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Introduction 

Given a connected and undirected graph, the spanning tree is as a sub-graph that is a tree and connects all 

the vertices together; in weighted graphs (i.e. where each edge is labeled with a weight) we can define the 

minimum spanning tree (MST) as the spanning tree for which the sum of all the weight of its edges it’s less 

or equal to the value of every other spanning tree. The first efficient algorithm for computing the minimum 

spanning tree of a graph was presented in 1926 and from that time on lots of faster algorithm have been 

developed to cope the complexity of this problem. For the algorithms which will be analyzed we are going 

to start from the following assumption: 

- The weights of all edges are distinct 

- The weights are compared with a constant time comparison oracle (in order to avoid dealing with real 

numbers) 

Boruvka’s Algorithm 

The algorithm of Boruvka represents the oldest idea  to calculate the MST of a graph and it starts from the 

idea to grow a forest from the lightest edges and iterating until we obtain a connected component. Starting 

from an arbitrary vertex the algorithm iterate all the vertices each time selecting the edge with the lowest 

weight connecting the current vertex to another node which is not part of the same connected component. 

The iteration will end when a single connected component is obtained outputting the MST for the graph. 

Considering n as the number of vertices and m as the number of edges the Boruvka’s algorithm runs in time 

𝑂(𝑚 ∗ log 𝑛 ). 

Jarnik’s Algorithm 

The Jarnik’s algorithm’s basic idea is to build up a single tree instead of a forest following a greedy approach 

in the selection of the edges. In particular the iteration starts from an arbitrary vertex and chooses the 

lightest edge connecting an element of the growing tree to a vertex that is not part of the tree, until all the 

nodes are reached and the tree spans the whole graph. In the standard implementation this approach 

doesn’t consist in an improvement with respect to Boruvka’s design since the running time is still in the 

order of 𝑂(𝑚 ∗ log 𝑛 ). 

Contractive MST Algorithms 

Instead of growing tree the contractive approach is based on the concept of contracting edges and keeping 

track on them. Each iteration of the algorithm takes in consideration all the vertices of the graph and 

contracts the incident edge with the lowest weight, storing the label of the selected edges. The subsequent 

step consists in the removal of all the parallel edges in the graph maintaining only the one with the lightest 

value, this operation is called flattening. The cycle ends when the graph is composed by a single node and 

the resulting vector of stored edges will represent the MST  for the graph. The efficiency of this method 

relies on the fact that we can implement the flattening operation on RAM, being able to perform the 

contraction in linear time with a 2-pass bucket sort algorithm. Indeed we can state that: 



Lemma. The ith step of the contractive Boruvka’s algorithm can be carried out in time 𝑂 𝑚𝑖 . 

Without any assumption on the graph, the running time is still fixed to 𝑂(𝑚 ∗ log 𝑛 ) but if we are dealing 

with simple graph we can state that the number of edges is upper-bounded by 𝑚 ≤ 𝑛2, hence each cycle is 

performed in 𝑂(𝑛2) time. Taking in account that each iteration drops at least  
𝑛

2
 vertices we obtain a time 

for all the cycles of 𝑂(𝑛2), that allows us to assess: 

Theorem. The contractive Boruvka’s algorithm finds the MST in the input graph in time 𝑂 min 𝑛2 ,𝑚 ∗

log 𝑛   . 

Minor Closed Graphs Classes 

As we saw before, making assumptions on particular features of the graph that we are dealing with can 

allow us to build algorithms that significantly drop the running time, therefore we are going to put some 

restriction in the input graph in order to assess a greater efficiency on the subsequent designs. In the first 

instance we fix some definitions:  

Definition. A graph H is a minor of a graph G (written as H≼G) if and only if it can be obtained from a 

subgraph of G by a sequence of simple graph contractions. 

Definition. A class C of graphs is minor-closed, when for every G∈C and every minor H of G, graph H lies in C 

as well. A class C is called non-trivial if at least one graph lies in C and at least one lies outside C. 

Definition. Let G be a graph and C be a class of graphs. We define the edge density ϱ(G) of G as the average 

number of edges per vertex, i.e., m(G)/n(G). The edge density ϱ(C) of the class is then defined as the infimum 

of ϱ(G) over all GεC. 

By definition it holds that: 

Theorem. Every non-trivial minor closed graph class has a finite edge density. 

