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ABSTRACT
We present the first combinatorial polynomial time algo-
rithm for computing the equilibrium of the Arrow-Debreu
market model with linear utilities. Our algorithm views the
allocation of money as flows and iteratively improves the
balanced flow as in [Devanur et al. 2008] for Fisher’s model.
We develop new methods to carefully deal with the flows and
surpluses during price adjustments. In our algorithm, we
need O(n6 log(nU)) maximum flow computations, where n
is the number of persons and U is the maximum integer util-
ity, and the length of the numbers is at most O(n log(nU))
to guarantee an exact solution. Previously, [Jain 2007] has
given a polynomial time algorithm for this problem, which
is based on solving a convex program using the ellipsoid al-
gorithm.

1. INTRODUCTION
We provide the first combinatorial polynomial algorithm for
computing the model of economic markets formulated by
Walras in 1874 [12]. In this model, every person has an
initial distribution of some goods and a utility function of
all goods. The market clears at a set of prices if every person
sells their initial goods and then uses their entire revenue to
buy a bundle of goods with maximum utility. We want to
find the market equilibrium in which every good is assigned a
price so that the market clears. In 1954, two Nobel laureates,
Arrow and Debreu [2], proved that the market equilibrium
always exists if the utility functions are concave, which is
why we call this model “Arrow-Debreu market”. But, their
proof is based on Kakutani’s fixed point theorem and is non-
constructive. Since then, many algorithmic results studied
the linear version of this model, that is, all utility functions
are linear.

The first polynomial algorithm for the linear Arrow-Debreu
model was found by Jain in 2007 [9]; it is based on solving a
convex program using the ellipsoid algorithm and simultane-
ous diophantine approximation. Before that, Devanur and
Vazirani [5] gave an approximation scheme for computing

the Arrow-Debreu model with running timeO(n
4

ε
log n

ε
), im-

proving [10]. Recently, Ghiyasvand and Orlin [8] improved
the running time to O(n

ε
(m+n logn)), where m is the num-

ber of pairs (i, j) such that buyer i has some utility for pur-
chasing good j.

Many combinatorial algorithms consider a simpler model
proposed by Fisher (see [3]). Eisenberg and Gale [6] reduced
the problem of computing the Fisher market equilibrium to
a concave cost maximization problem and thus gave the first
polynomial algorithm for the Fisher market by ellipsoid algo-
rithm. The first combinatorial polynomial algorithm for an
exact linear Fisher market equilibrium is given by Devanur
et al [4]. They use the maximum flow algorithm as a black
box in their algorithm. When the input data is integral, their
algorithm needs O(n5 logU +n4 log emax) max-flow compu-
tations, where n is the number of buyers, U the largest inte-
ger utility, and emax the largest initial amount of money of
a buyer. If we use the common O(n3) max-flow algorithm
(see [1]), their running time is O(n8 logU+n7 log emax). Re-
cently, Orlin [11] improved the running time for computing
the linear Fisher model to O(n4 logU+n3 log emax) and also
gave the first strongly polynomial algorithm with running
time O(n4 logn).

Our results. In this paper, we extend the method in [4] to
find a combinatorial algorithm for the linear Arrow-Debreu
market. W.l.o.g., we can assume that each of the n per-
sons has only one unit of goods, which is different from the
goods other people have. When the price of that goods is
pi, the person will have a budget of pi amount of money
equivalently. It can be shown that each person only buys
their favorite goods, that is, the goods with the maximum
ratio of utility and price. We construct a graph on the nodes
of buyers and goods as well as equality edges representing
each buyer’s favorite goods, and then find a maximum flow
in it. In the case of market clearing prices, all the buyers
and goods will be saturated. There will otherwise be sur-
plus, so we need to increase the prices of some goods in order
to decrease the surplus.

As in [4], we use the notion of “balanced flow”, which is a
maximum flow that balances the surplus of buyers. It is
helpful for finding a cut in the residual graph. When we
increase the prices of some goods, the buyers in possession
of these goods will obtain more budget. Unlike [11], where
the flows stay unchanged during price adjustment, we also



increase the flows to those goods by the same ratio. So, some
buyers will have more surplus, and some will have less. We
can show that in some cases, the new flow is more balanced,
that is, the l2-norm of the surplus vector will decrease by
a factor of 1 − Ω(1/n3). In other cases, some prices will
increase by a factor of 1 +O(1/n3). Since we can bound the
number of the latter type of price adjustment iterations by
a polynomial of n and logU , the total running time is also
polynomial.

2. MODEL AND DEFINIITONS
We make the following assumptions on the model as in Jain’s
paper [9]:

1. There are n persons in the system. Each person i has
only one good, which is different from the goods other
people have. The good person i has is denoted by good
i.

2. Each person has only one unit of good. So, if the price
of good i is pi, person i will obtain pi units of money
when selling its good.

