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Vote (STV) protocol, which has been shown hard to manipulate in the above sense. This motivates
the core of this article, which derives hardness results for realistic elections where the number of
candidates is a small constant (but the number of voters can be large).

The main manipulation question we study is that of coalitional manipulation by weighted voters.
(We show that for simpler manipulation problems, manipulation cannot be hard with few candidates.)
We study both constructive manipulation (making a given candidate win) and destructive manipulation
(making a given candidate not win). We characterize the exact number of candidates for which
manipulation becomes hard for the plurality, Borda, STV, Copeland, maximin, veto, plurality with
runoff, regular cup, and randomized cup protocols. We also show that hardness of manipulation in
this setting implies hardness of manipulation by an individual in unweighted settings when there is
uncertainty about the others’ votes (but not vice-versa). To our knowledge, these are the first results
on the hardness of manipulation when there is uncertainty about the others’ votes.
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lem Complexity; I.2.11 [Distributed Artificial Intelligence]: Multiagent Systems; J.4 [Computer
Applications]: Social and Behavioral Sciences—Economics

General Terms: Algorithms, Economics, Theory

Additional Key Words and Phrases: Computational social choice, hardness of manipulation, voting

ACM Reference Format:

Conitzer, V., Sandholm, T., and Lang, J. 2007. When are elections with few candidates hard to
manipulate? J. ACM 54, 3, Article 14 (June 2007), 33 pages. DOI = 10.1145/1236457.1236461
http://doi.acm.org/ 10.1145/1236457.1236461

1. Introduction

In multiagent systems, a group of agents often has to make a common decision,
yet they have different preferences about which decision is made. In such set-
tings, it is of central importance to be able to aggregate the preferences, that is,
to make a socially desirable decision as to which candidate is chosen from a
set of candidates. Candidates could be potential presidents, joint plans, alloca-
tions of goods or resources, etc. Voting is the most general preference aggregation
scheme, and has been used in several multiagent decision making problems in
computer science, such as collaborative filtering (e.g., Pennock et al. [2000]) and
planning among multiple automated agents (e.g., Ephrati and Rosenschein [1991,
1993]).

One key problem voting mechanisms are confronted with is that of manipulation
by the voters. An agent is said to manipulate or vote strategically when it does not
rank the alternatives according to its true preferences, but rather so as to make the
eventual outcome most favorable to itself. For example, if an agent prefers Nader
to Kerry to Bush, but knows that Nader has too few other supporters to win, while
Kerry and Bush are close to each other, the agent would be better off by declaring
Kerry as its top candidate. Manipulation is an undesirable phenomenon because
social choice schemes are tailored to aggregate preferences in a socially desirable
way, and if the agents reveal their preferences insincerely, a socially undesirable
candidate may be chosen.

The issue of strategic voting has been studied extensively. A seminal negative
result, the Gibbard–Satterthwaite theorem, shows that if there are three or more
candidates, then in any nondictatorial voting scheme, there are preferences under
which an agent is better off voting strategically [Gibbard 1973; Satterthwaite 1975].
(A voting scheme is called dictatorial if one of the voters dictates the social choice
no matter how the others vote.)
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When Are Elections with Few Candidates Hard to Manipulate? 3

This is a significant problem in elections where voters are human. In automated
group decision making where the voters are software agents, the manipulability of
protocols is even more problematic, for at least three reasons. First, the algorithms
they use to decide how to vote must be coded explicitly. Given that the voting
algorithm needs to be designed only once (by an expert), and can be copied to
large numbers of agents (even ones representing unsophisticated human voters), it
is likely that rational strategic voting will increasingly become an issue, unmuddied
by irrationality, emotions, etc. Second, software agents have more computational
power and are more likely to find effective manipulations. Third, the settings where
software agents are used for voting are likely to be more anonymous, and therefore
the voters are likely to be less scrupulous. For example, they might not worry
about the norm that manipulation, in itself, is considered inapproriate (if the voter’s
neighbor knows his preferences on an issue and sees him vote differently, then
the neighbor will consider him a liar). As another example, anonymous voters are
freed from the social pressures of voting in a particular way (e.g., voting for a
school rather than a cigar factory), so the space of viable votes—and thus viable
manipulations—is larger.

Nevertheless, there are several avenues for trying to avoid the possibility of
manipulation. First, social choice theorists and economists have studied settings
where the voters’ preferences are restricted. Under certain restrictions, such as
single-peaked preferences or quasilinear preferences, nonmanipulable protocols
exist (e.g., [Mas-Colell et al. 1995; Ephrati and Rosenschein 1991, 1993]). The
weakness of this approach is that in practice the protocol designer cannot be sure
that the agents’ preferences fall within the restriction. If they do not, it is impos-
sible to vote truthfully, so the protocol forces the agents to manipulate. A second
approach to avoiding manipulation is randomization. For example, a dictator could
be chosen at random among the voters, in which case there would be no incen-
tive for manipulation. The randomization approach is undesirable if it introduces
too much noise into the election process, and it turns out that almost complete
randomization (as in the example above) is required in order to obtain a nonmanip-
ulable protocol [Gibbard 1977, 1978]. Furthermore, randomization can introduce
manipulation possibilities even when none would have existed (for the prefer-
ences that the agents happen to have) under a deterministic protocol [Zeckhauser
1969].

We take a third tack toward avoiding manipulation: ensuring that f inding a
benef icial manipulation is so hard computationally that it is unlikely that voters
will be able to manipulate. So, unlike in most of computer science, here high com-
putational complexity is a desirable property. The harder it is to manipulate, the
better. Especially in the context of software agents, this computational complexity is
best measured with the usual tools from theoretical computer science. The approach
of using computational complexity to avoid manipulation has not received much
attention and many problems are still open. Some hardness results have been proven
under the assumption that not only the number of voters but also the number of can-
didates is unbounded [Bartholdi et al. 1989a; Bartholdi and Orlin 1991; Conitzer
and Sandholm 2003].1 Such hardness results lose relevance when the number of

1For an unbounded number of candidates, voting rules can be made hard to manipulate by only slightly
tweaking them and thus preserving many of their desirable properties. Conitzer and Sandholm [2003]
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candidates is small, because manipulation algorithms that are exponential only in
the number of candidates (and only slightly so) might be available. In the appendix,
we give such an algorithm for an individual agent to manipulate the Single
Transferable Vote (STV) protocol, which has been shown hard to manipulate in
the above sense. The algorithm applies whether or not the voters are weighted.

