graph generated by picking an outgoing edge for each vertex of G uniformly
contains no cycle, we have that:

t(G) = (

n∏
i=2

di)Pnc (1)
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Figure 3: A outdegree-one graph that is a spanning tree

The next step is to express Pnc in a way that allows to upper bound it. We
do this by enumerating the cycles of G and defining Ci as the event that the
i-th cycle occurs in a random outdegree graph and Cc

i that it does not. Then if
s is the number of cycles in G, we can write:

Pnc = Pr[∩sj=1C
c
j ] (2)

The main lemma of the paper is that for all i, the events Ci have mutually
exclusive dependencies and union-closed independencies, which allows us to up-
per bound Pnc by an expression that involves only products of the probabilities
of events Ci and Cc

i . Furthermore, we can only consider 2-cycles and triangles
and still obtain an upper bound on Pnc, since considering more cycle lengths
would make Pnc smaller.

In order to make this approach feasible, we transform the problem into a
linear program. To do this, we first construct signatures of the 2-extensions of 2-
and 3-cycles. We are able to do this thanks to a theorem by Whitney, according
to which if a graph is planar and 3-connected its facial structure is uniquely
determined. An example is provided in figure 4 below.

We can use those signatures to describe whether two cycles are dependent.
For each signature, we define an appropriate variable that will be used in the LP-
program. Using several technical tricks, we are able to transform the expression
that upper bounds Pnc into a LP-program that uses these variables. The same
variables are used to provide constraints for the LP-program, which always hold
for planar graphs, but do not necessarily hold for non-planar graphs.

An important detail is that we use the same variables to introduce the ex-
pression

∏n
i=2 di into the LP. We do this by using a charging scheme. The

charging scheme works by distributing di to the neighbors of i. We show an
example of a charging scheme in figure 5 below.

The above approach gives a solution for a specific n, however we want to have
a solution that is asymptotic for growing n. In order to do this we normalize
the LP that we obtained and then we solve its dual, since the original LP would
have infinitely many variables. This dual program on the other hand will have
infinitely many constraints. Through a careful construction and by using the
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Figure 4: Signatures of 2-extensions

Figure 5: A charging scheme
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weak duality theorem, we are able to circumvent this and obtain the desired
upper bound.

By applying the above approach, we get the following theorem:

Theorem 1 Let G be a planar graph with n vertices. The number of spanning
trees of G is at most O(5.28515n).

If G is 3-connected and contains no triangle, then the number of spanning
trees is bounded by O(3.41619n)

If G is 3-connected and contains no triangle and no quadrilateral, the number
of its spanning trees is bounded by O(2.71565n).

As a corollary, we get the following result for embedding 3D-polytopes in
integer grids:

Corollary 1 The grid size needed to realize a 3D-polytope with integer coordi-
nates is bounded by O(147.7n).

For grid embeddings of simplicial 3D-polytopes the bound is O(27.94n).
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