3. Each person i has a linear utility function
P
j uijzij ,

where zij is the amount of good j consumed by i.

4. Each uij is an integer between 0 and U .

5. For every i, there is a j such that uij > 0. (Everybody
likes some goods.)

6. For every j, there is an i such that uij > 0. (Every
good is liked by somebody.)

7. For every proper subset P of persons, there exist i ∈ P
and j /∈ P such that uij > 0.

All these assumptions, with the exception of the last, are
without loss of generality. The last assumption implies that
all the equilibrium prices are nonzero [9], and it is only useful
for the next section. In Section 4, we will discuss more about
the last assumption.

Let p = (p1, p2, ..., pn) denote the vector of prices of goods
1 to n, so they are also the budgets of persons 1 to n.
In this paper, we denote the set of all buyers to be B =
{b1, b2, ..., bn} and the set of all goods to be C = {c1, c2, ..., cn}.
So, if the price of goods ci is pi, buyer bi will have pi amount
of money. For a subset B′ of persons or a subset C′ of goods,
we also use p(B′) or p(C′) to denote the total prices of the
goods the persons in B′ own or the goods in C′. For a vector
v = (v1, v2, ..., vk), let:

• |v| = |v1|+ |v2|+ ...+ |vk| be the l1-norm of v.

• ‖v‖ =
p
v2

1 + v2
2 + ...+ v2

k be the l2-norm of v.

Clearly, every person is happiest with goods j, which max-
imizes the ratio uij/pj . Define its bang per buck to be
αi = maxj{uij/pj}. The classical Arrow-Debreu [2] theorem
says that there is a non-zero market clearing price vector.

3. THE ALGORITHM
Our algorithm resembles [4], which finds a balanced flow
and increases the prices in the “active subgraph”. But, in
the Arrow-Debreu model, when we increase the prices of
some good i, the budget of buyer i will also increase. So, we
need to find a careful way to prevent the total surplus from
increasing.

Construct a flow network G = ({s, t}∪B∪C,EG), where s is
the source node and t is the sink node, then B = {b1, ..., bn}
denotes the set of buyers and C = {c1, ..., cn} denotes the
set of goods. EG consists of:

• Edges from s to every node bi in B with capacity pi.

• Edges from every node ci in C to t with capacity pi.

• Edges from bi to cj with infinite capacity if uij/pj =
αi. Call these edges “equality edges”.

So, our aim is to find a price vector p such that there is
a flow in which all edges from s and to t are saturated,
i.e., (s, C ∪B∪ t) and (s∪C ∪B, t) are both minimum cuts.
When this is satisfied, all goods are sold and all of the money
earned by every person is spent.

In a flow f , define the surplus r(bi) of a buyer i to be
the residual capacity of the edge (s, bi), and define the sur-
plus r(cj) of a good j to be the residual capacity of the
edge (cj , t). That is, r(bi) = pi −

P
j fij , and r(cj) =

pj −
P
i fij , where fij is the amount of flow in the edge

(bi, cj). Define the surplus vector of buyers to be r(B) =
(r(b1), r(b2), ..., r(bn)). Also, define the total surplus to be
|r(B)| =

P
i r(bi), which is also

P
j r(cj) since the total

capacity from s and to t are both equal to
P
i pi. For con-

venience, we denote the surplus vector of flow f ′ by r′(B).
In the network corresponding to market clearing prices, the
total surplus of a maximum flow is zero.

3.1 Balanced flow
As in [4], we define the concept of balanced flow to be a
maximum flow that balances the surpluses of buyers. (How-
ever, unlike in their paper, the surpluses of goods can be
positive here, which are not supposed to be balanced, so the
balanced flow is not necessarily unique.)

Definition 1. In the network G of current p, a balanced
flow is a maximum flow that minimizes ‖r(B)‖ over all
choices of maximum flows.

For flows f and f ′ and their surplus vectors r(B) and r′(B),
respectively, if ‖r(B)‖ < ‖r′(B)‖, then we say f is more
balanced than f ′. The next lemma shows why it is called
“balanced”.

Lemma 1. [4] If a ≥ bi ≥ 0, i = 1, 2, ..., k and δ ≥Pk
i=1 δi, where δ, δi ≥ 0, i = 1, 2, ..., k, then:

‖(a, b1, b2, ..., bk)‖2 ≤ ‖a+δ, b1−δ1, b2−δ2, ..., bk−δk‖2−δ2.



Proof.

(a+ δ)2 +

kX
i=1

(bi − δi)2 − a2 −
kX
i=1

b2i

≥ 2aδ + δ2 − 2

kX
i=1

biδi

≥ δ2 + 2a(δ −
kX
i=1

δi) ≥ δ2.