This motivates the core of this article, which studies the complexity of manip-
ulating elections where the number of candidates is a small constant. Restricting
the number of candidates to a constant reduces the number of possible votes for a
single voter to a constant. If the voters all have equal weight in the election, the
number of de facto possible combinations of votes that even a coalition can submit
is polynomial in the number of voters in the coalition (since the voters have equal
weight, it does not matter which agent in the coalition submitted which vote; only
the multiplicities of the votes from the coalition matter). We thus get the following
straightforward result.

PROPOSITION 1. Let there be a constant number of candidates, and suppose
that evaluating the result of a particular combination of votes by a coalition is
in P. If there is only one voter in the coalition, or if the voters are unweighted,
the manipulation problem is in P. (This holds for all the different variants of the
manipulation problem, discussed later.)

PROOF. The manipulators (an individual agent or a coalition) can simply enu-
merate and evaluate all possibilities for their votes (there is a polynomial number of
them). Specifically, when there are n voters in the coalition and m candidates, then
there are at most (n + 1)m! possibilities, because for every one of the m! possible
orderings of the candidates there must be between 0 and n voters in the coalition
voting according to this ordering (and, because the voters are unweighted, it does
not matter which voters they are). This expression is polynomial in n.

In particular, in the complete-information manipulation problem in which the
votes of the non-colluders are known, evaluating the result of a (coalitional) vote is
as easy as determining the winner of an election, which must be in P for practical
voting mechanisms.2 This leaves open two avenues for deriving high-complexity
results with few candidates. First, we may investigate the complete-information
coalitional manipulation problem when voters have different weights. While many
human elections are unweighted, the introduction of weights generalizes the us-
ability of voting schemes, and can be particularly important in multiagent systems
settings with very heterogenous agents. As a second avenue, we may ask whether

showed that by adding a preround of pairwise elections (where the winner of each pair proceeds
to the original voting rule), a broad class of voting rules (including the most common voting rules)
become NP-hard, #P-hard, or PSPACE-hard to manipulate, depending on whether the schedule of the
preround is determined before the votes are collected, after the votes are collected, or the scheduling
and the vote collecting are interleaved, respectively. Elkind and Lipmaa [2005] showed that many
hybrid voting rules (where one rule is used to curtail the set of candidates and another rule is used to
select from among them) are NP-hard to manipulate, even if each of the component rules is easy to
manipulate.
2 However, there exist voting mechanisms where determining the winner is computationally
hard [Bartholdi et al. 1989b; Hemaspaandra et al. 1997; Cohen et al. 1999; Dwork et al. 2001;
Rothe et al. 2003; Davenport and Kalagnanam 2004; Conitzer et al. 2006; Conitzer 2006]—but only
for large numbers of candidates.
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When Are Elections with Few Candidates Hard to Manipulate? 5

there are reasonable settings where evaluating a manipulation is NP-hard. For in-
stance, if we merely have probability distributions on the non-colluders’ votes,
how does the complexity of determining the probability that a given candidate wins
change?

We devote most of this article to studying the first avenue. We study both con-
structive manipulation (making a given candidate win) and destructive manipulation
(making a given candidate not win). We characterize the exact number of candidates
for which manipulation becomes hard for plurality, Borda, STV, Copeland, max-
imin, veto, plurality with runoff, regular cup, and randomized cup protocols. It turns
out that the voting protocols under study become hard to manipulate at 3 candidates,
4 candidates, 7 candidates, or never. The remainder of this article is devoted to the
second avenue, by showing that hardness results from the complete-information
coalitional weighted manipulation problem imply similar hardness results in the
incomplete-information setting, even without the assumptions of multiple manipu-
lators and weighted votes.

2. Voting Protocols

We now define the voting setting. LetV = {v1, . . . , vn} be the finite set of voters. Let
X = {1, . . . , m} be the finite set of candidates. The preferences of voter vi are given
by a linear order Oi on X . Such a linear order is represented as (c1, c2, . . . , cm),
meaning that c1 is preferred to c2, c2 is preferred to c3, etc. A preference prof ile is
a vector P = 〈O1, . . . , On〉 of individual preferences.

A voting protocol is a function from the set of all preference profiles to the set
of candidates X .3 The following list reviews the most common voting protocols.
In the protocols that are based on scores, the candidate with the highest score wins.
In each of the listed protocols (even the ones that have multiple rounds), the voters
submit their preferences up front. That is, the voters are not allowed to change their
preference revelations during the execution of the protocol.

—Positional Scoring Protocols. Let �α = 〈α1, . . . , αm〉 be a vector of integers such
that α1 ≥ α2 · · · ≥ αm . For each voter, a candidate receives α1 points if it is ranked
first by the voter, α2 if it is ranked second, etc. The score s�α of a candidate is the
total number of points the candidate receives. The Borda protocol is the scoring
protocol with �α = 〈m − 1, m − 2, . . . , 0〉. The plurality protocol (aka majority
rule) is the scoring protocol with �α = 〈1, 0, . . . , 0〉. The veto protocol is the
scoring protocol with �α = 〈1, 1, . . . , 1, 0〉.

—Maximin (aka Simpson). For any two distinct candidates i and j , let N (i, j)
be the number of voters who prefer i to j . The maximin score of i is s(i) =
min j �=i N (i, j).

—Copeland. For any two distinct candidates i and j , let C(i, j) = +1 if N (i, j) >
N ( j, i) (in this case we say that i beats j in their pairwise election), C(i, j) = 0
if N (i, j) = N ( j, i) and C(i, j) = −1 if N (i, j) < N ( j, i). The Copeland score
of candidate i is s(i) = ∑

j �=i C(i, j).

