Summary of
“Shortest Non-Crossing Walks in the Plane”
(Jeff Erickson and Amir Nayyerti)

Somnath Meignana Murthy
17 January 2013

Abstract

Let G be an n-vertex plane graph with non-negative edge weights, and let k terminal pairs be
specified on h face boundaries. We present an algorithm to find k non-crossing walks in G of
minimum total length that connect all terminal pairs, if any such walks exist, in 2°®n log k
time. The computed walks may overlap but may not cross each other or themselves. Our
algorithm generalizes a result of Takahashi, Suzuki, and Nishizeki for the special case h <2. We
also describe an algorithm for the corresponding geometric problem, where the terminal points
lie on the boundary of h polygonal obstacles of total complexity n, again in 2°®n time,
generalizing an algorithm of Papadopoulos for the special case h < 2. In both settings, shortest
non-crossing walks can have complexity exponential in h. We also describe algorithms to
determine in O(n) time whether the terminal pairs can be connected by any non-crossing walks.

Problem Formulation

There are two different variants of the shortest non-crossing walks problem: The goal is to
compute a set of non-crossing ST -walks in G of minimum total length, or to report correctly that
no such walks exist

The input consists of h disjoint simple polygons P, , P>, ..., Py in the plane, called obstacles,
together with two disjoint sets S = {s;, ..., s} and T = {t;, ..., tc} of points on the boundaries
of the obstacles, called terminals. A set of ST -walks is a set of walks Q= {®w; , @2, ..., ®k } in

G, where each walk m; connects s; and t;.
Geometric formulation

We consider the obstacles P; to be open sets and without loss of generality we assume that each
terminal is a vertex of some obstacle; let n denote the number of obstacle vertices.



Combinatorial formulation

The input consists of an n-vertex plane graph G = (V, E); a weight function w : E — R+; a subset
H={fi,f,...,fi} of faces of G, called obstacles. Each terminal has degree 1 and each walk
o; is forbidden to visit terminals s; or tj except at its endpoints. When h = 1, shortest non-crossing
ST -walks are actually shortest paths joining corresponding terminals. For h > 2, there are inputs
for which shortest non-crossing ST -walks must be non-simple

Lemma

Let sy, t1, S2, t2, . . ., Sk, tk be vertices of degree 1 in a plane graph G, and let C, the combinatorial
embedding of their connection graph. G contains a set of non-crossing ST -walks if and only if
C, is a planar embedding

For each j, the crossing sequence X (oj, (2) contains no non-empty even substring.

Any string of length at least 2* with at most k distinct characters has a non- empty even substring
No bigon in Hj; is empty

The total degree of the bad vertices of C%; is at most 4h — 4

Let Q = {®, 02, . . ., ®y} be a minimum- length set of non-crossing walks in G, such that each
walk ®; connects terminals s; and ti. For all i and j, walk o; traverses loop | exactly 2 71 times.

Shortest non-crossing ST -walks in an n-vertex planar graph with k terminal pairs and h
obstacles can be computed in O(hn log k) time, if for every index i, terminals s; and t; lie on the
same obstacle.

Shortest non-crossing ST -walks in the complement of h polygonal obstacles with total
complexity n can be computed in h°® n time, if for every index i, terminals s; and t; lie on the
same obstacle.

Theorem

Let sy, t1, s2, t2, . . ., Sk, tx be vertices of degree 1 in a plane graph G with n vertices. We can
decide whether G contains a set of non-crossing ST -walks in O(n) time

Let sy, ti, s2, t, . . ., Sk tx be distinct terminal points on the boundary of h disjoint closed
polygonal obstacles Py, P>, ..., P, of total complexity n in the plane. We can decide whether
there is a set of non-crossing ST-walks in R?\ (P; U P, U- - - U Py ) in O(n) time

Each walk ; crosses each shortest path cj at most 2 2"~ 2 times.

Shortest non-crossing ST -walks in an n- vertex planar graph with k terminal pairs and h
obstacles can be computed in 20(h?*)n log k time and 20(h).n space.



Shortest non-crossing ST-walks in complement of h polygonal obstacles with total complexity n
can be computed in 2°™.n time & 2°®.n space

Crossing Bounds
Any walk in a set of shortest ST -walks crosses a shortest path at most 2" times.
Upper Bound

In the geometric setting, minimizing the length of the walks also minimizes the number of
crossings between walks ®; and shortest paths o;j, but the combinatorial setting is more subtle.
The goal is each walk ®; crosses each shortest path o; at most 29" times. A substring is a
contiguous sequence of symbols within a string. We call a substring of X (oj, Q) even if any
symbol appears an even number of times; for example, ELESSL is an even substring of the word
SENSELESSLY

Lower Bound

We weight the edges between v and every other vertex and a loop edge li at each vertex si by
setting w(l;):= 2" for each i, and w(uv) = w(vw) = oo, and setting w(e) = 0 for every other edge e.
We define a, to be the empty walk, and for each i > 2, we define

oi :=rev(oig ) (V, Si) © lig o (81 ,V) © g

where . denotes concatenation operator. Finally, for each i, we define @i*:= (si, v) - ai - (V, t).
Each walk '; traverses loop li exactly 277 times if i < j, and does not traverse o; at all if i > j.
Each walk o*; crosses the shortest path ¢ from u to w exactly 2" times, thus o is crossed 2"—1
times altogether. Q" is unique min-length set of non-crossing walks connecting terminals in G

Spanning Walks

Obstacles and terminal pairs naturally define a connection graph C whose nodes and arcs
correspond to the obstacles f; and terminal pairs (s;j, t;). Any minimum- length set of non-crossing
ST-walks, every walk is tight; or else, at least one walks shorter without introducing any
crossings.

Tight Spanning Walks
We compute a shortest walk with a given crossing sequence X; as follows:

First glue together x copies of G3<X along the copies of the shortest paths that ® crosses, to
obtain a planar graph G of complexity O(xin). Then compute shortest path ®”; in G™ between S;
in initial copy of G3<X and t; in final copy of G3<ZX, using linear-time shortest path algorithm.
Finally, project the path ®"; back into G to obtain the walk w;.