Lemma 2. [4] In the network G for a price vector p, given
a maximum flow f , a balanced flow f ′ can be computed by
at most n max-flow computations.

Proof. In the residual graph Gf w.r.t. to f , let S ⊆
B ∪ C be the set of nodes reachable from s, and let T =
(B ∪ C) \ S be the remaining nodes. Then, there are no
edges from S ∩B to T ∩C in the equality graph, and there
is no flow from T ∩B to S∩C. The buyers in T ∩B and the
goods in S ∩C have no surplus w.r.t. f , and this holds true
for every maximum flow. Let G′ be the network spanned
by s ∪ S ∪ t, and let f ′ be the balanced maximum flow in
G′. The f ′ can be computed by n max-flow computations.
(Corollary 8.8 in [4] is applicable since (s ∪ S, t) is a min-
cut in G′.) Finally, f ′ together with the restriction of f to
s ∪ T ∪ t is a balanced flow in G.

The surpluses of all goods in f ′ are the same as those in f
since we only balance the surplus of buyers.

3.2 Price adjustment
As in [4, 11], we need to increase the prices of some goods to
get more equality edges. For a subset of buyers B1, define
its neighborhood Γ(B1) in the current network to be:

Γ(B1) = {cj ∈ C|∃bi ∈ B1, s.t.(bi, cj) ∈ EG}.

Clearly, there is no edge in G from B1 to C \ Γ(B1). In
a balanced flow f , given a surplus bound S > 0, let B(S)
denote the subset of buyers with surplus at least S, that is,
B(S) = {bi ∈ B|r(bi) ≥ S}.

Lemma 3. In a balanced flow f , given a surplus bound S,
there is no edge that carries flow from B \B(S) to Γ(B(S)).

Proof. Suppose there is such an edge (bi, cj) that car-
ries flow such that bi /∈ B(S) and cj ∈ Γ(B(S)). Then,
in the residual graph, there are directed edges (bk, cj) and
(cj , bi) with nonzero capacities in which bk ∈ B(S). How-
ever, r(bk) ≥ S > r(bi), so we can augment along this path
and get a more balanced flow, contradicting that f is already
a balanced flow.

From Lemma 3, we can increase the prices in Γ(B(S)) by the
same factor x without inconsistency. There is no edge from
B(S) to C\Γ(B(S)), and the edges from B\B(S) to Γ(B(S))
are not carrying flow, and hence, there will be no harm if

they disappear from the equality graph. If there are edges
(bi, cj) and (bi, ck) where bi ∈ B(S), cj , ck ∈ Γ(B(S)), then
uij/pj = uik/pk. Since the prices in Γ(B(S)) are multiplied
by a common factor x, uij/pj and uik/pk remain equal after
a price adjustment. However, the goods in C \Γ(B(S)) will
become more attractive, so there may be edges from B(S) to
C \Γ(B(S)) entering the network, and the increase of prices
needs to stop when this happens. Define such a factor to be
X(S), that is,

X(S) = min{uij
pj
· pk
uik
|bi ∈ B(S), (bi, cj) ∈ EG, ck /∈ Γ(B(S))}.

So, we needO(n2) multiplications/divisions to computeX(S).
When we increase the prices of the goods in Γ(B(S)) by a
common factor x ≤ X(S), the equality edges in B(S) ∪
Γ(B(S)) will remain in the network. We will also need the
following theorem to prevent the total surplus from increas-
ing.

Theorem 1. Given a balanced flow f in the current net-
work G and a surplus bound S, we can multiply the prices
of goods in Γ(B(S)) with a parameter x > 1. When x ≤
mini{pi/(pi − r(bi))|bi ∈ B(S), ci /∈ Γ(B(S))} and x ≤
X(S), we obtain a flow f ′ in the new network G′ of adjusted
prices with the same value of total surplus by:

f ′ij =


x · fij if cj ∈ Γ(B(S));
fij if cj /∈ Γ(B(S)).

Then, the surplus of each good remains unchanged, and the
surpluses of the buyers become:

r′(bi) =

8>><>>:
x · r(bi) if bi ∈ B(S), ci ∈ Γ(B(S));
(1− x)pi + x · r(bi) if bi ∈ B(S), ci /∈ Γ(B(S));
(x− 1)pi + r(bi) if bi /∈ B(S), ci ∈ Γ(B(S));
r(bi) if bi /∈ B(S), ci /∈ Γ(B(S)).

We call these kinds of buyers type 1 to type 4 buyers, respec-
tively.

Proof. Since the flows on all edges associated with goods
in Γ(B(S)) are multiplied by x, the surplus of each good in
Γ(B(S)) remains zero. Only the surplus of type 2 buyers
decreases because the flows from a type 2 buyer bi are mul-
tiplied by x, but its budget pi is not changed. The flow after
adjustment is x(pi − r(bi)). We need this to be at most pi,
so x ≤ pi/(pi − r(bi)) for all type 2 buyers bi, and in f ′, the
new surplus r′(bi) = (1− x)pi + xr(bi).

