KURATOWSKI'S THEOREM AND WHITNEY'S DUALITY

Giulio Malavolta

Graph on Surfaces

INTRODUCTION – PLANAR GRAPHS

A graph G is **EMBEDDED** in a topological space X if the vertices of G are distinct elements of the space and every edge of G is a simple arc connecting in X the two vertices which it joins in G, such that it's interior is disjoint from other edges or vertices

A graph is **PLANAR** if it can be drawn in the plane in such a way that no edges intersect

INTRODUCTION – POLYGONAL ARCS

An arc in a plane R² is a **POLYGONAL ARC** if is the union of a finite number of straight segments

If G is a planar graph, than G has a representation in the plane such that all edges are simple polygonal arcs

Define a space ϵ around each vertex such that it includes only incident edges

Define C as the straigh line connecting each space ε it's possible to draw all edges as polygonal arcs

INTRODUCTION – CLOSED ARCS

If C is a **CLOSED POLYGONAL ARC** in the plane then it divides the space in two connected regions, also called **FACES**, having C as its boundary o

 $\pi(z)$ = number of boundary segments touched by the the horizontal half line at the point z

 $\pi(z) \mod 2 = 1$ inner vertex $\pi(z) \mod 2 = 0$ external vertex

Any three points can be connected by the boundary with polygonal arcs

At **MOST** two connected components!

INTRODUCTION – EULER'S FORMULA

If G is a planar graphs where all edges are polygonal arcs, than G has exactly **VERTICES – EDGES + FACES = 2**

V - E + F = 2

Each face has a cycle of G as its boundary

INTRODUCTION – EULER'S APPLICATION

TRIANGULATION: connected plane graph with polygonal edges such that each face is a **3-CYCLE QUADRANGULATION**: connected plane graph with polygonal edges such that each face is a **4-CYCLE**

In a triangulation every edge bounds 2 faces and every face is composed by 3 edges 3f <= 2e

In a quadrangulation every edge bounds 2 faces and every face is composed by 4 edges 4f <= 2e

$$f = e -v + 2 \qquad E \le 3V - 6$$

$$f = e -v + 2 \qquad E \le 2V - 4$$

INTRODUCTION – K_5 AND K_{3,3}

The complete graph K_5 and the bipartite graph $K_{3,3}$ are $\ensuremath{\text{NON}}$ $\ensuremath{\text{PLANAR}}$

5 <= 30 – 6 does NOT hold!

6 <= 27 – 6 does NOT hold!

KURATOWSKI'S THEOREM

KURATOWSKI'S THEOREM

Lemma: "A graph is planar if and only if it does not contain a subdivision of K_5 or a subdivision of $K_{3,3}$ as a subgraph."

A **SUBDIVISION** of a graph G is a graph resulting from an addition of a new vertex between two vertices and the replacement of the edge with two new edges

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

A graph G is **STRAIGHT LINE EMBEDDED** if each edge is a straight line segment

If each bounded face of a straight embedded graph is convex then the embedding of G is said to be **CONVEX**

If G is a **3-CONNECTED** graph with no subdivision of K3,3 and K5 as a subgraph, then G has a **CONVEX EMBEDDING** in the plane

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

G is a 3-connected graph with a concave face

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

In a 3-connected graph there's at least one edge that can be contracted keeping the graph 3-connected

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

Deleting the edges incidents to z we define the cycle C

 \cap

 \mathbf{Z}

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

The neighbors of x define three paths along the cycle C

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

If the neighbors of y only belong to a single path than the graph G has a convex embedding

KURATOWSKI'S THEOREM – CONVEX EMBEDDING

Convex embedding!

KURATOWSKI'S THEOREM – K_5 SUBDIVISION

What if the neighbors of y are in more than one path?

KURATOWSKI'S THEOREM – K_5 SUBDIVISION

KURATOWSKI'S THEOREM – $K_{3,3}$ SUBDIVISION

What if the neighbors of y are alternate to the neighbors of x?

KURATOWSKI'S THEOREM – $K_{3,3}$ SUBDIVISION

KURATOWSKI'S THEOREM – GENERALIZATION

If a graph G of order >=4 contains no subdivision of K5 or K3,3 and the addition of any out of every the possible edges makes the graph non planar, then G is **3-CONNECTED**

Kuratowsi's theorem is valid for **3-CONNECTED** graphs Kuratowsi's theorem is valid for **ALL** graphs

WHITNEY'S DUALITY

WHITNEY'S DUALITY – 2-CONNECTED COMPONENTS

A **2-CONNECTED GRAPH** is a "non separable" graph such that no vertex is a cut, if any vertex were to be removed the graph remains connected

A 2-CONNECTED COMPONENT is a

2-connected subgraph in a multigraph

Each color corresponds to a 2-connected component

WHITNEY'S DUALITY – MINIMAL CUTS

In a connected multigraph G a set of edges E is called **SEPARATING** if G - E is disconnected in two non empty disjoint sets of vertices

A **CUT** (or separating edge set) E is **MINIMAL** if no proper subset of E is a separating set

Minimal cut

WHITNEY'S DUALITY – MINIMAL CUTS

Two edges e_1 and e_2 in a connected multigraph G belong to a minimal cut if and only if e_1 and e_2 are in the same 2-connected component of G

WHITNEY'S DUALITY – COMBINATORIAL DUAL

Being G a connected multigraph, G* is the **COMBINATORIAL DUAL** of G if:

1) There is **ONE-BY-ONE CORRESPONDANCE** of edges

2) For each set of edges E defining a **CYCLE** the combinatorial dual E* is a cut in G*

WHITNEY'S DUALITY – GEOMETRIC DUAL

The geometric dual of the graph G is defined as a graph G* with one **VERTEX** in each **FACE** of G and an **EDGE E*** crossing each **EDGE E** and joining the two vertices of the correspondent faces bounded by e

Geometric duals

WHITNEY'S DUALITY – GEOMETRIC DUAL PROPERTIES

If E is an edge set defining a **CYCLE** in G, than the corresponding E* is a cut in G*

WHITNEY'S DUALITY – GEOMETRIC DUAL PROPERTIES

If E is the edge set of a **FOREST** in G, then $G^* - E^*$ is connected (no cut)

 $\mathrm{G}-\mathrm{E}$ and geometric dual $\mathrm{G}^*\!/\mathrm{E}^*$

WHITNEY'S DUALITY

Lemma: "Let G be a 2-connected multigraps, then G is planar if and only if it has a combinatorial dual. If G^* is a combinatorial dual of G, than G has an embedding in the plane such that G^* is isomorphic to the geometric dual of G. In particular, also G^* is planar, and G is a combinatorial dual of G^* ."

$\begin{array}{ccc} COMBINATORIAL & \longrightarrow & GEOMETRIC & \longrightarrow & PLANARITY \\ DUAL & & DUAL \end{array}$

COMBINATORIAL DUAL

Let G be a simple cycle dividing the plane in two faces, any two edges E* are in a two cycle, therefore G* has only two vertices in its embedding in the plane

We can represent any non cyclic graph with a cycle G' and a path P connecting two elements of G'

Since P is not a cycle the correspondent set of edges E* cannot be a minimal cut, so the all the edges of the G* must be parallel joining two points z1 and z2

The edges incident to the vertex z0 represent a cut in G*, therefore G' is a cycle separating the vertex z0 from G*-z0

We draw P inside G' defining two cycles C1 and C2 respectively containing subset of edges E1 and E2, that correspond to E1* and E2* defining a cut for z1 and z2

The combinatorial dual implies an embedding in the plane of G

THANK YOU FOR THE ATTENTION!