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Prerequisites and Motivation I 
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Definition : 
A spanning tree of a connected undirected Graph G = (V,E) is a minimal set 
of edges , that connect all vertices. 
Equivalently it is a maximal set of edges, that contains no cycle.           
                                                                                                                                           

Theorem (Kirchhoff’s matrix tree theorem): 
The number of spanning trees of G is equal to the absolute value of any cofactor 
of the Laplacian matrix of G.                 
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Prerequisites and Motivation II 
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 There are various settings where the number of spanning trees  
   or the cofactors of the Laplacian play an important role. 
 
 In our case the cofactors of the Laplacian are needed in conjunction with 
   the embedding of 3D-polytopes on preferably small integer grids. 
 
 For this problem only the spanning trees of  planar graphs are taken into 
   consideration. 
 
 
 



Prerequisites and Motivation III 
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 We want  to  bound the number of spanning trees of planar graphs  from 
   above. 
 
 From this we get bounds for the cofactors of the Laplacian and therefore  
   bounds on the grid size of the 3D-polytope  embedding. 
 
 There are also effects on some related problems. 
 
 Such bounds were known before, but the  approach  chosen by  the  
   authors  leads  to improved results. 
 



3D-polytope integer grid 
embedding 

Graphs on Surfaces Winter Term 12/13 4 

Definition : 
The edge graph G(P) of a convex polytope  P  is the 
connected graph whose vertex set is the vertex set of the polytope P,  
and two vertices are adjacent in the graph if they are endpoints of a 1-face of P.  
                     
            
 
Definition : 
A graph G=(V,E) is said to be 3-connected  if the graph remains connected  
when at most 2 vertices are deleted from the graph. 
                                                                                                                                             
           

 
 
 
 
 

Why are only planar and 3-connected graphs of interest? 
 
 
 
           



3D-polytope integer grid 
embedding (continued) 
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Why are only planar and 3-connected graphs of interest? 
 
Theorem (Steinitz): 
A graph G is the edge graph of a convex 3D-polytope if and only if  
G is simple (no loops, no multiple edges), planar and 3-
connected. 
         

(All graphs in this context are simple.) 
 
           



Steinitz: Intuition 
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(Image from en.wikipedia.org/wiki/Steinitz_theorem ) 



Combinatorially Equivalent 
Polytopes: Intuition 
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2 polytopes that are combinatorially equivalent to the cube and to each other 



The idea of integer grid 
embeddings: Dodecahedron 
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A citation that links polytope 
embedding to spanning trees 
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“To construct a 3-polytope with a given combinatorial 
structure, we follow the approach described in […] : 
we construct a planar equilibrium embedding for a specified 
self-stress and lift it to a polyhedral surface via the Maxwell-
Cremona correspondence. The analysis of the determinant of 
the linear system of equations which is used to define the 
equilibrium embedding  
leads directly to the number of spanning trees of the graph, 
via the Matrix-Tree theorem. “ 
 
from Rote, G.: “The number of spanning trees in a planar 
graph.” 2005. 



Face cycles and triangles 
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 A face cycle in a graph G is a cycle with edges in the boundary of a 
face of G. 
 
 
 A face cycle can not surround “interior” vertices and edges.  
 
 
 A face cycle  with three edges is called a triangle. 
 
 
 Hence there exist 3-cycles, that are not  triangles ( e.g. a big 3-cycle, 
that contains other nodes and edges in its “interior”) 



Notations and Definitions 
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n will denote the set of all planar graphs with n vertices. 

For              let   t(G) denote the number of its labeled spanning trees . 
nG 

Let for all n  T(n) be the maximal number of spanning trees  that a G  n 

can have:  
T(n) = )}.({max Gt

nG 

 
 

We want  to bound T(n) from above for growing n; more precisely 
we search for an   such that for n large enough:  T(n)   n 
 



Triangulations 
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 If adding an edge destroys  the planarity property, then the graph is called 
   maximal planar.  
 
 Such a graph has only faces, that are bounded by  three edges, and it’s 
  called a triangulation. 
 
 
 The graph that realizes the maximum T(n) must be a triangulation: 
   adding edges to a planar graph leads to more spanning trees. 
 
 
 Every plane triangulation with at least 4 vertices is also 3-connected. 
 
   
 Hence only the (simple) planar triangulations with n vertices are examined. 
 