Since both money and flows are multiplied by x for a type 1
buyer, his surplus is also multiplied by x. For a type 3 buyer
bi, his flows are not changed, but his money is multiplied by
x, so the new surplus is xpi − (pi − r(bi)).

After each price adjustment, in the new network, we will
find a maximum flow by augmentation on the adjusted flow
f ′ and then find a balanced flow by Lemma 2. This will
guarantee that when the surplus of a good becomes zero, it
will not change to non-zero anymore. Thus, the prices of
the goods with non-zero surplus will not be adjusted.

Property 1. The prices of goods with non-zero surpluses
remain unchanged in the algorithm.



3.3 Whole procedure
The whole algorithm is shown in Figure 1, where K is a
constant we will set later. In this section, one iteration de-
notes the execution of one entire iteration inside the loop.
We will discuss the rounding and termination conditions in
Section 3.4.

In the first iteration, we constructed a balanced flow f in
the network where all prices are equal to 1. In the equality
graph, we have at least one edge incident to every buyer.
The total surplus will be bounded by n, actually n− 1 as at
least one good will be sold completely. From Theorem 1, in
the execution of the algorithm, the total surplus will never
increase.

To ensure that the algorithm will terminate in a polynomial
number of steps, we will require the following lemmas. From
Property 1, the prices of goods with surplus stay one during
the whole algorithm, so there is still a good with price one
in the end. And, we need to bound the largest price:

Lemma 4. The prices of goods are at most (nU)n−1.

Proof. It is enough to show that during the entire al-
gorithm, for any non-empty and proper subset Ĉ of goods,
there are goods ci ∈ Ĉ, cj /∈ Ĉ such that pi/pj ≤ nU . So,
when we sort all the prices in decreasing order, the ratio of
two adjacent prices is at most nU . Since there is always a
good with price 1, the largest price is ≤ (nU)n−1.

If Ĉ contains goods with surpluses, then their price is 1. The
claim follows.

Let B̂ = Γ(Ĉ) be the set of buyers adjacent to goods in Ĉ

in the equality graph. If there exist bi, cj s.t. bi ∈ B̂, cj /∈ Ĉ
and uij > 0, let ck ∈ Ĉ be one of the goods adjacent to
bi in the equality graph, and then uij/pj ≤ uik/pk. So,
pk/pj ≤ uik/uij ≤ U .

If there do not exist such bi, cj , then there is no flow between

B̂ and C \ Ĉ, and there is bk /∈ B̂, but ck ∈ Ĉ. Otherwise

the persons whose goods are in Ĉ will not like any goods
not in Ĉ, contradicting assumption (7). Let B′ = {j|bj ∈
B̂, cj 6∈ Ĉ} and B′′ = {j|bj 6∈ B̂, cj ∈ Ĉ}. Then, there is a
j ∈ B′ with pj ≥ p(B′)/n, and hence,

pk ≤ p(B′′) = p(Ĉ)− p({j|bj ∈ B̂, cj ∈ Ĉ})

≤ p(B̂)− p({j|bj ∈ B̂, cj ∈ Ĉ})
= p(B′) ≤ npj .

The inequality of the second line holds since goods in Ĉ have
surplus 0 and all of the flows from B̂ go to Ĉ.

By Lemma 9, we can round to the exact solution when the
algorithm terminates. To analyze the correctness and run-
ning time, we need the following lemma:

Lemma 5. After every price adjustment by x, the l2-norm
of the surplus vector ‖r(B)‖ will either

• be multiplied by a factor of 1 + O(1/n3) when x =
1 + 1

Kn3 , or

• be divided by a factor of 1 + Ω(1/n3).

Note that by Lemma 8, the rounding procedure can only
increase ‖r(B)‖ by a factor of 1+O(1/n4) since S ≥ ε/(e·n).
(We will leave the discussion of Lemma 8 later, so we can
ignore it in the analysis.)

Theorem 2. In total, we need to compute O(n6 log(nU))
maximum flows, and the length of numbers is bounded by
O(n log(nU)). Thus, if we use the common O(n3) max-flow
algorithm (see [1]), the total running time is O(n10 log2(nU)).

Proof. By Lemma 4, every price can be multiplied by
x = 1 + 1

Kn3 for O(log1+1/Kn3(nU)n) = O(n4 log(nU))
times, so the total number of iterations of the first type
is O(n5 log(nU)). The total factor multiplied to ‖r(B)‖ by

the first type iterations is (1 +O(1/n3))O(n5 log(nU)).

