

Faster minimum spanning trees in bounded genus
graphs

Presented by Blaga Davidova

13.12.2012

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

History

the history of MST problem begins in 1926 with the work of
Boruvka, who gave an efficient algorithm for the problem.

Boruvka’s work was further extended by Jarnik, in mostly
geometric setting.

Unfortunately, after 1950 Jarnik's algorithm had to be
rediscovered several times.

In the next 50 years, several significantly faster algorithms
were discovered

The current speed record is held by Chazelle and Pettie which
achieve time complexity −Ο(m*α(m, n)), where m and n are
the number of vertices and edges of the graph and α(m, n) is
an inverse of the Ackermann's function

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

Comparison Oracles

When we analyze and describe MST algorithms we will make
the following assumptions:

The weights of all edges are distinct

Instead of numeric weights we are given a comparison
oracle

The oracle is a function that answers questions of type “Is
w(a)<w(b)?” in constant time

This will conveniently shield us from problems with
representation of real numbers in algorithms

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

Boruvka's Algorithm

Jarnik's Algorithm

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

 Boruvka's Algorithm

The oldest MST algorithm

Idea: grow a forest in a sequence of iterations until it becomes
connected

We start with a forest of isolated vertices

In each iteration we let each tree of the forest select the lightest
edge of those having exactly one endpoint in the tree (we will call
such edges the neighboring edges of the tree)

We add all such edges to the forest and proceed with the next
iteration

Running time: O(mlogn)

Boruvka's Algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽a forest consisting of vertices of G and no edges.

2. While T is not connected:

3. For each component T
i
 of T , choose the lightest edge e

i

from the cut separating T
i
 from the rest of T .

4. Add all e
i
 ’s to T .

Output: Minimum spanning tree T .

Jarnik's Algorithm

discovered independently by Jarnik, Prim and Dijkstra

Similar to the Boruvka's algorithm

instead of the whole forest it concentrates on a single tree

Idea: starts with a single vertex and it repeatedly extends the
tree by the lightest neighboring edge until the tree spans the
whole graph.

Running time: using binary heaps O(mlogn)

using Fibonacci heaps O(m + nlogn)

Jarnik's Algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽a single-vertex tree containing an arbitrary vertex of G.

2. While there are vertices outside T :

3. Pick the lightest edge uv such that u∈V(T) and v∉V(T)

4. T⇽T + uv

Output: Minimum spanning tree T .

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

Contractive algorithms

classical algorithms - based on growing suitable trees

Idea – reformulated them in terms of edge contraction

Instead of keeping a forest of trees, we can keep each tree
contracted to a single vertex

Potentially speeding up the calculation at the expense of
having to perform the contractions.

Contractive version of the Boruvka’s
algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽∅

2. l(e)⇽e for all edges e. (Initialize the labels.)

3. While n(G) > 1:

For each vertex v
k
 of G, let e

k
 be the lightest edge

incident to v
k

T⇽T ∪{ l(e
1
), . . . , l(e

n
)} (Remember labels of all

selected edges.)

6.Contract all edges e
k
, inheriting labels and weights

7.Flatten G (remove parallel edges and loops).

Output: Minimum spanning tree T .

Running Time?

Lemma. The i-th Boruvka step can be carried out in time
O(m

i
).

Proof.

contractions can be performed in linear time

Flattening on RAM:

sort edges lexicographically by 2-pass bucket sort;

coping with sparse arrays

Running Time?
Theorem. The Contractive Boruvka’s algorithm finds the MST
of the input graph in time O(min(n2, mlogn)).

Proof.

Why O(mlogn) ?

We have O(logn) number of iteration

For each iteration we waste O(m) time

Why O(n2)?

In each iteration the number of vertices drops at least by a
factor of 2

Therefore n
i
≦n/2i .

we have m
i
≦(n

i
)2 as the graphs G

i
 are simple

 total time spent in all iterations is O(∑
i
n

i

2)=O(∑
i
n2/4i)=O(n2)

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

Minor-Closed Graph Classes

Definition. A graph H is a minor of a graph G (written as H≼G)
iff it can be obtained from a subgraph of G by a sequence of
simple graph contractions.

Definition. A class C of graphs is minor-closed, when for every
G∊C and every minor H of G, graph H lies in C as well. A
class C is called non-trivial if at least one graph lies in C and
at least one lies outside C.

Example. Non-trivial minor-closed classes include:

planar graphs

graphs embeddable in any fixed surface

graphs of bounded tree-width or path-width.

Minor-Closed Graph Classes

Definition. Let G be a graph and C be a class of graphs. We
define the edge density ϱ(G) of G as the average number of
edges per vertex, i.e., m(G)/n(G). The edge density ϱ(C) of
the class is then defined as the infimum of ϱ(G) over all G∊C.

Theorem. Every non-trivial minor-closed class of graphs has
finite edge density.

