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INTRODUCTION – PLANAR GRAPHS

A graph is PLANAR if it can be drawn in the plane in such a 

way that no edges intersect

A graph G is EMBEDDED in a topological space X if the 

vertices of G are distinct elements of the space and every 

edge of G is a simple arc connecting in X the two vertices 

which it joins in G, such that it’s interior is disjoint from 

other edges or vertices



INTRODUCTION – POLYGONAL ARCS

An arc in a plane R2 is a POLYGONAL ARC if is the union of a 

finite number of straight segments

If G is a planar graph, than G has a representation in the plane 

such that all edges are simple polygonal arcs

Graph embedded in a plane Define a space ε around each

vertex such that it includes only

incident edges

Define C as the straigh line 

connecting each space ε it’s 

possible to draw all edges as

polygonal arcs



INTRODUCTION – CLOSED ARCS

If C is a CLOSED POLYGONAL ARC in the plane then it 

divides the space in two connected regions, also called FACES, 

having C as its boundary 

π(z) = number of boundary segments touched by the 

the horizontal half line at the point z

π(z) mod 2 = 1 inner vertex

π(z) mod 2 = 0 external vertex

Any three points can be connected by the boundary with 

polygonal arcs

At LEAST two connected 

components!

At MOST two connected 

components!



INTRODUCTION – EULER’S FORMULA

If G is a planar graphs where all edges are polygonal arcs, than

G has exactly VERTICES – EDGES + FACES = 2

Each face has a cycle of G as its boundary

Vertices = 7

Edges = 6

Faces = 1

Vertices = 7

Edges = 7

Faces = 2

Vertices = 7

Edges = 7

Faces = 3

V – E + F = 2



INTRODUCTION – EULER’S APPLICATION

TRIANGULATION: connected plane graph with polygonal 

edges such that each face is a 3-CYCLE

QUADRANGULATION: connected plane graph with polygonal 

edges such that each face is a 4-CYCLE

In a triangulation every edge

bounds 2 faces and every face 

is composed by 3 edges

3f <= 2e

In a quadrangulation every

edge bounds 2 faces and every

face is composed by 4 edges

4f <= 2e

f = e –v +2
E <= 3V - 6

f = e –v +2
E <= 2V - 4



INTRODUCTION – K5 AND K3,3

The complete graph K5 and the bipartite graph K3,3 are NON 

PLANAR

5 <= 30 – 6

does NOT hold! 

6 <= 27 – 6

does NOT hold! 



KURATOWSKI’S THEOREM



KURATOWSKI’S THEOREM

Lemma: “A graph is planar if and only if it does not contain a 

subdivision of K5 or a subdivision of K3,3 as a subgraph.”

A SUBDIVISION of a graph G is a 

graph resulting from an addition of 

a new vertex between two vertices 

and the replacement of the edge 

with two new edges



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

If G is a 3-CONNECTED graph with no subdivision of K3,3 

and K5 as a subgraph, then G has a CONVEX EMBEDDING 

in the plane

A graph G is STRAIGHT LINE EMBEDDED if each edge is a 

straight line segment

If each bounded face of a straight embedded graph is convex 

then the embedding of G is said to be CONVEX



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

G is a 3-connected graph with a concave face

x y



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

In a 3-connected graph there’s at least one edge that can be 

contracted keeping the graph 3-connected

z



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

Deleting the edges incidents to z we define the cycle C

z

C



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

The neighbors of x define three paths along the cycle C

P1
P2

P3



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

If the neighbors of y only belong to a single path than the 

graph G has a convex embedding

P1
P2

P3

y



KURATOWSKI’S THEOREM – CONVEX

EMBEDDING

Convex embedding!

x y



KURATOWSKI’S THEOREM – K5
SUBDIVISION

What if the neighbors of y 

are in more than one path?

yx



KURATOWSKI’S THEOREM – K5
SUBDIVISION

Subdivision of K5!



KURATOWSKI’S THEOREM – K3,3
SUBDIVISION

What if the neighbors of y 

are alternate to the 

neighbors of x?

yx



KURATOWSKI’S THEOREM – K3,3
SUBDIVISION

Subdivision of K3,3!