3Some of the voting protocols require tie-breaking rules (at different stages of the execution of the
protocol). These rules are usually left undefined. The results in this article do not depend on tie-
breaking rules.
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—Single Transferable Vote (STV). The protocol proceeds through a series of m −1
rounds. In each round, the candidate with the lowest plurality score (that is,
the least number of voters ranking it first among the remaining candidates)
is eliminated (and each of the votes for that candidate “transfer” to the next
remaining candidate in the order given in that vote). The winner is the last
remaining candidate.

—Plurality with Run-off. In this protocol, a first round eliminates all candidates
except the two with the highest plurality scores. Then votes are transferred to
these (as in the STV protocol), and a second round determines the winner from
these two.

—Cup (sequential binary comparisons). The cup is defined by a balanced4 binary
tree T with one leaf per candidate, and a schedule, that is, an assignment of
candidates to leaves (each leaf gets one candidate). Each non-leaf node is as-
signed the winner of the pairwise election of the node’s children; the candidate
assigned to the root wins. The regular cup protocol assumes that the assignment
of candidates to leaves is known by the voters before they vote. In the random-
ized cup protocol, the assignment of candidates to leaves is chosen uniformly at
random after the voters have voted. Note that the randomized cup protocol differs
from all the other protocols under discussion in the sense that all the others are
deterministic.

In some settings, the voters are weighted. A weight function is a mapping
w : V → N . When voters are weighted, the above protocols are applied by
simply considering a voter of weight k to be k different voters.5 Different possible
interpretations can be given to weights. They may represent the decision power of a
given agent in a voting setting where not all agents are considered equal. The weight
may correspond to the size of the community that the voter represents (such as the
size of the state). Or, when agents vote in partisan groups (e.g., in parliament), the
weights may correspond to the size of the group (each group acts as one voter).

3. Manipulating an Election

In this section, we define our computational problem precisely. We lead into the
definition by discussing the different dimensions of the election manipulation
problem:

(I) What information do the manipulators have about the nonmanipulators’
votes? In the incomplete information setting, the manipulators are uncertain about
the nonmanipulators’ votes. This uncertainty could be represented in a number of
ways, for example, as a joint probability distribution over the nonmanipulators’
votes. In the complete information setting, the manipulators know the nonmanipu-
lators’ votes exactly. We (initially) focus on the complete information case for the
following reasons: (1a) It is a special case of any uncertainty model. Therefore, our
hardness results directly imply hardness for the incomplete information setting. (1b)
As we will demonstrate later in this article, hardness results for manipulation by

4 “Balanced” means that the difference in depth between two leaves can be at most one.
5This is why we assume that weights are integers. The results also apply to all rational weights because
they can be converted to integers by multiplying all the weights by all the weights’ denominators.
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coalitions in the complete information setting also imply hardness of manipulation
by individuals in the incomplete information setting. (2) Results in the complete
information setting measure only the inherent complexity of manipulation rather
than any potential complexity introduced by the model of uncertainty.

(II) Who is manipulating: An individual voter or a coalition of voters? Both
of these are important variants, but we focus on coalitional manipulation for the
following reasons: (1) In elections with many voters, it is very unlikely that an in-
dividual voter can affect the outcome—even with unlimited computational power.
(2) For any constant number of candidates (even with an unbounded number of
voters), manipulation by individuals in the complete information setting is com-
putationally easy because the manipulator can enumerate and evaluate all its pos-
sible votes (rankings of candidates) in polynomial time, as we pointed out in the
Introduction.6 (Manipulation by individuals in the complete information setting is
hard for some voting protocols if one allows the number of voters and the number
of candidates to be unbounded [Bartholdi et al. 1989a; Bartholdi and Orlin 1991;
Conitzer and Sandholm 2003]. However, in the appendix of this article, we give
a manipulation algorithm for such a protocol that scales to fairly large numbers
of candidates.) (3) Again, as we will demonstrate later in this article, hardness re-
sults for manipulation by coalitions in the complete information setting also imply
hardness of manipulation by individuals in the incomplete information setting.

(III) Are the voters weighted or unweighted? Both of these are important variants,
but we focus on weighted voters for the following reasons: (1) In the unweighted
case, for any constant number of candidates (even with an unbounded number of
voters), manipulation by a coalition in the complete information setting is compu-
tationally easy because the coalition can enumerate and evaluate all its effectively
different vote vectors, as we pointed out in the Introduction. (We recall that the num-
ber of effectively different vote vectors is polynomial due to the interchangeability
of the different equiweighted voters, see Proposition 1.) (2) As we will demonstrate
later in this article, hardness results for manipulation by weighted coalitions in the
complete information setting also imply hardness of evaluating the probabilities
of different outcomes in the incomplete information setting with unweighted (but
correlated) voters. (3) In many real-world elections, voters are in fact weighted, for
example, by their ownership share in the company, by seniority, or by how many
other individuals they represent.

(IV) What is the goal of manipulation? We study two alternative goals: trying
to make a given candidate win (we call this constructive manipulation), and trying
to make a given candidate not win (we call this destructive manipulation). Besides
these goals being elegantly crisp, there are fundamental theoretical reasons to focus
on these goals.

First, hardness results for these goals imply hardness of manipulation under any
game-theoretic notion of manipulation, because our manipulation goals are always
special cases. (This holds both for deterministic and randomized voting protocols.)
At one extreme, consider the setting where there is one candidate that would give
utility 1 to each of the manipulators, and all other candidates would give utility 0 to
each of the manipulators. In this case, the only sensible game-theoretic goal for the

6This assumes that the voting protocol is easy to execute—as most protocols are (including all the
ones under study in this article).
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manipulators is to make the preferred candidate win. This is exactly our notion of
constructive manipulation. At the other extreme, consider the setting where there
is one candidate that would give utility 0 to each of the manipulators, and all other
candidates would give utility 1 to each of the manipulators. In this case, the only
sensible game-theoretic goal for the manipulators is to make the disliked candidate
not win. This is exactly our notion of destructive manipulation.

