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History 

the history of MST problem begins in 1926 with the work of 
Boruvka, who gave an efficient algorithm for the problem.

Boruvka’s work was further extended by Jarnik, in mostly 
geometric setting.

Unfortunately, after 1950 Jarnik's algorithm had to be 
rediscovered several times.

In the next 50 years, several significantly faster algorithms 
were discovered

The current speed record is held by Chazelle and Pettie which 
achieve time complexity −Ο(m*α(m, n)), where m and n are 
the number of vertices and edges of the graph and α(m, n) is 
an inverse of the Ackermann's function 
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Comparison Oracles

When we analyze and describe MST algorithms we will make 
the following assumptions:

The weights of all edges are distinct

Instead of numeric weights we are given a comparison 
oracle

The oracle is a function that answers questions of type “Is 
w(a)<w(b)?” in constant time

This will conveniently shield us from problems with 
representation of real numbers in algorithms
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 Boruvka's Algorithm

The oldest MST algorithm

Idea: grow a forest in a sequence of iterations until it becomes 
connected

We start with a forest of isolated vertices

In each iteration we let each tree of the forest select the lightest 
edge of those having exactly one endpoint in the tree (we will call 
such edges the neighboring edges of the tree)

We add all such edges to the forest and proceed with the next 
iteration

Running time: O(mlogn)



  

Boruvka's Algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽a forest consisting of vertices of G and no edges.

2. While T is not connected:

3.  For each component T
i
 of T , choose the lightest edge e

i
 

from the cut separating T
i
 from the rest of T .

4. Add all e
i
 ’s to T .

Output: Minimum spanning tree T .



  

Jarnik's Algorithm

discovered independently by Jarnik, Prim and Dijkstra

Similar to the Boruvka's algorithm

instead of the whole forest it concentrates on a single tree

Idea: starts with a single vertex and it repeatedly extends the 
tree by the lightest neighboring edge until the tree spans the 
whole graph.

Running time:  using binary heaps O(mlogn)

using Fibonacci heaps O(m + nlogn)



  

Jarnik's Algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽a single-vertex tree containing an arbitrary vertex of G.

2. While there are vertices outside T :

3. Pick the lightest edge uv such that u∈V(T) and v∉V(T)

4. T⇽T + uv

Output: Minimum spanning tree T .
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Contractive algorithms

classical algorithms - based on growing suitable trees

Idea – reformulated them in terms of edge contraction

Instead of keeping a forest of trees, we can keep each tree 
contracted to a single vertex

Potentially speeding up the calculation at the expense of 
having to perform the contractions.



  

Contractive version of the Boruvka’s 
algorithm

Input: A graph G with an edge comparison oracle.

1. T⇽∅

2. l(e)⇽e for all edges e. (Initialize the labels.)

3. While n(G) > 1:

For each vertex v
k
 of G, let e

k
 be the lightest edge 

incident to v
k

T⇽T ∪{ l(e
1
), . . . , l(e

n
)} (Remember labels of all 

selected edges.)

6.Contract all edges e
k
, inheriting labels and weights

7.Flatten G (remove parallel edges and loops).

Output: Minimum spanning tree T .



  

Running Time?

Lemma. The i-th Boruvka step can be carried out in time 
O(m

i
).

Proof. 

contractions can be performed in linear time 

Flattening on RAM: 

sort edges lexicographically by 2-pass bucket sort; 

coping with sparse arrays 



  

Running Time?
Theorem. The Contractive Boruvka’s algorithm finds the MST 
of the input graph in time O(min(n2, mlogn)).

Proof. 

Why O(mlogn) ?

We have O(logn) number of iteration

For each iteration we waste O(m) time

Why O(n2)?

In each iteration the number of vertices drops at least by a 
factor of 2

Therefore n
i
≦n/2i . 

we have m
i
≦(n

i
)2 as the graphs G

i
 are simple

 total time spent in all iterations is O(∑
i
n

i

2)=O(∑
i
n2/4i)=O(n2)
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Minor-Closed Graph Classes

Definition. A graph H is a minor of a graph G (written as H≼G) 
iff it can be obtained from a subgraph of G by a sequence of 
simple graph contractions.

Definition. A class C of graphs is minor-closed, when for every 
G∊C and every minor H of G, graph H lies in C as well. A 
class C is called non-trivial if at least one graph lies in C and 
at least one lies outside C.

Example. Non-trivial minor-closed classes include:

planar graphs

graphs embeddable in any fixed surface 

graphs of bounded tree-width or path-width.

 



  

Minor-Closed Graph Classes

Definition. Let G be a graph and C be a class of graphs. We 
define the edge density ϱ(G) of G as the average number of 
edges per vertex, i.e., m(G)/n(G). The edge density ϱ(C) of 
the class is then defined as the infimum of ϱ(G) over all G∊C.