 



Planarity must be used 
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n3.5 was the best known upper bound.  
 It was proved  by a method using the dual graph. 

 
In the proof the triangulation property of the original graph is used, but not its 
planarity property. 
 
This leads to the main motivation of this paper: 
A proof method is used, that  benefits both from  the planarity and the 
triangulation of the graph family with n vertices. 
 
This method is called “refined outgoing edge approach”. 
Why ‘refined’?: 
An older variant of the method failed to improve the old bound. 
 



The outgoing edge approach I 
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First  we consider each edge of G as a pair of directed arcs. 
 
Definition: 
A directed graph is called outdegree-one if  some designated vertex  w has no  
outgoing  arcs, and every other vertex is incident to exactly one outgoing  arc. 
                       
 
Every spanning tree of an undirected graph can  -for a given special node w- 
be transformed into exactly one associated outdegree-one  graph by selecting  
edges and orienting them as arcs towards w. 
 
Since spanning trees contain all vertices, w can be fixed in advance. 



Graph G (not a triangulation) 
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Outdegree-one Graph w/ cycles 
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special vertex: no outgoing arc 

 2-cycle 

3-cycle as triangle 



Outdegree-one Graph w/o 
cycles: oriented spanning-tree 
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special vertex: no outgoing arc 



The outgoing edge approach II 
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 Not every outdegree-one graph H is associated with a spanning tree, 
   because H can contain directed cycles, if the original graph G contains 
   associated undirected cycles. 
 
 
 Especially edges of G could be transformed into a 2-cycle in H. 
 
 
 Any cycle in H disconnects H. 
 
 
 
 
 
 



The outgoing edge approach III 
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The number of different outdegree-one graphs  (contains  # of spanning trees): 
Let di be the degree of the vertex vi in G. For every vi we have di choices 
how to select ist outgoing edge. 
 
 
So we have                   different outdegree-one graphs in G.  
  

 

This is a number smaller than 6n  (6 is coming from a simpler approach), 
if G is planar.   
 
But : the simple approach gives no improvement over   
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The outgoing edge approach IV 
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Now a basic idea: 
A  spanning tree is a maximal set of edges, that contains no cycle. 
 
Outdegree-one graphs without cycles are exactly the oriented  spanning 
trees of G. 
 
Let Pnc be the probability that the random outdegree-one graph generated 
by picking an outgoing edge for every vertex of G uniformly at random 
contains no  
cycle.  
Then:                                           where G is not necessary planar.    
  
 
 
 
 

nc

n
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Cycles and Outdegree-One Graphs I 
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 Assume that G contains s cycles, enumerated in some order. 
 Let Ci be the event that the i-th cycle occurs in a random outdegree-one graph, 
   let Cc

i be the event that the i-th cycle does not occur. 
 
 Two cycles are independent :  They do not share a vertex. 

 The two events  Ci and Cj are independent (dependent)  
     The two corresponding cycles are independent (dependent). 
 
Definition :  
The events  C1 ,…, Cl have mutually exclusive dependencies,  
if the dependency of  ( Ci , Cj ) implies Pr[  Ci  Cj ] = 0. 
                   

Definition :  
The events  C1 ,…, Cl have union-closed independencies, 
if  the independence of the pairs ( Ci ,Cj1 ), … , ( Ci ,Cjk ) implies   
independency of Ci  and (Cj1  …  Cjk )                                                               
 
 
 



Cycles and Outdegree-One 
Graphs II 
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All events Ci obviously have mutually exclusive dependencies and  
union-closed independencies. 
 
This leads to the following  
 
Lemma (Main Lemma):  
The events  C1 ,…, Cl have  mutually exclusive dependencies and 
union-closed 
independencies, and from this follows for 1 < k < l 
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Probability of cycles and vertex degrees 
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 The idea behind the Main Lemma is to express Pnc in such away that 
it is equal to the left hand side of the inequation. 
 
 The rhs then gives an upper bound on Pnc . 
 
 The rhs of the inequation is easier to handle if we know the 
  probabilities 
  Pr[Ci]  or (1 - Pr[Ci] ). 
 
 But combinatorially it holds that 
   Pr[Ci] = 1 / (dadb) if the i-th cycle is a 2-cycle on the vertices va,vb. 
 