At the beginning, ‖r(B)‖ ≤
√
n. When the algorithm ter-

minates, ‖r(B)‖ < ε = 1
4n4U3n , so the number of second

type iterations is bounded by

log1+Ω(1/n3)(
1

ε

√
n(1 +O(1/n3))O(n5 log(nU)))

= O(n5 log(nU)).

Thus, the total number of iterations performed is bounded
byO(n5 log(nU)). Since we need to compute nmax-flows for
the balanced flow in every iteration, we need O(n6 log(nU))
maximum flow computations in total. By Lemma 4 and
Lemma 8, the prices are rational numbers ≤ (nU)n−1 and
with denominator ≤ Un∆ = 4n9U4n. Thus, the length of
the numbers to be handled is bounded by O(n log(nU)).
Note that max-flow computations only need additions and
subtractions. We perform multiplications and divisions when
we scale prices and when we set up the max-flow compu-
tation in the computation of balanced flow. The numbers
of multiplications/divisons is by a factor n less than the
numbers of additions/subtractions, and hence, it suffices to
charge O(n log(nU)) per arithmetic operation.

Next we will prove Lemma 5. When we sort all the buy-
ers by their surpluses b1, b2, ..., bn, b1 is at least |r(B)|/n
(where |r(B)| is the total surplus). So, for the first i in which
r(bi)
r(bi+1)

> 1 + 1/n, we can see
r(bj)

r(bj+1)
≤ 1 + 1/n for j < i,

so r(bi) ≥ r(b1)(1 + 1/n)−n > |r(B)|/(e · n). When such an
i does not exist, each r(bi) is larger than |r(B)|/(e · n), and
all goods in Γ(B) must have zero surplus because the flow
is otherwise not maximum. Thus, there are goods that have
no buyers, and hence, either new equality edges emerge, or
x reaches 1 + 1

Kn3 (condition (3a) below).

From the algorithm, in every iteration, x satisfies the follow-
ing conditions:

(1) x ≤ 1 + 1
Kn3 .



Initially set pi = 1 for all goods i;
Repeat

Construct the network G for the current p, and compute the balanced flow f in it;
Sort all buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the first i in which r(bi)
r(bi+1)

> 1 + 1/n, and i = n when there is no such i;

Let the surplus bound S = r(bi) and obtain B(S),Γ(B(S)), X(S); (B(S) = {b1, b2, ..., bi})
Multiply the prices in Γ(B(S)) by a gradually increasing factor x > 1 until:
(Let f ′ be the flow corresponding to x which is constructed according to Theorem 1.)

New equality edges emerge (x reaches X(S));
OR the surplus of a buyer ∈ B(S) and a buyer /∈ B(S) equals in f ′;
OR x reaches 1 + 1

K·n3

Round the prices in Γ(B(S)) according to Lemma 8 with ∆ = 4n9U3n;
Until |r(B)| < ε, where ε = 1

4n4U3n ;
Finally, round the prices according to Lemma 9 to get an exact solution.

Figure 1: The whole algorithm

(2) In f ′, r′(b) ≥ r′(b′) for all b ∈ B(S), b′ /∈ B(S). Here,
r′(b) is the surplus of b w.r.t. f ′, the flow corresponding
to x by Theorem 1.

(3) If x < 1 + 1
Kn3 , the following possibilities arise:

(a) There is a new equality edge (bi, cj) with bi ∈
B(S), cj /∈ Γ(B(S)). By Lemma 6 below, we can
obtain a flow f ′′ in which either r′′(bi) = r′(bi)−pj ,
or there is a bk /∈ B(S) with r′′(bi) = r′′(bk) (same
as (b)).

(b) When x satisfies the second requirement in the al-
gorithm, it satisfies: there exists b ∈ B(S) and
b′ /∈ B(S) such that r′(b) = r′(b′) in f ′.

Lemma 6. If there is a new equality edge (bi, cj) with bi ∈
B(S), cj /∈ Γ(B(S)), we can obtain a flow f ′′ from f ′ in
which either r′′(bi) = r′(bi) − pj, or there is a bk /∈ B(S)
with r′′(bi) = r′′(bk).

Proof. Let B′ ⊆ B \ B(S) be the set of buyers with
flows to cj in f ′, and let w be the largest surplus of a buyer
in B \ B(S). Run the following procedure (f ′′ denotes the
current flow in the algorithm):

Augment along (bi, cj) gradually until:
r′′(bi) = w or r′′(cj) = 0;

If r′′(bi) = w then Exit;
For all bk ∈ B′ in any order

Augment along (bi, cj , bk) gradually until:
r′′(bi) = max{r′′(bk), w} or f ′′(bk, cj) = 0;

Set w = max{r′′(bk), w};
If r′′(bi) = w then Exit.

