Kuratowski’s Theorem and Whitney’s Duality

Giulio Malavolta

Graph on Surfaces
INTRODUCTION – PLANAR GRAPHS

A graph G is **EMBEDDED** in a topological space X if the vertices of G are distinct elements of the space and every edge of G is a simple arc connecting in X the two vertices which it joins in G, such that its interior is disjoint from other edges or vertices

A graph is **PLANAR** if it can be drawn in the plane in such a way that no edges intersect
INTRODUCTION – POLYGONAL ARCS

An arc in a plane R^2 is a POLYGONAL ARC if it is the union of a finite number of straight segments.

If G is a planar graph, then G has a representation in the plane such that all edges are simple polygonal arcs.

Graph embedded in a plane
Define a space ε around each vertex such that it includes only incident edges
Define C as the straight line connecting each space ε; it's possible to draw all edges as polygonal arcs.
INTRODUCTION – CLOSED ARCS

If C is a CLOSED POLYGONAL ARC in the plane then it divides the space in two connected regions, also called FACES, having C as its boundary.

\[\pi(z) = \text{number of boundary segments touched by the horizontal half line at the point } z\]

\[\pi(z) \mod 2 = 1 \text{ inner vertex}\]
\[\pi(z) \mod 2 = 0 \text{ external vertex}\]

At LEAST two connected components!

At MOST two connected components!

Any three points can be connected by the boundary with polygonal arcs.
INTRODUCTION – EULER’S FORMULA

If G is a planar graphs where all edges are polygonal arcs, than G has exactly $V - E + F = 2$

Each face has a cycle of G as its boundary
INTRODUCTION – EULER’S APPLICATION

TRIANGULATION: connected plane graph with polygonal edges such that each face is a 3-CYCLE
QUADRANGULATION: connected plane graph with polygonal edges such that each face is a 4-CYCLE

In a triangulation every edge bounds 2 faces and every face is composed by 3 edges
$3f \leq 2e$

In a quadrangulation every edge bounds 2 faces and every face is composed by 4 edges
$4f \leq 2e$

$f = e - v + 2 \quad E \leq 3V - 6$
$f = e - v + 2 \quad E \leq 2V - 4$
INTRODUCTION – K_5 AND $K_{3,3}$

The complete graph K_5 and the bipartite graph $K_{3,3}$ are NON PLANAR

$5 \leq 30 - 6$ does NOT hold! $6 \leq 27 - 6$ does NOT hold!
Kuratowski’s Theorem
Lemma: “A graph is planar if and only if it does not contain a subdivision of K_5 or a subdivision of $K_{3,3}$ as a subgraph.”

A **SUBDIVISION** of a graph G is a graph resulting from an addition of a new vertex between two vertices and the replacement of the edge with two new edges.
Kuratowski’s Theorem – Convex Embedding

A graph G is **Straight Line Embedded** if each edge is a straight line segment.

If each bounded face of a straight embedded graph is convex then the embedding of G is said to be **Convex**.

If G is a **3-connected** graph with no subdivision of $K_{3,3}$ and K_5 as a subgraph, then G has a **Convex Embedding** in the plane.
Kuratowski’s Theorem – Convex Embedding

G is a 3-connected graph with a concave face
Kuratowski’s Theorem – Convex Embedding

In a 3-connected graph there’s at least one edge that can be contracted keeping the graph 3-connected.
Deleting the edges incidents to z we define the cycle C.
Kuratowski’s Theorem – Convex Embedding

The neighbors of x define three paths along the cycle C
If the neighbors of y only belong to a single path than the graph G has a convex embedding.
KURATOWSKI’S THEOREM – CONVEX EMBEDDING

Convex embedding!
Kuratowski’s Theorem – K_5

Subdivision

What if the neighbors of y are in more than one path?
Kuratowski’s Theorem – K_5

Subdivision
Kuratowski’s Theorem – $K_{3,3}$ Subdivision

What if the neighbors of y are alternate to the neighbors of x?
Kuratowski’s Theorem – $K_{3,3}$ Subdivision

Subdivision of $K_{3,3}$!
Kuratowski’s Theorem – Generalization

If a graph G of order ≥ 4 contains no subdivision of K_5 or $K_{3,3}$ and the addition of any out of every the possible edges makes the graph non planar, then G is 3-CONNECTED.

