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Abstract 

Let G be an n-vertex plane graph with non-negative edge weights, and let k terminal pairs be 
specified on h face boundaries. We present an algorithm to find k non-crossing walks in G of 
minimum total length that connect all terminal pairs, if any such walks exist,  in 2O(h²)n log k 
time. The computed walks may overlap but may not cross each other or themselves. Our 
algorithm generalizes a result of Takahashi, Suzuki, and Nishizeki for the special case h ≤ 2. We 
also describe an algorithm for the corresponding geometric problem, where the terminal points 
lie on the boundary of h polygonal obstacles of total complexity n, again in 2O(h²)n time, 
generalizing an algorithm of Papadopoulos for the special case h ≤ 2. In both settings, shortest 
non-crossing walks can have complexity exponential in h. We also describe algorithms to 
determine in O(n) time whether the terminal pairs can be connected by any non-crossing walks. 

 

Problem Formulation 

There are two different variants of the shortest non-crossing walks problem:  The goal is to 
compute a set of non-crossing ST -walks in G of minimum total length, or to report correctly that 
no such walks exist 

The input consists of h disjoint simple polygons P1 , P2 , . . . , Ph  in the plane, called obstacles, 
together with two disjoint sets S = {s1 , . . . , sk} and T = {t1 , . . . , tk} of points on the boundaries 
of the obstacles, called  terminals. A set of ST -walks is a set of walks Ω = {ω1 , ω2 , . . . , ωk } in 
G, where each walk ωᵢ connects sᵢ and tᵢ. 

Geometric formulation  

We consider the obstacles Pᵢ to be open sets and without loss of generality we assume that each 
terminal is a vertex of some obstacle; let n denote the number of obstacle vertices. 

 



Combinatorial formulation 

The input consists of an n-vertex plane graph G = (V, E); a weight function w : E → R+; a subset 
H = { f1 , f2 , . . . , fh } of faces of G, called obstacles. Each terminal has degree 1 and each walk 
ωᵢ is forbidden to visit terminals sj or tj except at its endpoints. When h = 1, shortest non-crossing 
ST -walks are actually shortest paths joining corresponding terminals. For h ≥ 2, there are inputs 
for which shortest non-crossing ST -walks must be non-simple 

Lemma   

Let s1, t1, s2, t2, . . . , sk, tk be vertices of degree 1 in a plane  graph G, and let Cπ the combinatorial 
embedding of their connection graph. G contains a set of non-crossing ST -walks if and only if 
Cπ is a planar embedding 

For each j, the crossing sequence X (σj , Ω) contains no non-empty even substring. 

Any string of length at least 2k with at most k distinct characters has a non- empty even substring  

No bigon in Hij is empty 

The total degree of the bad vertices of C ̽ij is at most 4h − 4  

Let Ω = {ω1, ω2, . . . , ωn} be a minimum- length set of non-crossing walks in G, such that each 
walk ωᵢ connects terminals sᵢ and tᵢ. For all i and j, walk ωj traverses loop lᵢ exactly 2 j−i−1 times.  

Shortest non-crossing ST -walks in an n-vertex planar graph with k terminal pairs and h 
obstacles can be computed in O(hn log k) time, if for every index i, terminals sᵢ and tᵢ lie on the 
same obstacle. 

Shortest non-crossing ST -walks in the complement of h polygonal obstacles with total 
complexity n can be computed in hO(h).n time, if for every index i, terminals sᵢ and tᵢ lie on the 
same obstacle.  

Theorem   

Let s1, t1, s2, t2, . . . , sk, tk be vertices of degree 1 in a plane graph G with n vertices. We can 
decide whether G contains a set of non-crossing ST -walks in O(n) time 

Let s1, t1, s2, t2, . . . , sk, tk be distinct terminal points on the boundary of h disjoint closed 
polygonal obstacles P1, P2 , . . . , Ph  of total complexity n in the plane. We can decide whether 
there is a set of non-crossing ST-walks in R²\ (P1 ∪ P2 ∪· · · ∪ Pk ) in O(n) time 

Each walk ωᵢ crosses each shortest path σj at most 2 ² ͪ   ̄ ² times.  

Shortest non-crossing ST -walks in an n- vertex planar graph with k terminal pairs and h 
obstacles can be computed in 2O(h²)n log k time and 2O(h).n space.  



Shortest non-crossing ST-walks in complement of h polygonal obstacles with total complexity n 
can be computed in 2O(h²).n time & 2O(h).n space 

Crossing Bounds 

Any walk in a set of shortest ST -walks crosses a shortest path at most 2k times. 

Upper Bound 

In the geometric setting, minimizing the length of the walks also minimizes the number of 
crossings between walks ωᵢ and shortest paths σj, but the combinatorial setting is more subtle. 
The goal is each walk ωᵢ crosses each shortest path σj at most 2O(h) times. A substring is a 
contiguous sequence of symbols within a string. We call a substring of X (σj, Ω) even if any 
symbol appears an even number of times; for example, ELESSL is an even substring of the word 
SENSELESSLY 

Lower Bound  

We weight the edges between v and every other vertex and a loop edge lᵢ at each vertex si by 
setting w(lᵢ):= 2in for each i, and w(uv) = w(vw) = ∞, and setting w(e) = 0 for every other edge e. 
We define α1 to be the empty walk, and for each i ≥ 2, we define 

  αᵢ := rev(αi-1 )  (v, si-1) · li-1 · (si-1 ,v) · αi-1                    

where . denotes concatenation operator. Finally, for each i, we define ωᵢ*:= (sᵢ , v) · αᵢ  · (v, tᵢ). 
Each walk ω̽ j traverses loop lᵢ exactly 2j−i−1 times if i < j, and does not traverse ω̽ ᵢ at all if i ≥ j. 
Each walk ω*j crosses the shortest path σ from u to w exactly 2j-1 times, thus σ is crossed 2n−1 
times altogether. Ω ̽ is unique min-length set of non-crossing walks connecting terminals in G 

Spanning Walks 

Obstacles and terminal pairs naturally define a connection graph C whose nodes and arcs 
correspond to the obstacles fᵢ and terminal pairs (sj, tj). Any minimum- length set of non-crossing 
ST-walks, every walk is tight; or else, at least one walks shorter without introducing any 
crossings.  

Tight Spanning Walks 

We compute a shortest walk with a given crossing sequence Xᵢ as follows: 

First glue together x copies of G"Σ along the copies of the shortest paths that ω crosses, to 
obtain a planar graph Gˆ of complexity O(xᵢn). Then compute shortest path ωˆᵢ in Gˆ between Sᵢ 
in initial copy of G"Σ and tᵢ in final copy of G"Σ, using linear-time shortest path algorithm.  
Finally, project the path ωˆᵢ back into G to obtain the walk ωᵢ. 


