Summary of
“Shortest Non-Crossing Walks in the Plane”
(Jeff Erickson and Amir Nayyeri)

Somnath Meignana Murthy
17 January 2013

Abstract

Let G be an n-vertex plane graph with non-negative edge weights, and let k terminal pairs be specified on h face boundaries. We present an algorithm to find k non-crossing walks in G of minimum total length that connect all terminal pairs, if any such walks exist, in $2^{O(h^2)}n \log k$ time. The computed walks may overlap but may not cross each other or themselves. Our algorithm generalizes a result of Takahashi, Suzuki, and Nishizeki for the special case $h \leq 2$. We also describe an algorithm for the corresponding geometric problem, where the terminal points lie on the boundary of h polygonal obstacles of total complexity n, again in $2^{O(h^2)}n$ time, generalizing an algorithm of Papadopoulos for the special case $h \leq 2$. In both settings, shortest non-crossing walks can have complexity exponential in h. We also describe algorithms to determine in $O(n)$ time whether the terminal pairs can be connected by any non-crossing walks.

Problem Formulation

There are two different variants of the shortest non-crossing walks problem: The goal is to compute a set of non-crossing ST-walks in G of minimum total length, or to report correctly that no such walks exist.

The input consists of h disjoint simple polygons P_1, P_2, \ldots, P_h in the plane, called obstacles, together with two disjoint sets $S = \{s_1, \ldots, s_k\}$ and $T = \{t_1, \ldots, t_k\}$ of points on the boundaries of the obstacles, called terminals. A set of ST-walks is a set of walks $\Omega = \{\omega_1, \omega_2, \ldots, \omega_k\}$ in G, where each walk ω_i connects s_i and t_i.

Geometric formulation

We consider the obstacles P_i to be open sets and without loss of generality we assume that each terminal is a vertex of some obstacle; let n denote the number of obstacle vertices.
Combinatorial formulation

The input consists of an n-vertex plane graph $G = (V, E)$; a weight function $w : E \rightarrow \mathbb{R}^+$; a subset $H = \{ f_1, f_2, \ldots, f_h \}$ of faces of G, called obstacles. Each terminal has degree 1 and each walk ω_i is forbidden to visit terminals s_j or t_j except at its endpoints. When $h = 1$, shortest non-crossing ST-walks are actually shortest paths joining corresponding terminals. For $h \geq 2$, there are inputs for which shortest non-crossing ST-walks must be non-simple.

Lemma

Let $s_1, t_1, s_2, t_2, \ldots, s_k, t_k$ be vertices of degree 1 in a plane graph G, and let C_π the combinatorial embedding of their connection graph. G contains a set of non-crossing ST-walks if and only if C_π is a planar embedding.

For each j, the crossing sequence $X (\sigma_j, \Omega)$ contains no non-empty even substring.

Any string of length at least 2^k with at most k distinct characters has a non-empty even substring.

No bigon in H_{ij} is empty.

The total degree of the bad vertices of C_{ij}^* is at most $4h - 4$.

Let $\Omega = \{ \omega_1, \omega_2, \ldots, \omega_n \}$ be a minimum-length set of non-crossing walks in G, such that each walk ω_i connects terminals s_i and t_i. For all i and j, walk ω_j traverses loop l_i exactly 2^{j-i-1} times.

Shortest non-crossing ST-walks in an n-vertex planar graph with k terminal pairs and h obstacles can be computed in $O(hn \log k)$ time, if for every index i, terminals s_i and t_i lie on the same obstacle.

Shortest non-crossing ST-walks in the complement of h polygonal obstacles with total complexity n can be computed in $h^{O(h)} \cdot n$ time, if for every index i, terminals s_i and t_i lie on the same obstacle.

Theorem

Let $s_1, t_1, s_2, t_2, \ldots, s_k, t_k$ be vertices of degree 1 in a plane graph G with n vertices. We can decide whether G contains a set of non-crossing ST-walks in $O(n)$ time.

Let $s_1, t_1, s_2, t_2, \ldots, s_k, t_k$ be distinct terminal points on the boundary of h disjoint closed polygonal obstacles P_1, P_2, \ldots, P_h of total complexity n in the plane. We can decide whether there is a set of non-crossing ST-walks in $\mathbb{R}^2 \setminus (P_1 \cup P_2 \cup \cdots \cup P_h)$ in $O(n)$ time.

Each walk ω_i crosses each shortest path σ_j at most 2^{h-2} times.

Shortest non-crossing ST-walks in an n-vertex planar graph with k terminal pairs and h obstacles can be computed in $2O(h^2)n \log k$ time and $2O(h).n$ space.
Shortest non-crossing ST-walks in complement of h polygonal obstacles with total complexity n can be computed in $2^{O(h^2)}n$ time & $2^{O(h)}n$ space.

Crossing Bounds

Any walk in a set of shortest ST-walks crosses a shortest path at most 2^k times.

Upper Bound

In the geometric setting, minimizing the length of the walks also minimizes the number of crossings between walks ω_i and shortest paths σ_j, but the combinatorial setting is more subtle. The goal is each walk ω_i crosses each shortest path σ_j at most $2^{O(h)}$ times. A substring is a contiguous sequence of symbols within a string. We call a substring of $X (\sigma_j, \Omega)$ even if any symbol appears an even number of times; for example, ELESSL is an even substring of the word SENSELESSLY.

Lower Bound

We weight the edges between v and every other vertex and a loop edge l_i at each vertex s_i by setting $w(l_i) = 2^{i_0}$ for each i, and $w(uv) = w(vw) = \infty$, and setting $w(e) = 0$ for every other edge e. We define α_1 to be the empty walk, and for each $i \geq 2$, we define

$$\alpha_i := \text{rev} (\alpha_{i-1}) \cdot (v, s_{i-1}) \cdot l_{i-1} \cdot (s_{i-1}, v) \cdot \alpha_{i-1}$$

where . denotes concatenation operator. Finally, for each i, we define $\omega_i^* := (s_i, v) \cdot \alpha_i \cdot (v, t_i)$. Each walk ω_j^* traverses loop l_i exactly 2^{j_i+1} times if $i < j$, and does not traverse ω_i^* at all if $i \geq j$. Each walk ω_j^* crosses the shortest path σ from u to w exactly 2^{j-1} times, thus σ is crossed 2^n-1 times altogether. Ω^* is unique min-length set of non-crossing walks connecting terminals in G.

Spanning Walks

Obstacles and terminal pairs naturally define a connection graph C whose nodes and arcs correspond to the obstacles f_i and terminal pairs (s_j, t_j). Any minimum-length set of non-crossing ST-walks, every walk is tight; or else, at least one walks shorter without introducing any crossings.

Tight Spanning Walks

We compute a shortest walk with a given crossing sequence X_i as follows:

First glue together x copies of $G^{>\Sigma}$ along the copies of the shortest paths that ω crosses, to obtain a planar graph G^* of complexity $O(xin)$. Then compute shortest path ω^*_i in G^* between S_i in initial copy of $G^{>\Sigma}$ and t_i in final copy of $G^{>\Sigma}$, using linear-time shortest path algorithm. Finally, project the path ω^*_i back into G to obtain the walk ω_i.