During the procedure, the surplus of bi decreases but cannot
become less than the surplus of a buyer in B \ B(S), so
condition (2) holds. In the end, if r′′(bi) = w, then there
is a bk ∈ B \ B(S) s.t. r′′(bi) = r′′(bk); otherwise, cj has
no surplus, and the flow to it all comes from bi, so r′′(bi) =
r′(bi)− pj .

From Theorem 1, the surpluses in f ′ will increase for type 1
and 3 buyers, will decrease for type 2 buyers, and will stay

unchanged for type 4 buyers. Note that the surplus of a
type 1 or 2 buyer cannot be smaller than the surplus of any
type 3 or 4 buyer. From Theorem 1 and condition (2), we
infer that the total surplus will not increase, type 2 and 3
buyers will get more balanced, and r′(b) = x · r(b) for type
1 buyers b, so ‖r′(B)‖ ≤ x‖r(B)‖ = (1 +O(1/n3))‖r(B)‖.

In (3a), there is a new equality edge (bi, cj). After the pro-
cedure described in Lemma 6, if there is no bk /∈ B(S) such
that r′′(bi) = r′′(bk), then r′′(bi) = r′(bi)− pj (pj ≥ 1). For
all bk /∈ B(S), r′′(bi) > r′′(bk), and r′′(bk) = r′(bk) + δk,
where δk ≥ 0 and

P
bk /∈B(S) δk ≤ pj . Because |r(B)| ≤ n,

‖r(B)‖2 ≤ n2. By Lemma 1,

‖r′′(B)‖2 ≤ ‖r′(B)‖2 − p2
j

≤ x2‖r(B)‖2 − 1

≤ x2‖r(B)‖2 − 1

n2
‖r(B)‖2

= (1−Θ(1/n2))‖r(B)‖2.

So, we have ‖r′′(B)‖ = (1− Ω(1/n2))‖r(B)‖.

In (3a), after the procedure described in (3a), if there exists
bk /∈ B(S) such that r′′(bi) = r′′(bk), then we are in a similar
situation as (3b), possibly with an even smaller total surplus.
So, we can prove this case by the proof of (3b).

In (3b), let u1, u2, ..., uk and v1, v2, ..., vk′ be the list of orig-
inal surpluses of type 2 and 3 buyers, respectively. De-
fine u = min{ui}, v = max{vj}, so ui ≥ u for all i, and
vj ≤ v for all j, and u > (1 + 1/n)v. After the price and
flow adjustments in Theorem 1, the list of surpluses will be
u1 − δ1, u2 − δ2, ..., uk − δk and v1 + δ′1, v2 + δ′2, ..., vk + δ′k′

(here δi, δ
′
j ≥ 0 for all i, j), and there exist I, J such that

uI−δI = vJ+δ′J , where uI−δI is the smallest among ui−δi,
and vJ + δ′J is the largest among vj + δ′j by condition (2).
Since the surpluses of type 1 edges also increase, we have



P
i δi ≥

P
j δ
′
j , δI ≤

P
i δi, and δ′J ≤

P
j δ
′
j . Compute:X

i

(ui − δi)2 +
X
j

(vj + δ′j)
2 − (

X
i

u2
i +

X
j

v2
j )

= −2
X
i

uiδi + 2
X
j

vjδ
′
j +

X
i

δ2
i +

X
j

δ′
2
j

≤ −u
X
i

δi + v
X
j

δ′j −
X
i

δi(ui − δi) +
X
j

δ′j(vj + δ′j)

≤ −(u− v)
X
i

δi − (uI − δI)
X
i

δi + (vJ + δ′J)
X
j

δ′j

≤ −(u− v)
X
i

δi

≤ −(u− v) max{δI , δ′J}

≤ −1

2
(u− v)2

< − 1

2(n+ 1)2
u2.

Let w1, w2, ...wk′′ be the list of surpluses of type 1 buyers;
all of them are ≤ e ·u. After price adjustment, the surpluses
will be x · w1, x · w2, ...x · wk′′ from Theorem 1. Compute:X

i

(xwi)
2

≤ (1 +
1

Kn3
)2
X
i

w2
i

≤
X
i

w2
i + (

2

Kn3
+

1

K2n6
) · ne2u2

=
X
i

w2
i + (

2

Kn2
+

1

K2n5
)e2u2.

Let K = 32e2, then the change to the sum of squares of
surpluses for type 2 and 3 buyers is less than − 1

8n2 u
2 =

− 4
Kn2 e

2u2. The total change to ‖r(B)‖2 is:

(− 2

Kn2
+

1

K2n5
)e2u2.

Since u ≥ 1
e
r(bi) for all buyers bi, nu

2 ≥ 1
e2
‖r(B)‖2. Since

the change is negative, we have:

‖r′(B)‖2 ≤ ‖r(B)‖2 + (− 2

Kn2
+

1

K2n5
)

1

n
‖r(B)‖2

= ‖r(B)‖2 − 2

Kn3
‖r(B)‖2 +

1

K2n6
‖r(B)‖2

= ‖r(B)‖2(1− 1

Kn3
)2.