Minor-Closed Graph Classes

Theorem. (MST on minor-closed classes) For any fixed non-
trivial minor-closed class C of graphs, the Contractive
Boruvka’s algorithm finds the MST of any graph of this class in
time O(n).

Proof.

The i-th phase runs in time O(m
i
)

we have n
i
≤n/2i,

each G
i
 is produced from G

i−1
 by a sequence of edge

contractions, thus G
i
's are minors of the input graph

Each G
i
 belong to C and by the Density theorem m

i
≤ϱ(C)n

i

 The time complexity is ∑
i
O(m

i
) = ∑

i
O(n

i
) = O(∑

i
n/2i) = O(n).

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

Iterated Algorithms

Idea - we will remember the vertices adjacent to T and for
each such vertex v we will maintain the lightest edge uv such
that u lies in T;

We will call these edges active edges and keep them in a
Fibonacci heap, ordered by weight

When we want to extend T by the lightest edge, it is sufficient
to find the lightest active edge uv and add this edge to T
together with the new vertex v

Update active edges

Iterated Algorithms

Input: A graph G with an edge comparison oracle.

1. v
0
⇽an arbitrary vertex of G.

2. T⇽a tree containing just the vertex v
0
.

3. H⇽a Fibonacci heap of active edges stored as pairs (u, v)
where u∈T, v∉T , ordered by the weights w(uv), and initially
empty.

4. A⇽a mapping of vertices outside T to their active edges in the
heap; initially all elements undefined.

5. Insert all edges incident with v
0
 to H and update A accordingly.

Iterated Algorithms

6. While H is not empty:

7. (u, v)⇽DeleteMin(H).

8. T⇽T + uv.

9. For all edges vw such that w∉T :

10. If there exists an active edge A(w):

11. If vw is lighter than A(w), Decrease A(w) to (v, w)

 in H.

12. If there is no such edge, then Insert (v, w) to H and
set A(w).

Output: Minimum spanning tree T .

Running Time

Theorem. (Fibonacci heaps)

The Fibonacci heap performs the following operations with the
indicated amortized time complexities:

Insert (insertion of a new element) in O(1)

Decrease (decreasing the value of an existing element) in O(1)

Merge (merging of two heaps into one) in O(1)

DeleteMin (deletion of the minimal element) in O(log n)

Delete (deletion of an arbitrary element) in O(log n)

Running Time

Theorem. Using Fibonacci heaps we can find the MST of the
input graph in time O(m + n log n).

Proof.

The time complexity is O(m) plus the cost of the heap
operations.

The algorithm performs at most one Insert or Decrease per
edge and exactly one DeleteMin per vertex.

There are at most n elements in the heap at any given time

Using the previous theorem the operations take O(m+nlogn)
time in total.

Running Time

Corollary. For graphs with edge density Ω(log n), this
algorithm runs in linear time.

Content

1. History

2. What is Comparison Oracle?

3. Classical MST Algorithms

4. Contractive MST Algorithms

5. Minor Closed Graph Classes

6. Iterated Algorithms

7. Combining MST Algorithms

Combining MST algorithms

 the improved Jarnik’s algorithm runs in linear time for
sufficiently dense graphs.

In some cases, it is useful to combine improved Jarnik's
algorithm with another MST algorithm, which identifies a part
of the MST edges and contracts them to increase the density
of the graph.

For example, we can perform several Borvka steps and then
find the rest of the MST by the Active Edge Jarnik's algorithm.

Contraction of MST Edges

Lemma. Let G be a weighted graph, e an arbitrary edge of
mst(G), G/e the multigraph produced by contracting e in G,
and π the bijection between edges of G e and their
counterparts in G/e. Then mst(G) = π −1 [mst(G/e)] + e.

Mixed Boruvka-Jarnık's Algorithm

Input: A graph G with an edge comparison oracle.

1. Run loglogn Boruvka steps, getting a MST T1 .

2. Run the Active Edge Jarnık’s algorithm on the resulting
graph getting a MST T2 .

3. Combine T1 and T2 to T as in the Contraction lemma

Output: Minimum spanning tree T

Running Time

Theorem. The Mixed Boruvka-Jarnik's algorithm finds the
MST of the input graph in time O(mloglogn).

Proof.

The first step takes O(mloglogn) time and it gradually
contracts G to a graph Gʹ of size mʹ≤m and nʹ≤n/ logn

The second step then runs in time O(mʹ+nʹlognʹ) =O(m)

 Both trees can be combined in linear time

Conclusion

We presented algorithm for the MST problem which run in
deterministic linear time for any class of graphs closed on
graph minors

We presented algorithm for the MST problem which run in
O(mloglogn) time for any graph

But the question for the general version of the problem is still
open – can we find MST algorithm which runs in linear time for
any graph?

References

Graph Algorithms - Martin Mares

Two Linear Time Algorithms for MST on Minor Closed Graph
Classes – Martin Mares

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