KURATOWSKI’S THEOREM –
GENERALIZATION

If a graph G of order >=4 contains no subdivision of K5 or K3,3 

and the addition of any out of every the possible edges makes 

the graph non planar, then G is 3-CONNECTED

Kuratowsi’s

theorem is valid for 

3-CONNECTED

graphs

Kuratowsi’s

theorem is valid for 

ALL graphs



WHITNEY’S DUALITY



WHITNEY’S DUALITY – 2-CONNECTED

COMPONENTS

Each color corresponds to a 2-connected component

A 2-CONNECTED GRAPH is a “non separable” graph such 

that no vertex is a cut, if any vertex were to be removed the 

graph remains connected

A 2-CONNECTED

COMPONENT is a 

2-connected

subgraph in a 

multigraph



WHITNEY’S DUALITY – MINIMAL CUTS

In a connected multigraph G a set of edges E is called 

SEPARATING if G – E is disconnected in two non empty 

disjoint sets of vertices

A CUT (or separating edge set) E is MINIMAL if no proper 

subset of E is a separating set

Minimal cut



WHITNEY’S DUALITY – MINIMAL CUTS

Two edges e1 and e2 in a connected multigraph G belong to a 

minimal cut if and only if e1 and e2 are in the same 2-connected 

component of G

Minimal cut!

Componet 1 Componet 2

NO Minimal cut!

Componet 1 Componet 2

Componet 3



WHITNEY’S DUALITY – COMBINATORIAL

DUAL

Being G a connected multigraph, G* is the COMBINATORIAL 

DUAL of G if: 

1) There is ONE-BY-ONE CORRESPONDANCE of edges

2) For each set of edges E defining a CYCLE the combinatorial 

dual E* is a cut in G*



WHITNEY’S DUALITY – GEOMETRIC

DUAL

The geometric dual of the graph G is defined as a graph G* with 

one VERTEX in each FACE of G and an EDGE E* crossing 

each EDGE E and joining the two vertices of the correspondent 

faces bounded by e 

Geometric duals



WHITNEY’S DUALITY – GEOMETRIC

DUAL PROPERTIES

If  E is an edge set defining a CYCLE in G, than the 

corresponding E* is a cut in G*

G and geometric dual G* G – E and geometric dual G*/E*



WHITNEY’S DUALITY – GEOMETRIC

DUAL PROPERTIES

If E is the edge set of a FOREST in G, then G* – E* is 

connected (no cut)

G and geometric dual G* G – E and geometric dual G*/E*



WHITNEY’S DUALITY

Lemma: “Let G be a 2-connected multigraps, then G is planar if 

and only if it has a combinatorial dual. If G* is a combinatorial 

dual of G, than G has an embedding in the plane such that G* 

is isomorphic to the geometric dual of G. In particular, also G* 

is planar, and G is a combinatorial dual of G*.”

PLANARITYCOMBINATORIAL 

DUAL

GEOMETRIC 

DUAL

PLANARITYCOMBINATORIAL 

DUAL



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

Let G be a simple cycle dividing the plane in two faces, any 

two edges E* are in a two cycle, therefore G* has only two 

vertices in its embedding in the plane



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

We can represent any non cyclic graph with a cycle G’ and a 

path P connecting two elements of G’

G’

P



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

Since P is not a cycle the correspondent set of edges E* cannot 

be a minimal cut, so the all the edges of the G* must be 

parallel joining two points z1 and z2 

z1 z2



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

The edges incident to the vertex z0 represent a cut in G*, 

therefore G’ is a cycle separating the vertex z0 from G*-z0

z0



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

We draw P inside G’ defining two cycles C1 and C2 

respectively containing subset of edges E1 and E2, that 

correspond to E1* and E2* defining a cut for z1 and z2

C1

C2



WHITNEY’S DUALITY – FROM

COMBINATORIAL TO PLANARITY

The combinatorial dual implies an embedding in the plane of G

G is planar!



THANK YOU FOR THE

ATTENTION!