 
 Pr[Cj] =                        if the i-th cycle is at least a 3-cycle on the set Z. 
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Bounding the probability of cycles appearing I 
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Let  s  be the number of cycles in G after introducing 2 arcs per edge. Then 

]Pr[
1

s

j

c

jnc CP




The rhs of the Main Lemma also needs information about the dependency 
  of cycles. 
 
 Therefore the computation is restricted to 2-cycles and 3-cycles that 
   are triangles. 
 
 Discarding larger cycles is possible: 
   including more cycle lengths lead to a smaller Pnc  , and so  
   we still have an upper bound after discarding. 
 
  Let s2 be the number of 2-cycles of G, and s3 the number of  triangles. 
    Then we consider s:= s2+ s3 cycles. 



Bounding the probability of cycles appearing 
II 
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 Matching the left hand side of the Main Lemma: 
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This is the probability that no 2-cycle occurs under the assumption 
that no triangle occurred. 
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, the probability that no triangle occurs . 

Another matching of the left hand side is (k = 1, l = s3): 



Bounding the probability of 
cycles appearing III 
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In total we then have from the Main Lemma: 
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Planarity occurs for the first time: 2-extensions  of 2- and 3-cycles 
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ai, bi, ci are vertex degrees 

In the tuples we have a uniquely determined clockwise ordering of degrees.  
Possible because G is planar and 3-connected:  
 If a graph is planar and 3-connected its facial structure is uniquely determined 
(Whitney). 



Transforming the problem into a 
linear program I 
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The main idea:  
construct a linear programming problem using the signatures of the 
2-extensions of the 2-cycles/triangles 
 
Why does this make sense? 
Because  the signatures of the 2-extensions of the cycles  
can be used to describe whether two cycles are dependent. 
 
To achieve this, the sum above is rewritten,  
such that cycles with identical signatures are grouped together. 
 
 



Transforming the problem into a linear program II 
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1. The new sums range over all feasible signatures 
2. The number of 2-extensions of 3-cycles with signature (i,j,k,A,B,C)  

 is denoted with fijk(A,B,C) 
3. The number of 2-extensions of 2-cycles with signature (i,j,A,B)  

 is denoted with fij(A,B) 
4. These f-variables will be the variables of our LP-Program 

 



Coefficients of the objective function = 
Dependency of cycles expressed with signatures 
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Pij / Pijk are no variables, since they belong to fij  / fijk  

and hence they are fixed by i,j,k,A,B,C, and are coefficients 

These are probabilities that certain 2-cycles and 3-cycles do not occur 
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Idea: if we can express the whole sum log t(G) with the f-variables, 
          then an objective function for the LP can be obtained. 
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.log:
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Now the f-variables, which are signature counters, must come into play. 
 

 we distribute the whole sum D to different types of signatures. 

 
 
Let 0  i  1, i = 1, …,4. Let  

 
Then D can be split into four parts (as a weighted sum): 
Di := iD, i = 1, … , 4 
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 Every vertex va is part of da 2-cycles. 
 
 Every vertex va is part of da triangles (triangulation) 
 
Every vertex is part of a 2-extension of a 2- or 3-cycle(triangle) 

 
The log-sum of the degrees D can be reconstructed in 4 ways by using  

    2-cycles,  2-extensions of 2-cycles, triangles and 2-extensions of triangles. 
 
This is what is called a charging scheme:  
 
1. the log di are distributed via the edges of a vertex (edges  are charged) 
2. what every 2-cyle, 3-cyle or 2-extension of a cycle gets from his  
    incident neighbors sums up to its “personal” portion of the log-sum D. 
3. the portions are grouped into identical signatures 

 
 



Charging scheme example: triangles 
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d:j 

d:i 

d:k 

log j/j 

log k/k 

log i/i 

Every triangle incident to vi   
gets  log i/i from vi ,  
every triangle incident to vj   
gets  log j/j from vj   
 
 
 
 

        and every triangle  
        incident to vk 

        gets log  k/k from vk . 
 
 

d:i means that 
vertex vi has 
degree i.   
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Charging scheme for 2-extensions of 2-cycles 
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Example: 2-extensions of 2-cycles 
Let va vb be an edge in G and let vr vb be a vertex adjacent 
to va .   
Let da= i. Let dr= r.  
Distributing log dr uniformly, assigns every 2-extension with 
“endpoint” vr the fraction of 
log dr /(dr (i − 1))  = log r/(r(i − 1)) from vr .  

 log r/r 

vb 

vr 

va 

(log r/r)/(i-1) =  log r/(r(i − 1))   
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Di := iD, i = 1, … ,4 or alternatively    

 
D1 has a relation to 2-cycles, D2 has a relation to 2-extensions of 2-cycles, 
D3 has a relation to triangles, D4 has a relation to 2-extensions of triangles. 
 