Theorem. Every non-trivial minor-closed class of graphs has 
finite edge density.



  

Minor-Closed Graph Classes

Theorem. (MST on minor-closed classes) For any fixed non-
trivial minor-closed class C of graphs, the Contractive 
Boruvka’s algorithm finds the MST of any graph of this class in 
time O(n).

Proof.

The i-th phase runs in time O(m
i
) 

we have n
i
≤n/2i,

each G
i
 is produced from G

i−1
 by a sequence of edge 

contractions, thus G
i
's are minors of the input graph

Each G
i
 belong to C and by the Density theorem m

i
≤ϱ(C)n

i

 The time complexity is ∑
i
O(m

i
) = ∑

i
O(n

i
) = O(∑

i
n/2i) = O(n).
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Iterated Algorithms

Idea - we will remember the vertices adjacent to T and for 
each such vertex v we will maintain the lightest edge uv such 
that u lies in T;

We will call these edges active edges and keep them in a 
Fibonacci heap, ordered by weight

When we want to extend T by the lightest edge, it is sufficient 
to find the lightest active edge uv and add this edge to T 
together with the new vertex v

Update active edges

 



  

Iterated Algorithms

Input: A graph G with an edge comparison oracle.

1. v
0
⇽an arbitrary vertex of G.

2. T⇽a tree containing just the vertex v
0
.

3. H⇽a Fibonacci heap of active edges stored as pairs (u, v) 
where u∈T, v∉T , ordered by the weights w(uv), and initially 
empty.

4. A⇽a mapping of vertices outside T to their active edges in the 
heap; initially all elements undefined.

5. Insert all edges incident with v
0
 to H and update A accordingly.



  

Iterated Algorithms

6. While H is not empty:

7. (u, v)⇽DeleteMin(H).

8. T⇽T + uv.

9. For all edges vw such that w∉T :

10. If there exists an active edge A(w):

11. If vw is lighter than A(w), Decrease A(w) to (v, w)

  in H.

12. If there is no such edge, then Insert (v, w) to H and 
set A(w).

Output: Minimum spanning tree T .



  

Running Time

Theorem. (Fibonacci heaps)

The Fibonacci heap performs the following operations with the 
indicated amortized time complexities: 

Insert (insertion of a new element) in O(1)

Decrease (decreasing the value of an existing element) in O(1)

Merge (merging of two heaps into one) in O(1) 

DeleteMin (deletion of the minimal element) in O(log n) 

Delete (deletion of an arbitrary element) in O(log n)



  

Running Time

Theorem. Using Fibonacci heaps we can find the MST of the 
input graph in time O(m + n log n).

Proof.  

The time complexity is O(m) plus the cost of the heap 
operations. 

The algorithm performs at most one Insert or Decrease per 
edge and exactly one DeleteMin per vertex. 

There are at most n elements in the heap at any given time

Using the previous theorem the operations take O(m+nlogn) 
time in total.



  

Running Time

Corollary. For graphs with edge density Ω(log n), this 
algorithm runs in linear time.
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Combining MST algorithms

 the improved Jarnik’s algorithm runs in linear time for 
sufficiently dense graphs. 

In some cases, it is useful to combine improved Jarnik's 
algorithm with another MST algorithm, which identifies a part 
of the MST edges and contracts them to increase the density 
of the graph. 

For example, we can perform several Borvka steps and then 
find the rest of the MST by the Active Edge Jarnik's algorithm.



  

Contraction of MST Edges

Lemma. Let G be a weighted graph, e an arbitrary edge of 
mst(G), G/e the multigraph produced by contracting e in G, 
and π the bijection between edges of G e and their 
counterparts in G/e. Then mst(G) = π −1 [mst(G/e)] + e.



  

Mixed Boruvka-Jarnık's Algorithm

Input: A graph G with an edge comparison oracle.

1. Run loglogn Boruvka steps, getting a MST T1 .

2. Run the Active Edge Jarnık’s algorithm on the resulting 
graph getting a MST T2 .

3. Combine T1 and T2 to T as in the Contraction lemma  

Output: Minimum spanning tree T 



  

Running Time

Theorem. The Mixed Boruvka-Jarnik's algorithm finds the 
MST of the input graph in time O(mloglogn).

Proof. 

The first step takes O(mloglogn) time  and it gradually 
contracts G to a graph Gʹ of size mʹ≤m and nʹ≤n/ logn 

The second step then runs in time O(mʹ+nʹlognʹ) =O(m) 

 Both trees can be combined in linear time



  

Conclusion

We presented algorithm for the MST problem which run in 
deterministic linear time for any class of graphs closed on 
graph minors

We presented algorithm for the MST problem which run in 
O(mloglogn) time for any graph

But the question for the general version of the problem is still 
open – can we find MST algorithm which runs in linear time for 
any graph?
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