
Fast Subexponential Algorithm for Non-Local
Problems on Graphs of Bounded Genus

Presented by Harry Zisopoulos

November 29, 2012

Motivation

I Many computational problems on graphs are NP-hard. Still,
exact solutions are sometimes required.

I Subexponential algorithms are a significant improvement over
exponential ones.

I Toy example : For n = 100

I 2
√
n = 210 = 1.024 ∗ 103

I 2n = 2100 = 1.2676506 ∗ 1030

Presentation’s topic

I We will focus on :

I Non-local graph problems: You must always consider the
entire graph in order to solve the problem. It is not possible to
solve it in a local ”neighborhood” of the graph.

I E.g. HAMILTONIAN CYCLE, TRAVELLING SALESMAN
PROBLEM , LONGEST CYCLE , . . .

I Main result: A 2O(
√
n) time algorithm , provided the graph

can be embedded on the torus.

I Extension: A 2O(
√
n) time algorithm , provided the graph has

bounded genus.

Roadmap

1. Introduce the necessary tools

1.1 Dynamic programming
1.2 Topological graph theory
1.3 Branch decomposition

2. Illustrate proof for HAMILTONIAN CYCLE on torus (main
focus)

3. Generalization to graphs of bounded genus.

Beginning our journey

1. Introduce the necessary concepts

1.1 Dynamic programming

Dynamic programming

I Algorithm design technique. We solve a problem by breaking
down to subproblems of smaller size, then combine the
solutions.

I Applied when the subproblem size is equal to the original
problem size, minus a constant.

I How it works: The same subproblems occur many times. By
storing the solutions their solutions the first time, we can
avoid costly computation later on.

An example of dynamic programming(1/2)

I TSP: Given a collection of cities and the
distance between each pair of them, find
the shortest path that visits all the cities
and returns to your starting point.

I Brute force: O(n!)

I Dynamic programming (Held-Karp 1962): O(n22n)

I Suppose that you want to visit all the capitals of the world.

I It would make sense to first consider subsets of capitals that
are nearby (e.g. in the same continent), and then solve the
problem for each subset separately. Then, you can find the
shortest connection between those individuals routes to
combine them.

I Can we generalize this?

An example of dynamic programming (2/2)

I Let V be the cities you want to visit. Then for every subset A
of V and for every node t ∈ A, compute the shortest path
that starts at s, runs through every vertex of A and ends at t.

I This path has length:
P(A, t) = minx∈A\{t} P(A\{t}, x) + d(x , t)

I Pick t that minimizes P(A, t).

I Note that you can compute this value for a subset A by
re-using your computation for those subsets that have smaller
size.

Dynamic Programming Requirements

I Works great on combinatorial optimization problems.

I However, there are two requirements:

I Principle of Optimality: An optimal solution to a problem
instance can be obtained by combining optimal solutions of the
subproblems.

I e.g. Finding the shortest path between two vertices.
I But not the longest simple path

I Overlapping subproblems: When solving the problem, the same
subproblems should appear many times. Otherwise, there is no
gain from storing the solutions.

I Note: If your approach doesn’t satisfy the conditions, it
doesn’t necessarily mean any approach won’t.

Roadmap

1. Introduce the necessary concepts

1.1 Dynamic programming
1.2 Topological graph theory

Surfaces

I We consider surfaces Σ that are compact, connected
2-manifolds without boundary.

I This definition is not as complex as it looks.

I Surfaces with the same genus are homomorphic. For example,

I S0 denotes the sphere.

I S1 denotes the torus.

Surface orientability

Figure: Orientable and non-orientable surfaces

A non-orientable surface

Figure: The Möbius Strip

Graphs on Surfaces

I A Σ-embedded graph G is a graph that can be ”drawn” on
the surface Σ, such that edges only meet at vertices.

I In general, this is not true for all drawings of G .

I Planar graphs are
Σ0-embedded.

I We will not distinguish between a graph and its drawing.

I We consider 2-cell embeddings =⇒
Faces are homomorphic to the open
disk.

I This includes the external face!

Graph Genus

I With each graph G we associate the following quantities:

I The orientable genus g(G) is equal to the minimum n s.t. the
graph G can be embedded in an orientable surface of
orientable genus n.