Thus, Lemma 5 is proved.

3.4 Rounding and termination condition
In this section, we will show how to round the prices to ra-
tional numbers with denominators of length O(n log(nU)).
Also, we need the rounding process to obtain an exact mar-
ket equilibrium when the surplus is very small. Here, we
define the equality graph F on B ∪ C of undirected equal-
ity edges between buyers and goods, and we consider every
connected component in this undirected equality graph.

Lemma 7. In a connected component Ψ containing k goods
in the equality graph, if we know that pj is a rational number
with denominator N , where cj ∈ Ψ ∩ C, then all the prices
of goods in Ψ ∩ C are rational numbers with denominator
≤ N · Uk.

Proof. Find a tree that connects all the goods in Ψ.
The tree will contain k + k′ − 1 edges if it contains k′ buy-
ers. Then, we can get k − 1 linear independent equations
pj/uij = pj′/uij′ when both (bi, cj) and (bi, cj′) are tree
edges. Together with the equation pj = I/N for some in-
teger I, we can see that all the prices of goods in Ψ have
denominator ≤ N · Uk.

Given an integer ∆, we call a connected component in the
equality graph consistent if it has a good whose price is a
rational number with denominator ∆. Then, by Lemma 7,
the prices of goods in a consistent connected component are
rational numbers with denominator ≤ ∆ · Un .

Lemma 8. In a balanced flow f in the network, given
∆ > nUn and a surplus bound S ≥ n5/∆, if all the con-
nected components in (B\B(S), C\Γ(B(S))) are consistent,
we can adjust the prices in Γ(B(S)) so that all connected
components in the equality graph are consistent. In the ad-
justed flow f ′ by Theorem 1, ‖r′(B)‖ = ‖r(B)‖(1+O( 1

S·∆ )),
where r′(B) is the surplus vector in f ′.

Proof. The procedure is shown below:

Set B′ = B(S);
Repeat

Multiply the prices in Γ(B′) by x > 1 until:
A price in Γ(B′) has denominator ∆;
OR a new equality edge emerges;

Update the flow f by Theorem 1;
Remove new consistent components from B′ ∪ Γ(B′);

Until B′ = ∅.

Since all the prices change by at most 1/∆, the changes to
the total surplus of type 2 buyers is at most n/∆ < S, so
the surplus of a type 2 buyer is still positive. In addition,
the surplus added to each type 1 or 3 buyer is at most 1/∆,
so

‖r′(B(S))‖2

≤ ‖r(B(S))‖2 +
2

∆
|r(B(S))|+ n

∆2

≤ ‖r(B(S))‖2 +
2

S∆
‖r(B(S))‖2 +

n

S2∆2
‖r(B(S))‖2

= ‖r(B(S)‖(1 +O(
1

S∆
)).

During the algorithm, we can see that all the connected com-
ponents in (B \B′, C \ Γ(B′)) are consistent since we move
the new consistent components to it. When we find new
equality edges connecting B′ and C \ Γ(B′), some nodes in
B′∪Γ(B′) will connect to (B \B′, C \Γ(B′)), so these nodes
can be removed. When a price in Γ(B′) has denominator



∆, the component containing it will become consistent, so
the loop will run for at most n times. In each loop, we need
to compute O(n2) multiplications/divisions, so the running
time for this rounding procedure is less than the computa-
tion of a balanced flow.

Lemma 9. When the total surplus is < 1
4n4U3n = ε in

a flow f , we can obtain an exact solution from the current
equality graph.

Proof. Add the edge (bi, ci) for each person i to the
equality graph F to obtain F ′. For a connected component
of F ′, the sum of the prices on both sides are the same.
For every component Φ of F ′ with no surplus node, increase
its prices by a common factor until a new equality edge
emerges; this will unite two components. Repeat this until
all components in F ′ have a surplus node. We may assume
w.l.o.g. that F ′ becomes connected by this process. Other-
wise, the following argument can be applied independently
to each component of F ′. The total surplus is still less than
ε. The following rounding procedure will be performed on
these revised prices.

Denote the set of connected components in the equality
graph (after the adjustments of the previous paragraph) by
Λ = {Ψk}. For each component Ψk in F , find a spanning
tree Tk in it, then write the following equations:

pj/uij = pj′/uij′ , ∀(bi, cj), (bi, cj′) ∈ Tk.

Since we have one such equation if cj and cj′ are connected
by one bi, we can have |Ψk∩C|−1 linear independent equa-
tions. The total number of linear independent equations for
all components in F is n− |Λ|.