Second, at least for deterministic voting protocols in the complete information
setting, the easiness results transfer from constructive manipulation to any game-
theoretic definitions of manipulation that would come down to determining whether
the manipulators can make some candidate from a subset of candidates win. For
example, one can consider a manipulation successful if it causes some candidate to
win that is preferred by each one of the manipulators to the candidate who would
win if the manipulators voted truthfully. As another example, one can consider a
manipulation successful if it causes some candidate to win that gives a higher sum of
utilities to the manipulators than the candidate who would win if the manipulators
voted truthfully. (This definition is especially pertinent if the manipulators can
use side payments or some other form of restitution to divide the gains among
themselves.) Now, we can solve the problem of determining whether some candidate
in a given subset can be made to win simply by determining, for each candidate in
the subset in turn, whether that candidate can be made to win. So the complexity
exceeds that of constructive manipulation by at most a factor equal to the number
of candidates (which, in our setting, is a constant; however, the same argument
applies even when the number of candidates is not constant).

Third, the complexity of destructive manipulation is directly related to the com-
plexity of determining whether enough votes have been elicited to determine the
outcome of the election. Specifically, enough votes have been elicited if there
is no way to make the conjectured winner not win by casting the yet unknown
votes [Conitzer and Sandholm 2002].

In summary, we focus on coalitional weighted manipulation (CW-
MANIPULATION), in the complete information setting. We study both constructive
and destructive manipulation. Formally:

Definition 1 (Constructive Coalitional Weighted (CW) Manipulation). We
are given a set of weighted votes S (the nonmanipulators’ votes), the weights
for a set of votes T that are still open (the manipulators’ votes), and a preferred
candidate p. For deterministic protocols, we are asked whether there is a way to
cast the votes in T so that p wins the election. For randomized protocols, we are
additionally given a distribution over instantiations of the voting protocol, and a
number r , where 0 ≤ r ≤ 1. We are asked whether there is a way to cast the votes
in T so that p wins with probability greater than r .

Definition 2 (Destructive Coalitional Weighted (CW) Manipulation). We are
given a set of weighted votes S (the nonmanipulators’ votes), the weights for a
set of votes T that are still open (the manipulators’ votes), and a disliked candidate
h. For deterministic protocols, we are asked whether there is a way to cast the
votes in T so that h does not win the election. For randomized protocols, we are
additionally given a distribution over instantiations of the voting protocol, and a
number r , where 0 ≤ r ≤ 1. We are asked whether there is a way to cast the votes
in T so that h wins with probability less than r .
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When Are Elections with Few Candidates Hard to Manipulate? 9

For deterministic protocols, we do not consider a manipulation successful if it
leaves candidate p or h tied for the win.7 One way of viewing this is as follows.
If ties are broken randomly, then technically, we are dealing with a randomized
protocol. Then, we can set r so that a tie for the win does not give p enough
probability of winning (e.g., r = 2/3), or so that a tie gives h too much probability
of winning (e.g., r = 1/(m + 1)).

As additional justification for requiring hardness even with few candidates, in
the appendix, we present an algorithm for an individual voter to manipulate the
STV protocol that is exponential only in the number of candidates, and scales to
reasonably large numbers of candidates. (Reading this appendix is not necessary
to comprehend the rest of the article.)

4. Complexity of Manipulation

We are now ready to present our results on the hardness of coalitional manipula-
tion when there are few candidates and the votes are weighted. We will study not
only whether any given protocol is hard to manipulate with a constant number of
candidates, but also how many candidates are needed for the hardness to occur.
This number is important for evaluating the relative manipulability of different vot-
ing protocols (the lower this number, the less manipulable the protocol). For each
protocol that we show is hard to manipulate with some constant number of candi-
dates, we show this for the smallest number of candidates for which the hardness
occurs, and we show that manipulation becomes easy if we reduce the number of
candidates by one. (Once we have identified this transition point, it is easy to see
that the manipulation problem remains hard for any greater number of candidates,
and remains easy for any smaller number of candidates, for example by adding
“dummy” candidates.)

4.1. CONSTRUCTIVE MANIPULATION. We first present our results for construc-
tive manipulation.

4.1.1. Easiness Results. We begin by laying out some cases where constructive
manipulation can be done in polynomial time. We start with some protocols that
are easy to manipulate constructively regardless of the number of candidates. For
the plurality protocol, showing this is straightforward:

THEOREM 1. For the plurality protocol, CONSTRUCTIVE CW-MANIPULATION
can be solved in polynomial time (for any number of candidates).

PROOF. The manipulators can simply check if p will win if all the manipulators
vote for p. If not, they cannot make p win.

For the cup protocol, the proof is a little more involved:

THEOREM 2. For the cup protocol (given the assignment of candidates to
leaves), CONSTRUCTIVE CW-MANIPULATION can be solved in polynomial time (for
any number of candidates).

7 Our proofs do not depend on this specification, with the exception of Theorem 7.
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10 V. CONITZER ET AL.

PROOF. We demonstrate a method for finding all the potential winners of the
election. In the binary tree representing the schedule, we can consider each node
to be a subelection, and compute the set of potential winners for each subelection.
(In such a subelection, we may say that the voters only order the candidates in
that subelection since the place of the other candidates in the order is irrelevant.)
Say a candidate can obtain a particular result in the election if it does so for some
coalitional vote. The key claim to the proof, then, is the following: a candidate can
win a subelection if and only if it can win one of its children, and it can defeat one
of the potential winners of the sibling child in a pairwise election. It is easy to see
that the condition is necessary. To show that it is sufficient, let p be a candidate
satisfying the condition by being able to defeat h, a potential winner of the other
child (or half ). Consider a coalitional vote that makes p win its half, and another
one that makes h win its half. We now let each coalitional voter vote as follows: it
ranks all the candidates in p’s half above all those in h’s half; the rest of the order
is the same as in the votes that make p and h win their halves. Clearly, this will
make p and h the finalists. Also, p will win the pairwise election against h since
it is always ranked above h by the colluders; and as we know that there is some
coalitional vote that makes p defeat h pairwise, this one must have the same result.
The obvious recursive algorithm has running time O(m3n) in accordance with the
Master Theorem [Cormen et al. 1990].