I The nonorientable genus g̃(G) is equal to the minimum n s.t.
the graph G can be embedded in a nonorientable surface of
non-orientable genus n.

I The Euler Genus eg(G) = min{2g(G), g̃ (G)}

Nooses

I An O-arc is a subset of Σ
homomorphic to a circle.

I A subset of Σ is called G -normal if
it meets G only on points that are
vertices.

I An O-arc that is G -normal is called
a noose. The length of a noose N
is denoted by |N|.

I A noose that ”visits” any region only once is called tight.

I Let Σ 6= S0 . The representativity rep(G) of a graph is the
length of the smallest noncontractible noose in Σ.

I Measures how dense a graph is embedded on the surface.

Cutting along a noose

I Given a graph G and a noncontractible tight noose N, we
obtain a graph G ′ obtained by ”cutting along” N as follows:

1. For every vertex N meets, it partitions
the vertex’s neighbors into two sets,
N1 and N2.

2. We remove this vertex v and we add
two new vertices v1 and v2.

3. We connect vertex v1 with the
neighbors in N1 and v2 with vertices in
N2.

I The vertices v1 and v2 for each v ∈ N
define two nooses, NX and NY

respectively. We call NX ,NY

cut-nooses.

Two important results

Proposition (1)

There exists a poly-time algorithm that, given a Σ-embedded graph
G , Σ 6= S0, finds a noncontractible tight noose of minimum size.

Proposition (2)

Let G be a Σ-embedded graph, Σ 6= S0. Let G ′ be the graph
obtained from G by cutting along a noncontractible tight noose N
on G . One of the following is true:

I G ′ can be embedded in a surface Σ′ with eg(Σ′) < eg(Σ).

I G ′ is the disjoint union of graphs G1 and G2 that can be
embedded in surfaces Σ1 and Σ2 s.t.
eg(Σ) = eg(Σ1) + eg(Σ2) and eg(Σi) > 0, i = 1, 2.

I In both cases, the result of this operation are graphs with
strictly smaller genus.

Roadmap

1. Introduce the necessary tools

1.1 Dynamic programming
1.2 Topological graph theory
1.3 Branch decomposition

Branch decomposition

I A useful tool for speeding up computations.

I It provides a structured way of considering
subsets of edges.

I A branch decomposition of a graph G is a
tuple < T , µ > , where:

I T is a tree where all inner vertices have
degree 3.

I µ is a bijection from the set of leaves of T to
the set of edges of G , E (G).

Branchwidth

I Each edge e ∈ T , partitions the sets of
edges G in two sets,Ae and Be .

I We define the middle set of e, as
mid(e) = V (Ae) ∩ V (Be).

I The width of a branch decomposition is maxe∈E(T) |mid(e)|.
I The branchwidth of G,bw(G), is the minimum width over all

branch decompositions of G .

Sphere cut decomposition

I A branch decomposition such that for
every e ∈ E (T), the vertices of mid(e)
define a tight noose.

I This noose defines two subgraphs,
which share only vertices of mid(e).

I We can visit the vertices of mid(e) in
order, if we traverse the noose
clockwise.

One more important result

Proposition (3)

Let G be a connected S0-embedded graph without vertices of
degree one. There exists a sc-decomposition of G of width bw(G).
Moreover, such a branch decomposition can be constructed in time
O(n3).

I Minimum width branch decomposition!

I Can be constructed efficiently!

I Actually a sphere-cut decomposition, so for each edge of the
decomposition, we have a tight noose on the graph!

Roadmap

1. Introduce the necessary tools

1.1 Dynamic programming
1.2 Topological graph theory
1.3 Branch decomposition

2. Illustrate proof for HAMILTONIAN CYCLE on torus (main
focus)

Identifying the problem

I Goal: Solve the HAMILTONIAN CYCLE problem in 2O(
√
n)

time for graphs that can be embedded on the torus (S1).

I HAMILTONIAN CYCLE: Given a graph
G , is there a cycle that visits each
vertex exactly once?

I Special case of TSP, where all distances
are 1.

I We can apply dynamic programming.

Solving the problem

I Goal: Solve the HAMILTONIAN CYCLE problem in 2O(
√
n)

time for graphs that can be embedded on the torus (S1).