Kuratowski’s theorem is valid for 3-CONNECTED graphs.

Kuratowski’s theorem is valid for ALL graphs.
Whitney’s Duality
WHITNEY’S DUALITY – 2-CONNECTED COMPONENTS

A 2-CONNECTED GRAPH is a “non separable” graph such that no vertex is a cut, if any vertex were to be removed the graph remains connected.

A 2-CONNECTED COMPONENT is a 2-connected subgraph in a multigraph.

Each color corresponds to a 2-connected component.
WHITNEY’S DUALITY – MINIMAL CUTS

In a connected multigraph G a set of edges E is called **SEPARATING** if $G - E$ is disconnected in two non empty disjoint sets of vertices

A **CUT** (or separating edge set) E is **MINIMAL** if no proper subset of E is a separating set

[Diagram of a graph with minimal cut highlighted]
WHITNEY’S DUALITY – MINIMAL CUTS

Two edges e_1 and e_2 in a connected multigraph G belong to a minimal cut if and only if e_1 and e_2 are in the same 2-connected component of G.

Componet 1

Componet 2

Minimal cut!

Componet 1

Componet 2

Componet 3

NO Minimal cut!
WHITNEY’S DUALITY – COMBINATORIAL DUAL

Being G a connected multigraph, G^* is the **COMBINATORIAL DUAL** of G if:

1) There is **ONE-BY-ONE CORRESPONDANCE** of edges

2) For each set of edges E defining a **CYCLE** the combinatorial dual E^* is a cut in G^*
WHITNEY’S DUALITY – GEOMETRIC DUAL

The geometric dual of the graph G is defined as a graph G^* with one \textbf{VERTEX} in each \textbf{FACE} of G and an \textbf{EDGE} E^* crossing each \textbf{EDGE} E and joining the two vertices of the correspondent faces bounded by e
Whitney's Duality – geometric dual properties

If E is an edge set defining a **cycle** in G, then the corresponding E^* is a cut in G^*

G and geometric dual G^*

$G - E$ and geometric dual G^*/E^*
Whitney’s Duality – Geometric Dual Properties

If E is the edge set of a **forest** in G, then $G^* - E^*$ is connected (no cut)

![Diagram](attachment:image.png)
Lemma: “Let G be a 2-connected multigraph, then G is planar if and only if it has a combinatorial dual. If G^* is a combinatorial dual of G, then G has an embedding in the plane such that G^* is isomorphic to the geometric dual of G. In particular, also G^* is planar, and G is a combinatorial dual of G^*.”
Let G be a simple cycle dividing the plane in two faces, any two edges E^* are in a two cycle, therefore G^* has only two vertices in its embedding in the plane.
We can represent any non cyclic graph with a cycle G' and a path P connecting two elements of G'.
Since P is not a cycle the correspondent set of edges E^* cannot be a minimal cut, so the all the edges of the G^* must be parallel joining two points z_1 and z_2.
The edges incident to the vertex z_0 represent a cut in G^*, therefore G' is a cycle separating the vertex z_0 from G^*-z_0.
We draw P inside G' defining two cycles C_1 and C_2 respectively containing subset of edges E_1 and E_2, that correspond to E_1^* and E_2^* defining a cut for z_1 and z_2.
WHITNEY’S DUALITY – FROM COMBINATORIAL TO PLANARITY

The combinatorial dual implies an embedding in the plane of G

G is planar!
THANK YOU FOR THE ATTENTION!