The remaining easiness results that we show in this section only show easiness
up to a certain number of candidates. For each of these results, we later show that
adding one more candidate causes the problem to become NP-complete.

As a first observation, when there are only two candidates, all the protocols con-
sidered in this article (and indeed all “reasonable” voting protocols) are equivalent
to the plurality protocol, and hence both types of manipulation (constructive and
destructive) are in P for all of the protocols. However, some protocols are still easy
to manipulate constructively with more than two candidates. In each of the follow-
ing cases, we prove easiness of manipulation by demonstrating that if there exists a
successful manipulation, there also exists one where all the manipulators vote the
same way. All such ways of voting can be easily enumerated: because the number
of candidates is constant, the number of different orderings of the candidates is
constant. Also, each way of voting is easy to evaluate in these protocols.

THEOREM 3. If the Copeland protocol with three candidates has a CONSTRUC-
TIVE CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION where all
of the manipulators vote identically. Therefore, CONSTRUCTIVE CW-MANIPULATION
is in P.

PROOF. Let the three candidates be p, a, and b. We are given the nonmanip-
ulators’ votes S, and the weights for the manipulators’ votes T . Let the total vote
weight in T be K .

For a set of weighted votes V and two candidates x , y, we denote by NV (x, y)
the cumulated weights of the votes in V ranking x prior to y, and we let DV (x, y) =
NV (x, y)−NV (y, x). Let us consider the following four cases that cover all possible
situations:

Case 1. K > DS(a, p) and K > DS(b, p). In this case, any configuration of
votes for T such that p is ranked first for all votes makes p win the election.
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Case 2. K > DS(a, p) and K = DS(b, p). It can easily be shown that it is
harmless to assume that all votes in T rank p first. Therefore, what remains to be
done in order to have p win is to find who in T should vote (p, a, b) and who
should vote (p, b, a). What we know so far (before knowing how the votes in T
will split between these two profiles) is: (1) DS∪T (p, a) = K − DS(p, a) > 0 and
(2) DS∪T (p, b) = K − DS(p, b) = 0. (1) makes p get + 1 and a get −1 while
(2) makes both p and b get 0. Therefore, the partial Copeland scores (not taking
account of the a vs. b pairwise election), are +1 for p (which will not change after
taking account of the a − b pairwise election), −1 for a and 0 for b; hence, the
only way for p to win (with certainty) is to avoid b getting a point in the pairwise
election against a, that is, to ensure that DS∪T (a, b) ≥ 0. It can easily be shown
that this is possible if and only if K ≥ DS(b, a). Therefore, we have found that
there exists a successful manipulation for p iff K ≥ DS(b, a), and in this case a
successful manipulation is the one where all voters in the coalition vote (p, a, b).

Case 3. K = DS(a, p) and K > DS(b, p). This is similar to Case 2, switching the
roles of a and b; the condition then is K ≥ DS(a, b) and the successful manipulation
is the one where all vote (p, b, a).

Case 4. K < DS(a, p) or K < DS(b, p) or (K ≤ DS(a, p) and K ≤ DS(b, p)).
Here, whatever the votes in T , the Copeland score of p is smaller than or equal to
0 and therefore p cannot be guaranteed to win, so there is no successful manipu-
lation. Thus, in every case, either there is no successful manipulation, or there is a
successful manipulation where all manipulators vote identically.

THEOREM 4. If the maximin protocol with three candidates has a CONSTRUC-
TIVE CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION where all
of the manipulators vote identically. Therefore, CONSTRUCTIVE CW-MANIPULATION
is in P.

PROOF. Let the three candidates be p, a, and b. We are given the nonmanipu-
lators’ votes S, and the weights for the manipulators’ votes T . Again, it is easy to
show that all the manipulators can rank p first without harm. Now, let us suppose
that there exists a way for the manipulators to make p win (where each manipulator
votes (p, a, b) or (p, b, a)). We will show that if this is so, then also, either it is the
case that all manipulators voting (p, a, b) will make p win, or it is the case that all
manipulators voting (p, b, a) will make p win. Let us consider two cases for the
outcome of the whole election when the manipulators cast their successful votes
(potentially including both (p, a, b) and (p, b, a) votes):

Case 1. The uniquely worst pairwise election for a is against b, and the uniquely
worst pairwise election for b is against a. One of a and b must have got at least
half the vote weight in the pairwise election against the other (say, WLOG, a)
and therefore have a maximin score of at least half the vote weight. Since a did
even better against p, p received less than half the vote weight in their pairwise
election and therefore (contrary to assumption) p does not win. So this case cannot
occur.

Case 2. One of a and b (say, without loss of generality, a) does at least as badly
against p as against the other (so, a’s worst opponent is p). Then, all the voters in
the coalition might as well vote (p, a, b), because this will change neither a’s score
nor p’s score, and might decrease (but not increase) b’s score.
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12 V. CONITZER ET AL.

THEOREM 5. If the randomized cup protocol with six candidates has a CON-
STRUCTIVE CW-MANIPULATION, then it has a CONSTRUCTIVE CW-MANIPULATION
where all of the manipulators vote identically. (This holds regardless of which
balanced tree is chosen.) Therefore, CONSTRUCTIVE CW-MANIPULATION is in P.

PROOF. We show how to transform a successful manipulation into a successful
manipulation where all the manipulators cast the same vote, in a number of steps.
Observe that swapping two candidates that are ranked directly after one another in
a vote can only affect the outcome of their pairwise election, and not those of the
others. (Throughout the proof, when we talk about swapping two candidates in a
vote, this only means swapping two candidates ranked directly behind each other.)

If p is ranked directly behind another candidate c, the only effect that swapping
them can have is to make p the winner of their pairwise election where it was not
before; clearly, this can never hurt p’s chances of winning. Repeated application
of this gives us a successful manipulation where all the manipulators rank p at the
top.