I Intuition: On planar graphs, we can use dynamic programming
and sc-decompositions to obtain such an algorithm. This does
not apply to surfaces of higher genus (Proposition 3).

I Solution: Let G be a S1 graph.Cut along a tight noose N to
obtain a graph G ′ that can be embedded on S0 (Proposition
2).

I Identify the components of a Hamiltonian cycle in G ′. Use
them to reconstruct the Hamiltonian cycle in G .

Relaxed Hamiltonian Sets

I A cut of a Hamiltonian cycle C in G along a tight noose N
is a set of disjoint paths in G ′.

I Let NX and NY be the cut-nooses obtained from cutting G
along N.Also let xi ∈ NX and yi ∈ NY be duplicated vertices
of the same vertex in N.

I We call a set of disjoint paths P in G ′ relaxed Hamiltonian if:

1. Every path has its endpoints in NX and NY .
2. Vertex xi is an endpoint of some path P iff yi is an endpoint of

a path P ′ 6= P.
3. If one of xi ,yi is an inner vertex of a path, the other one is not

in any path.
4. Every vertex of G ′\(NX ∪ NY) is in some path.

From path sets to cycle

I A cut of a Hamiltonian cycle in G is a relaxed Hamiltonian set
in G ′.

I Do all relaxed Hamiltonian set in G ′ form a Hamiltonian cycle
in G ?

I No, but we can check for a single relaxed Hamiltonian set if it
does in linear time.

I So, if we check them all either we find a cut of a Hamiltonian
cycle in G ′ or we can say that there is no Hamiltonian cycle in
G !

I How many relaxed Hamiltonian sets are there?

Equivalent sets of disjoint paths

I We are mainly interested in the vertices that are part of the
cut-nooses, as long as every other vertex belongs to a path.
We can make this requirement precise.

I Two sets of disjoint paths P = (P1, . . . ,Pk) and
P’ = (P ′

1, . . .P
′
k) are equivalent if for all i the paths Pi and P ′

i

have the same endpoints and all inner vertices in P are also
inner vertices in P’.

Enumerating relaxed Hamiltonian sets

Lemma (1)

The number of different equivalence classes of relaxed
Hamiltonian sets in G ′ is O(23k), where k is the length of the tight
noose N.

I We can order the vertices of NX

and NY .

I The paths from NX to NY do
not cross.

I We can also have paths from a cut-noose to itself.

I If a vertex of a cut-noose is an inner vertex in a path, its
correspondent vertex in the other cut-noose is not in any path.

Reconstructing the Hamiltonian cycle

I A candidate K of an equivalence class of relaxed Hamiltonian
sets is a set of paths with vertices only in NX ∪ NY , satisfying
the first 3 conditions of the definition of a relaxed
Hamiltonian set.

I We are missing the vertices in G ′\(NX ∪ NY) that would
belong to some path.

I If we could find a relaxed Hamiltonian set P that is equivalent
to K , we could use P to reconstruct the Hamiltonian cycle.

Finding a relaxed Hamiltonian set P

I We use a rooted sc-decomposition of
G ′, < T , µ > and we perform dynamic
programming over middle sets, in a
bottom-up fashion.

I Each middle set defines a tight noose
Oe in G ′. Let Ge be the component of
G ′ that is bounded by Oe .

I All paths of P ∩ Ge start and end in Oe and Ge ∩ (Nx ∪ Ny).

I For each Ge , we keep track of the equivalence classes of sets
of disjoint paths with endpoints in Oe .

I When we reach the root, we will obtain the equivalence class
of the candidate K . Then we can reconstruct P by traversing
T from the root to the leaves.

Preliminaries for running time

Lemma (2)

For each candidate K and a given sc-decomposition of G ′ of width
`, the running time of the dynamic programming step of the
algorithm for K is O(2`nO(1)).

Lemma (3)

Let G be a S1-embedded graph on n vertices and G ′ the planar
graph obtained by cutting along a noncontractible tight noose.
Then bw(G ′) = O(

√
n).

Lemma (4)

Let G be a S1-embedded graph. Then rep(G) = O(
√

n).