Since there is no flow between components, for each com-
ponent Ψk in F , the money difference between buyers and
goods in Ψk is only the surplus difference. So, we can write

X
bi∈B∩Ψk

pi −
X

ci∈C∩Ψk

pi = εk,∀Ψk.

Here, εk (positive or negative) comes from the surpluses of
goods and buyers, so

P
|εk| ≤ 2ε. If bi and ci belong to

distinct connected components Ψj and Ψk, the coefficient
of pi is +1 in the equation of Ψj , −1 in the equation for
Ψk, and 0 in all other equations. If bi and ci belong to the
same connected component, the coefficient of pi is zero in all
equations. Assume now that there is a proper subset of the
equations that is linear dependent. Then, if bi or ci belongs
to one of the components in the subset, both of them do.
However, the subset of components is a proper subgraph of
F ′, and hence, there is at least one i such that only one of
bi or ci belongs to the subset of components. Thus, we have
|Λ| − 1 independent equations.

Since there is a good ci with non-zero surplus, we have pi =
1. Thus, the current price vector p is the solution of these
linear equations Ap = X in which A is invertible.

Consider the following n linear equations with εk removed:

p′j/uij = p′j′/uij′ , ∀ (bi, cj), (bi, cj′) ∈ TkX
bi∈B∩Ψk

p′i −
X

ci∈C∩Ψk

p′i = 0, ∀ Ψk

p′i = 1, ∃ r(ci) > 0.

They can be denoted by Ap′ = X ′, so there is also a unique
solution. The solution will be rational numbers with a com-
mon denominator D ≤ nUn by Cramer’s rule. Since ||X| −
|X ′|| < 2ε, the difference |p′i−pi| of solutions of each price is
at most 2ε ·nUn = 1

2n3U2n by Cramer’s rule. The difference
between any two numbers of denominators D,D′ ≤ nUn is
a rational number of denominator D · D′ < n2U2n, which
is larger than 2|p′i − pi|. Since p′i is a rational number with
denominator D ≤ nUn, we can get p′i by rounding pi to
the nearest rational number of denominator ≤ nUn. This
can be done by continued fraction expansion, which needs
O(n log2 D) = O(n3 log2(nU)) time by Theorem 3.13 in [7].
We can also compute D = det(A) directly and round every
price to the nearest rational with denominator D or solve
the linear equations Ap′ = X ′. By Theorem 5.12 in [7],
computing the determinant of a matrix of dimension n with
entries ≤ U takes Õ(n4 logU) time, and solving Ap′ = X ′

also takes Õ(n4 logU) time.

Now, all the prices p′i are of the form qi/D, where qi, D are
integers and D ≤ nUn a common denominator. So, |pi −
qi
D
| ≤ 1

2n3U2n = ε′

D
, in which ε′ = D

2n3U2n ≤ 1
2n2Un . Con-

struct the flow networkG′ for the new prices q = (q1, q2, ..., qn).
Consider any bi ∈ B and cj , ck ∈ C and assume uij/pj ≤
uik/pk. Then,

uijqk ≤ uij(pkD + ε′)

≤ uikpjD + uijε
′

≤ uik(qj + ε′) + uijε
′

≤ uikqj + (uik + uij)ε
′

< uikqj + 1,

and hence, uijqk ≤ uikqj since uijqk and uikqj are integral.
We conclude that the edges in G are all in G′.

Denote the size of the cuts (s,B ∪ C ∪ t) and (s ∪B ∪ C, t)
in G′ by Z, which is an integer. Then, the size of this cut
in G is ≥ (Z − nε′)/D. If there is another cut in G′ of
size ≤ Z − 1, it is also a cut in G, and its size in G is

≤ Z−1
D

+ 2n ε
′

D
= Z/D − 1−2nε′

D
, so the maximum flow in G

will have total surplus > 1−3ε′

D
> ε. Thus, (s,B∪C ∪ t) and

(s ∪B ∪C, t) are both min-cuts in G′, so the prices reach a
market equilibrium.

4. GENERAL CASE
Here, we consider the case which does not satisfy the as-
sumption (7) in Section 2. We draw the linking graph of
persons in which there is a directed edge from i to j iff
uij > 0. If the graph is strongly connected, then the case
satisfies assumption (7). Otherwise, we can shrink each con-
nected component into one vertex, then the graph will be a
DAG, and we can find a topological order of strongly con-
nected components: P1, P2, ...Pk, in which there are only
edges from a lower order to a higher order. We use the
algorithm in Section 3 to compute the equilibrium for all



the persons in every strongly connected component Pi (i =
1, 2, ..., k). For i = 2, ..., k, multiplying the prices in Pi by
(U + 1) · max{pj |j ∈ Pi−1} will ensure that there are no
equality edges from Pi to Pj for i < j. Since the persons
in Pj do not like any goods in Pi for i < j, this will not af-
fect the equilibrium of every component, so we get a global
equilibrium.
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