The i –parameters are estimators of the fraction that 2-cycles contribute 

to the whole log-sum, of the fraction that triangles contribute to the whole 
log-sum and so on. 
 
These parameters will be fixed later, based on experimental data. 

-values used by the authors were (for i = 1, … ,4): 0.3, 0.25, 0.225, 0.225. 
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From this we get: 
 
D1 = 1  ( D =                   only expressed with the help of 2-cycles) 
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D2 = 2  ( D =                   only expressed with the help of 2-extensions of 2-cycles) 
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D3 = 3  ( D =                   only expressed with the help of 3-cycles) 
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D4 = 4  ( D =                   only expressed with the help of 2-extensions of 3-cycles) 
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Objective Function 
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                                                                                       can now be bounded from above 
 
  using  signatures and f-counting-variables, and the upper bound is 
  the objective function of an LP and thus has to be maximized. 
 
  The objective function is split into an fij-part and an fijk-part: 
 
  (G2)  
 
 
  (G3)   
 
  

  Both optimal values contribute to the complete solution. 
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Counter-Example 
 
K5 : 10 “triangles” 
charged with 0.75 each 
total sum = 7.5 > n 
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Constructing LP-constraints: 
planarity is used for the 2nd time 
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Necessary  LP-constraints that hold for n-vertex planar graphs are: 
 
                                                                                                      (1) 
 
 
                                                                                                      (2) 
 
 
                                                                                                      (3) 
 
 
                                                                                                      (4) 
 
This is a re-usage of the charging scheme with charge 1 for every vertex. 
 
Why must this hold for planar graphs? 
Edges are charged. What exactly do they delimit? 
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Necessary Constraints II 
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Every 2-cycle is counted by some fij-variable; let m be the number of edges: 
 
                                                      (5)  
 
 
Only 3-cycles that are triangles are considered, hence the sum over all 
fijk-variables equals the number of triangles, which in planar graphs is at most 2n. 
 
                                                      (6) 
 
 
From Euler’s formula: 
                                                      (7) 
 

mBAf
BAji

ij 
,,,

),(

nCBAf
CBAkji

ijk 
,,,,,

2),,(

nm 3



Necessary Constraints III 
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 Necessary constraints: 
   G planar  Constraint must hold  or  
   Constraint does not hold  G is not planar. 

 
 So by constraints (1) – (7) we keep all planar graphs in the set of graphs,  
   that fulfill the constraints. 
   (1) – (7) hold at least for all planar graphs. 
 
 There might be graphs that are not planar, but fulfill (1) – (7). 
   Only interesting, if they disturb the upper bound by making it greater. 
 
  Some of these non-planar graphs can be excluded step by step using  
    further constraints. 
    But only in one special case this gave an improvement of the upper bound.  



2 LP‘s 
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LP-2C derived from the 2-cycles: 
 
Maximize                                                                     under the constraints 
 
(1), (2), (5) and (7) 
 
 LP-3C derived from the 3-cycles: 
 
Maximize                                                                          under the constraints 
 
(3),(4),(6)  
 
 



Roadmap for linear optimization 
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So far we can maximize the number of spanning trees of a planar graph with 
n vertices t(G) by solving the two LP’s. 
 
But:  
we want to have a solution that is asymptotical for  growing n 

 we normalize the LP’s : divide them by n 
 n is not contained in the problem anymore 

 
Consequences: 
all information contained in n is lost  
- dividing by n eliminates the largest possible vertex degree of n-1 
- dividing by n leads to infinitely many possible signatures  and 
  thus to an LP with infinitely many f-variables 
 
Solution: 
Solve the dual LP. 
 



Roadmap part II: Duality 
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The dual problem is a minimization, where we have 3 variables i, i= 1,…,3:  

one for each primal constraint,  
but now there are infinitely many dual constraints. 
 
 
Weak duality theorem: 
any point in the feasible area of the dual problem is an upper bound for 
the primal solution 

 find such a feasible point ! 
 