Running time

1. Cutting along a tight noose can be done in polynomial time
(Proposition 1)

2. The number of all candidates of relaxed Hamiltonian sets is
O(23k)nO(1), by Lemma 1, where k is the length of the noose
of minimum size obtained.

3. We can construct an optimal sc-decomposition in polynomial
time.

4. Dynamic programming on a single candidate takes O(2`nO(1))
time.

5. The total running time is O(2`+3k)nO(1).

6. By applying lemmas 3 and 4, we get that the total running
time of the algorithm is 2O

√
nnO(1).

Roadmap

1. Introduce the necessary tools

1.1 Dynamic programming
1.2 Topological graph theory
1.3 Branch decomposition

2. Illustrate proof for HAMILTONIAN CYCLE on torus (main
focus)

3. Generalization to graphs of bounded genus.

Generalization to bounded genus

I The same running time, 2O(
√
n) can be achieved for graphs

with bounded genus.

I However, several modifications are needed:

1. We cut along a noncontractible tight noose many times, so we
get a set of cut-nooses that we have to handle carefully.

2. The definition of a relaxed Hamiltonian set of paths alters
accordingly.

3. Similar bounds can be proven for the branchwidth of G ′, the
number of different equivalence classes of relaxed Hamiltonian
sets and the representativity of G .

4. Other technical issues.

I Bonus: The same technique can be used to design
parameterized algorithms as well!

Concluding remarks

I The technique is used to solve non-local problems on graphs
of bounded genus.

I The first step is to ”planarize” these graphs by cutting along
tight nooses. We also define a more general problem on
planar graphs that is related to the original problem.

I We can then use planar graph techniques, such as dynamic
programming in sphere-cut decompositions to solve the
problem efficiently.

I We obtain algorithms with running time 2O(
√
n) for graphs of

bounded genus.

I This line of research is very active and there is a variety of
more recent results.

Sources used (1/2)

I I would like to thank the respective owners of the images I
used in the slides. The images were used for educational
purposes and they were retrieved from the following links:

1. TSP Example:
"http://lcm.csa.iisc.ernet.in/dsa/node187.html" ,
Lecture notes for ”Algorithms and Data Structures” , Y.
Narahari, Indian Institute of Science

2. Surfaces examples and K3,3 on the torus:
"http://www.personal.kent.edu/~rmuhamma/

GraphTheory/MyGraphTheory/embedding.htm" , Lecture
notes for ”Algorithmic Graph Theory” , Rashin Bin
Muhammad , Kent State University

3. Mobius strip:
"http://www.wpclipart.com/signs_symbol/optical_

illusions/illusions_2/Mobius_Strip.png.html"

"http://lcm.csa.iisc.ernet.in/dsa/node187.html"
"http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/embedding.htm"
"http://www.personal.kent.edu/~rmuhamma/GraphTheory/MyGraphTheory/embedding.htm"
"http://www.wpclipart.com/signs_symbol/optical_illusions/illusions_2/Mobius_Strip.png.html"
"http://www.wpclipart.com/signs_symbol/optical_illusions/illusions_2/Mobius_Strip.png.html"

Sources used (2/2)

4. Graph faces : http://www.math.lsa.umich.edu/mmss/

coursesONLINE/graph/graph5/" , Dale Winter , University
of Michigan

5. Sphere embedded graphs:
"http://11011110.livejournal.com/141365.html" ,
Blog of David Eppstein

6. Hamiltonian cycle example:
"http://en.wikipedia.org/wiki/File:

Hamiltonian_path.svg" , Wikipedia.

7. Many figures were taken from the paper ”Subexponential
parameterized algorithms” that can be found on
"http://www.sciencedirect.com/science/article/

pii/S1574013708000063"

http://www.math.lsa.umich.edu/mmss/coursesONLINE/graph/graph5/"
http://www.math.lsa.umich.edu/mmss/coursesONLINE/graph/graph5/"
"http://11011110.livejournal.com/141365.html"
"http://en.wikipedia.org/wiki/File:Hamiltonian_path.svg"
"http://en.wikipedia.org/wiki/File:Hamiltonian_path.svg"
"http://www.sciencedirect.com/science/article/pii/S1574013708000063"
"http://www.sciencedirect.com/science/article/pii/S1574013708000063"