We now divide the other candidates into two sets: B is the set of candidates that
defeat p in their pairwise election, G is that of candidates that are defeated by p.
We now claim that when a candidate g ∈ G is ranked directly behind a candidate
b ∈ B, swapping them cannot hurt p’s chances of winning. This is because of the
following reason. Again, the only effect that the swap can have is to make g the
winner of its pairwise election with b, where it was not before. We show that for
any schedule (assignment of candidates to leaves), if p wins when b defeats g, then
p also wins in the case where this pairwise election is changed to make g defeat b
(but nothing else is changed). For any schedule where g and b do not meet, this is
obvious. If b and g face each other in the final, p of course does not win. If b and
g face each other in a semifinal, and b defeats g, then again p cannot win because
it cannot defeat b in the final. So the only case left to check is a schedule where
b and g meet in a quarterfinal (because the tree is balanced). If p wins with this
schedule when b defeats g, that means that b is defeated by some other g′ ∈ G in
the semifinal (if b wins the semifinal, p could never defeat it in the final; if b loses
to some b′ ∈ B, p could never defeat b′ in the final; and p itself cannot defeat b in
the semifinal either), and that p defeats this g′ in the final. Then, if we change the
winner of the quarterfinal to g, regardless of whether g or g′ wins the semifinal,
p will win the final. Thus, the claim is proven. Repeated application of this gives
a successful manipulation where all the manipulators rank p at the top, and all
candidates in G above all candidates in B.

All that remains is to get the manipulators to agree on the order of the candidates
within G and the order of the candidates within B. We will show how to do this for
G; the case of B is entirely analogous. If there are 0 or 1 candidates in G, there is
only one order for these candidates. If there are 2 candidates in G, then swapping
them whenever the winner of their pairwise election is ranked below the loser does
not affect the outcome of their pairwise election and hence nothing at all.

If there are 3 candidates in G, that means there are only 2 in B. Say B = {b1, b2}.
Divide the candidates in G into G B, G{b1}, G{b2}, G{}, where a candidate in GS
defeats all candidates in S but none in B − S. We first claim that it never hurts to
swap when a candidate gB ∈ G B is ranked directly below another candidate g ∈ G.
Again we do so by showing that with any schedule where p wins when g defeats
gB , p also wins when gB defeats g (but everything else is unchanged). If g and gB
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When Are Elections with Few Candidates Hard to Manipulate? 13

never meet, this is obvious; if g and gB meet in a semifinal or the final, it does not
matter to p which one wins. If g defeats gB in a quarterfinal and p wins the election,
then one of the three following cases applies: (1) p defeats g in the semifinal, (2)
g defeats some b ∈ B in the semifinal and is defeated by p in the final, (3) g faces
the third candidate g3 ∈ G in the semifinal, and p wins the final agaist the winner
of this. Now, if gB instead had defeated g, then, in case (1), p defeats gB in the
semifinal and goes on to win the final as before; in case (2), gB defeats b as well
in the semifinal and then loses to p in the final; and in case (3), p faces either gB
or g3 in the final and wins. Repeated application of this gets all the elements in
G B ranked above all the other elements in G in all the manipulators’ votes, and
this rule also allows us to get the elements in G B ordered among themselves in the
same way in all the manipulators’ votes. Similarly, we can show that we can always
swap the elements in G{} downwards, so that all the elements of this set are ranked
below all other elements in G, and ordered among themselves in a unique manner
across all the votes.

Now, if indeed there is some element in G B or G{}, then there are at most two
candidates left in G whose order might differ across manipulators’ votes. As in the
case of two candidates, we can simply always swap the winner of their pairwise
election up without changing anything, and we are done. On the other hand, suppose
there is no element in G B or G{}, so that all the remaining elements are in G{b1} or
G{b2}. We claim that either it does not hurt to swap all the candidates from G{b1}
below all those of G{b2}, or vice-versa. In the case where either G{b1} or G{b2} is
empty, this claim is vacuous: so suppose without loss of generality that G{b1} has
two elements g1 and g2, and G{b2} one element, g3. Now suppose the contrary, that
is, that always swapping g3 above g1 and g2 decreases p’s chances of winning
the election, but that always swapping g3 below g1 and g2 also decreases p’s
chances of winning the election. It follows that always swapping g3 above g1 and
g2 causes g3 to win both pairwise elections, and that always swapping g3 below g1
and g2 causes g3 to lose both pairwise elections. (For otherwise, the manipulators
cannot change the winner of one of these pairwise elections, and because the other
pairwise election must have a winner in the current state, either always swapping
g3 up or always swapping g3 down will not affect any pairwise election at all,
and hence the probability of p winning would remain unchanged.) Hence, in the
current state g3 must be winning exactly one of these pairwise elections (without
loss of generality, the one against g1). Now, because always swapping g3 below
g1 and g2 only has the effect of making it lose against g1 as well, and because
this reduces the probability of p winning, it follows that the number of schedules
where p wins now is strictly greater than the number of schedules where p wins if
g3 lost to g1 in its pairwise election but everything else remained the same. Thus,
the number of schedules where p wins now but would not win if g3 lost to g1
in their pairwise election (call this set of schedules L(g1)), is strictly greater than
the number of schedules where p does not win now but would win if g3 lost to
g1 in their pairwise election (call this set of schedules W (g1)). Similarly, we can
show that the number of schedules where p wins now but would not win if g3
defeated g2 in their pairwise election (call this set of schedules W (g2)), is strictly
greater than the number of schedules where p does not win now but would win
if g3 defeated g2 in their pairwise election (call this set of schedules L(g2)). So,
|W (g1)| < |L(g1)|, and |W (g2)| > |L(g2)|. We now derive the desired contradiction
by showing W (g1)| ≥ |W (g2)| and |L(g1)| ≤ |L(g2)|. Consider the mapping f from

Journal of the ACM, Vol. 54, No. 3, Article 14, Publication date: June 2007.