 



Roadmap part III: 
Solving the Dual Problem 
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How to solve the dual program with infinitely many constraints? 
 
1. Make some ‘good’ choices for the i values. 

 
2. fij with i,j far away from 6 will probably be zero 
      the corresponding constraints in the dual problem will not reach equality. 

 
3. Under assumptions 1., 2. construct a problem with only finitely  
     many constraints  and find a feasible point for these constraints. 
 
4. Now there is a ‘good’ chance, that all other constraints also hold  
    for this feasible point. 
 
5. Very tedious job:  
    PROVE that ALL dual constraints are fulfilled for the candidate point. 
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e^(0.180948 + (0.232445 * 3) + 0.0980332 + 0.192612 + (0.247984 * 2)) = 5.2851 
 

This computation yields  because log n = n log , and we had divided by n. 
 

n3.5

A 3-connected planar graph must contain always a triangle, a quadrilateral face 
or a pentagonal face    leads to restricted problems 



Let G be a planar graph with n vertices. The number of spanning trees of G is at 
most O(5.28515n ).   
If G is 3-connected and contains no triangle, then the number of its spanning 
trees is bounded by O(3.41619n ).  
If G is 3-connected and contains no triangle and no quadrilateral, then the 
number of its spanning trees is bounded by O(2.71567n ).                                    

Main Results 
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Main Theorem: 

 

Corollary (3D polytope integer grid embedding): 
The grid size needed to realize a 3D polytope with integer coordinates is bounded 
by O(147.7n ) (best former bound O(188n )).   
For grid embeddings of simplicial 3d polytopes the bound is O(27.94n ) 
(best former bound O(28.444…n )).  
 
 

 



Limitations of the Outgoing-edge approach 
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It is not easy to get better bounds with this approach: 
 
1. Additionally exclude larger cycles? (yields a smaller and more exact Pnc)  
    - leads to a much more complicated formulation of the LP problem  
      (case distinctions) 
   -  verifying all dual constraints for candidate points is probably intractable 
 
2. The outgoing-edge approach is local. Make it more global by analysing 
     ‘extensions of extensions’? 
    - same drawback as above: probably too complicated 
 
3. Using other enumeration schemes for enumerating the cycles? 
     Might lead to an improvement.  
 
4. Using further constraints in the primal LP’s? 
 



Summary I 
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The specific idea of the refined outgoing-edge approach  
  lies in the introduction of signatures for triangulations . 
 
 Since we only deal with planar triangulations it is possible to define  
   such signatures  which describe the local environment of every node:  
    
   How  - in terms of node degrees of the neighbors - do the 2-cycles,  
   triangles, 2-extensions of 2-cycles and 2-extensions of triangles  
   for every vertex  look like? 
 
 This gives us an abstract description of the local environment  
   of every vertex, without looking at any concrete graph. 

 
 Now it is assumed that an outdegree-one graph is randomly chosen. 
   Is it a spanning tree or not? 
 
 



Summary II 
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 By grouping the identical signatures into counting variables,  
   the desired property, that a random selection of outgoing edges must not  
   contain cycles, can be expressed  in the signature counters. 
 
 The basic inequality that gives an upper bound on the number of spanning 
   trees comes from the rhs of the Main Lemma, which then is 1:1  
   translated into  
   a term of signature counting variables and their coefficients. 
 
 The coefficients are numbers that can be computed from the  
   signature parameters, and they contain the ‘exclude-the-cycles’ condition. 
 
 Hence the rhs of the Main Lemma is translated into a maximizing Linear  
   Program, with the signature counters as variables. 
 
The condition that only planar graphs are examined is packed into the  
   LP-constraints. 



Summary III 
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 The whole approach is very generous, because  almost all cycles are  
   not excluded, and also some non-planar graphs are not excluded by 
   the LP-constraints. 
 
 Nevertheless  the old bound is improved from (5+(1/3))n to 5.28515n. 
 
 How can one find an upper bound on the number of spanning trees 
   in planar graphs, or more precisely in triangulations? 
 
   By looking at and counting  small local neighborhoods of vertices in  
   outdegree-one graphs with identical signatures , ensuring that at least 
   small cycles are excluded,  
   hoping that the bound, i.e. the objective value of the LP will be better 
   than (5+(1/3))n , which luckily was the case. 
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Transforming the problem into a linear program 
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Dual Problems written down 
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