We can take advantage of this fact performing a reduction on the running time of the contractive algorithm 

previously presented. We assessed that each step of the iteration is performed in time 𝑂(𝑚), but if we 

assume that our input graph belongs to a non-trivial minor closed graph class then we can express the 

number of the edge as upper-bounded by 𝑚 ≤ ϱ C ∗ 𝑛. Therefore we have that: 

Theorem. For any fixed nontrivial minor-closed class C of graphs, the contractive Boruvka’s algorithm finds 

the MST of any graph of this class in time 𝑂(𝑛). 

Iterated Algorithms 

Without any a priori knowledge about the structure of the graph we cannot make any assumption on the 

edge’s density, thus we implement different designs to minimize the running time of the MST search. A 

feasible approach is represented by Jarnik’s iterated algorithm that iterates through all the nodes using a 

greedy approach to select edges to add to the growing three; the difference with respect to the previous 

ideas is that this time we deny the possibility of an edge to be chosen by two different vertices keeping 

track of all the active edges. The active edges are defined as the edges connecting any node v in the 

growing tree to any node u not part of the growing three: each iteration of the algorithm parses the active 

edges incident to the considered node of the tree are, it sorts them by weight and the lightest edge is 

flagged as inactive and added to the tree. The cycle ends when all the vertices are connected drawing the 



MST of the graph. The advantage of this technique lies in the data structures implemented for the tracking 

of active edges: the Fibonacci Heap is indeed used to store the active edges as pairs of vertices 

guaranteeing a speed up of the computation since it holds that:  

Theorem. The Fibonacci Heap performs the following operations with the indicated amortized time 

complexity:  

Insert (insertion of a new element) in 𝑂 1 . 

Decrease (decrease the value of an existing element) in 𝑂 1 . 

Merge (merging two heaps into one) in 𝑂 1 . 

DeleteMin (deletion of the minimal element) in 𝑂(log 𝑛 ). 

Delete (deletion of an arbitrary element) in 𝑂(log 𝑛 ). 

Overall the all algorithm is comprising of m iterations and each cycle executes operations on the Fibonacci 

Heap on at most n elements, therefore: 

Theorem. Using Fibonacci Heap we can find the MST of the input graph in time 𝑂(𝑚 + 𝑛 ∗ 𝑙𝑜𝑔 𝑛 ). 

This is clearly valid for a general graph but if we have knowledge about the structure of the graph we might 

improve the time complexity of the algorithm, indeed: 

Corollary. For graphs with edge density Ω(log n), this algorithm runs in linear time. 

Combining MST Algorithms 

In order to reach higher peaks of performances in the calculation of the MSTs one of the latest approaches 

consists in combining together different algorithms, in particular it turned out to be efficient to perform 

log 𝑙𝑜𝑔 𝑛   steps of the contractive Boruvka’s algorithm and proceed then to the completion of the MST 

with the Jarnik’s iterated approach. The whole idea is based on the following lemma: 

Lemma. Let G be a weighted graph, e an arbitrary edge of MST(G), G/e the multigraph produced by 

contracting e in G, and π the bijection between edges of G e and their counterparts in G/e.  Then 𝑀𝑆𝑇 𝐺 =

𝜋 − 1 [𝑀𝑆𝑇(𝐺/𝑒)]. 

The first algorithms runs in time 𝑂(𝑚 ∗ log log 𝑛  ) contracting the graph G into the graph G’ which 

contains 𝑚′ ≤ 𝑚 edges and  𝑛′ ≤ 𝑛/ log 𝑛  vertices. The Jarnik’s step processes only G’ and we can upper-

bound its time complexity on 𝑂 𝑚′ + n′ log n′  = 𝑂(𝑚). The combination of the two outputs can be 

performed in linear time, therefore it follows that: 

Theorem. The Mixed Boruvka-Jarnik’s algorithm finds the MST of the input graph in time 𝑂(𝑚 ∗

𝑙𝑜𝑔 𝑙𝑜𝑔 𝑛  ). 

Conclusions 

Several approaches have been presented so far and the results for the minor closed graphs are surprisingly 

efficient since the algorithms can output the MST in deterministic linear time, however it’s still an open 

research field to understand whether it’s possible to design an algorithm able to achieve the same time 

complexity on general graphs, for which the best outcome is still 𝑂(𝑚 ∗ log log 𝑛  ). 