14 V. CONITZER ET AL.

schedules to schedules that simply swaps the position of g1 and g2 in the schedule.
This mapping is one-to-one. We now claim that if σ ∈ W (g2), then f (σ ) ∈ W (g1),
thereby demonstrating |W (g1)| ≥ |W (g2)|; the case for |L(g1)| ≤ |L(g2)| is similar.
σ ∈ W (g2) means that p wins in σ now but would not win if g3 defeated g2 in
their pairwise election. It is straightforward to check that this only happens if g2
and g3 meet in a quarterfinal, and the winner goes on to meet b1 in the semifinal
(whom g2 would defeat but g3 would not), while p goes on to the final in the other
half of the cup. Now we must show f (σ ) ∈ W (g1). In f (σ ), g1 and g3 face each
other in a quarterfinal. The semifinal after this quarterfinal will certainly have b1
in it (if b1 plays a quarterfinal before this, b1 must have the same opponent in this
quarterfinal as in σ , because b1 cannot face g1 in the quarterfinal in σ and still
move on to the semifinal in σ ; hence b1 will defeat its quarterfinal opponent in
f (σ ) as well). Also, the final will certainly have p in it (even if g1 was in p’s half,
since the sets of candidates within p’s half that g1 and g2 defeat are identical, this
half will proceed exactly as in σ ). Now, in the current state of the votes, g3 will
defeat g1 in the quarterfinal, upon which b1 will defeat g3 in the semifinal and p in
the final. On the other hand, if g1 defeated g3, it would defeat b1 in the semifinal
and p would win the final against g1, and hence win the entire election. It follows
that f (σ ) ∈ W (g1), as was to be shown. So either it does not hurt to swap all
the candidates from G{b1} below all those of G{b2}, or vice-versa. It remains to be
shown that the manipulators’ rankings of the candidates within G{b1} and within
G{b2} can be made to coincide. Given (without loss of generality) g1, g2 ∈ G{b1}, it
is straightforward to check that it does not matter to p which of them would win
if they faced each other in the final or semifinal. In case they face each other in a
quarterfinal, then if p is in the same half of the cup it does not matter which of g1
and g2 wins the quarterfinal, because p (if it reaches the semifinal) would defeat
either one. If p is in the other half, the only thing that matters is whether this half’s
finalist is in B or in G. Thus, if the winner of the quarterfinal between g1 and g2
faces the last remaining candidate from G the finalist will certainly be in G, so
who won the quarterfinal does not matter; on the other hand, if the winner of the
quarterfinal between g1 and g2 faces a candidate in B, then again it does not matter
who wins the quarterfinal, because g1 and g2 defeat the same set of candidates from
B. It follows that it is irrelevant to p’s chances of winning what the outcome of a
pairwise election between candidates in G{b1} or between candidates in G{b2} is, so
we can order them among themselves in whichever way we like. Hence, we can
make the manipulators’ votes coincide on the order of the three candidates in G.

If there are four candidates in G, that means there is only one in B. Hence,
we can partition G into G B and G{}. With techniques similar to the case of three
candidates in G, we can show that we can always swap candidates in G B above
those in G{}; and we can show that a vote’s order of the candidates within G B (or
G{}) is irrelevant. Hence, we can make the manipulators’ votes coincide on the
order of the four candidates in G.

Finally, if there are five candidates in G, then p defeats all other candidates in
pairwise elections, so p is guaranteed to win regardless of how the candidates in G
are ranked.

4.1.2. Hardness Results. We are now ready to prove hardness results that match
the bounds given by the easiness results above. (That is, for every protocol that we
showed is easy to manipulate with up to l candidates, we now show that it is hard
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to manipulate with l + 1 candidates.) In many of the proofs of NP-hardness, we use
a reduction from the PARTITION problem, which is NP-complete [Karp 1972]:

Definition 3 (Partition). We are given a set of integers {ki }1≤i≤t (possibly with
multiplicities) summing to 2K , and are asked whether a subset of these integers
sums to K .

THEOREM 6. For any positional scoring protocol other than the plurality pro-
tocol, CONSTRUCTIVE CW-MANIPULATION is NP-complete for three candidates.

PROOF. First, note that when there are only three candidates, a positional
scoring protocol is defined by a vector of integers �α = 〈α1, α2, α3〉 such that
α1 ≥ α2 ≥ α3. Without loss of generality, we can assume that α3 = 0 (since
translating the αi ’s by a constant has no effect on the outcome of the election). We
can also assume that α2 ≥ 2. (If α2 = 0, then the protocol is either meaningless
(if α1 = 0) or equivalent to the plurality protocol, so we can assume α2 > 0.
Then, we can scale the αi appropriately, which will not affect the protocol.) Show-
ing the problem is in NP is easy. To show NP-hardness, we reduce an arbitrary
PARTITION instance to the following CONSTRUCTIVE MANIPULATION instance. The
three candidates are a, b, and p. In S there are (2α1 − α2)K − 1 voters voting
(a, b, p) and (2α1 − α2)K − 1 voters voting (b, a, p). In T , for each ki there is
a vote of weight (α1 + α2)ki . Suppose there is a partition of the ki . Then, let the
votes in T corresponding to the one half of the partition be (p, a, b) and the votes
corresponding to the other half be (p, b, a). Then the score of p is 2(α1 + α2)α1 K
while the scores of both a and b are (α1 + α2)(2α1 K − 1); therefore p is the win-
ner and there is a manipulation. Conversely, suppose there exists a manipulation.
Then, since positional scoring procedures satisfy monotonicity, we can assume
without loss of generality that the voters in the coalition T rank p first. Let x (re-
spectively, y) be the total weight of voters in T of the voters who vote (p, a, b)
(respectively, (p, b, a)). Note that we have x + y = 2K . Then the score of p is
2(α1 + α2)α1 K , the score of a is (α1 + α2)((2α1 − α2)K − 1 + xα2), and the score
of b is (α1 + α2)((2α1 − α2)K − 1 + yα2). Since p is the winner, its score must
be at least that of a, which is equivalent to xα2 ≤ Kα2 + 1. Because α2 > 0, the
latter condition is equivalent to x ≤ K + 1

α2
, which is equivalent to x ≤ K (because

α2 ≥ 2). Similarly, we get y ≤ K , which together with x + y = 2K enables us to
conclude that x = y = K , so there exists a partition.

COROLLARY 1. For the veto and Borda protocols, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for three candidates.

(On a historical note, we actually proved Corollary 1 before we discovered its gen-
eralization to Theorem 6; the generalization was independently discovered by us,
Hemaspaandra and Hemaspaandra [2005], and Procaccia and Rosenschein [2006].)

THEOREM 7. For the Copeland protocol, CONSTRUCTIVE CW-MANIPULATION
is NP-complete for four candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
instance. There are four candidates, a, b, c and p. In S there are 2K +2 voters voting
(p, a, b, c), 2K + 2 voting (c, p, b, a), K + 1 voting (a, b, c, p), and K + 1 voting
(b, a, c, p). In T , for every ki there is a vote of weight ki . We show the instances are
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equivalent. First, every pairwise election is already determined without T , except
for the one between a and b. p defeats a and b; a and b each defeat c; c defeats p.
If there is a winner in the pairwise election between a and b, that winner will tie
with p. So p wins the Copeland election, if and only if a and b tie in their pairwise
election. But, after the votes in S alone, a and b are tied. Thus, the votes in T
maintain this tie if and only if the combined weight of the votes in T preferring a
to b is the same as the combined weight of the votes in T preferring b to a. This
can happen if and only if there is a partition.

THEOREM 8. For the maximin protocol, CONSTRUCTIVE CW-MANIPULATION is
NP-complete for four candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
instance. There are four candidates, a, b, c and p. In S there are 7K −1 voters voting
(a, b, c, p), 7K − 1 voting (b, c, a, p), 4K − 1 voting (c, a, b, p), and 5K voting
(p, c, a, b). In T , for every ki there is a vote of weight 2ki . We show the instances are
equivalent. Suppose there is a partition. Then, let the votes in T corresponding to the
ki in one half of the partition vote (p, a, b, c), and let the other ones vote (p, b, c, a).
Then, p does equally well in each pairwise election: it always gets 9K pairwise
points. a’s worst pairwise election is against c, getting 9K −1. b’s worst is against a,
getting 9K −1. Finally c’s worst is against b, getting 9K −1. Hence, p wins the elec-
tion. So there is a manipulation. Conversely, suppose there is a manipulation. Then,
since moving p to the top of each vote in T will never hurt p in this protocol, there
must exist a manipulation in which all the votes in T put p at the top, and p thus gets
9K as its worst pairwise score. Also, the votes in T cannot change which each other
candidate’s worst pairwise election is: a’s worst is against c, b’s worst is against a,
and c’s worst is against b. Since c already has 9K −1 points in its pairwise election
against b, no vote in T can put c ahead of b. Additionally, if any vote in T puts a right
above c, swapping their positions has no effect other than to decrease a’s final score,
so we may also assume this does not occur. Similarly we can show it safe to also
assume no vote in T puts b right above a. Combining all of this, we may assume that
all the votes in T vote either (p, a, b, c) or (p, b, c, a). Since a already has 7K − 1
points in the pairwise election against c, the votes in T of the first kind can have a to-
tal weight of at most 2K ; hence the corresponding ki can sum to at most K . The same
holds for the ki corresponding to the second kind of vote on the basis of b’s score.
Hence, in both cases, they must sum to exactly K . But then, this is a partition.

THEOREM 9. For the STV protocol, CONSTRUCTIVE CW-MANIPULATION is
NP-complete for three candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following CONSTRUCTIVE CW-MANIPULATION
instance. There are three candidates, a, b and p. In S, there are 6K −1 voters voting
(b, p, a), 4K voting (a, b, p), and 4K voting (p, a, b). In T , for every ki there is
a vote of weight 2ki . We show the instances are equivalent. Suppose there is a
partition. Then, let the votes in T corresponding to the ki in one half of the partition
vote (a, p, b), and let the other ones vote (p, a, b). Then in the first round, b has
6K −1 points, a has 6K , and p has 6K . So b drops out; all its votes transfer to p, so
that p wins the final round. So there is a manipulation. Conversely, suppose there
is a manipulation. Clearly, p cannot drop out in the first round; but also, a cannot
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drop out in the first round, since all its votes in S would transfer to b, and b would
have at least 10K − 1 points in the final round, enough to guarantee it victory. So,
b must drop out in the first round. Hence, from the votes in T , both a and p must
get at least 2K weight that puts them in the top spot. The corresponding ki in either
case must thus sum to at least K . Hence, in both cases, they must sum to exactly
K . But then, this is a partition.

This also allows us to show that constructively manipulating the plurality with
runoff protocol is hard:

THEOREM 10. For the plurality with runoff protocol, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for three candidates.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we observe
that with three candidates, the plurality with runoff protocol coincides with the
STV protocol, and CONSTRUCTIVE MANIPULATION for STV with three candidates is
NP-hard.

THEOREM 11. For the randomized cup protocol, CONSTRUCTIVE CW-
MANIPULATION is NP-complete for seven candidates.

PROOF. The problem is in NP because for any vector of votes, we can
check for every one of the possible schedules for the cup whether p wins (be-
cause the number of candidates is constant, so is the number of possible sched-
ules). To show it is NP-hard, we reduce an arbitrary PARTITION instance to the
following CONSTRUCTIVE CW-MANIPULATION instance. There are seven candi-
dates, a, b, c, d, e, f , and p. In T , for every ki there is a vote of weight
2ki . Let W = 4K . Let the votes in S be as follows: there are 5

2 W votes
(d, e, c, p, f, a, b), 1

2 W votes (d, e, c, p, f, b, a), 5
2 W votes ( f, d, b, p, e, c, a),

1
2 W votes ( f, d, b, p, e, a, c), 5

2 W votes (e, f, a, p, d, b, c), 1
2 W votes

(e, f, a, p, d, c, b), 2W votes (p, a, c, b, d, e, f ), W votes (p, c, b, a, f, d, e), W
votes (c, b, a, f, d, e, p), 2W votes (b, a, c, e, f, d, p), and 4K − 1 votes that we
will specify shortly. Since it takes only 8 1

2 W votes to win a pairwise election, it
follows that the outcomes of the following pairwise elections are already deter-
mined: p defeats each of a, b, c (it has 9W votes in each of these pairwise elections
from the given votes); each of d, e, f defeats p (9W in each case); d defeats e, e
defeats f , f defeats d (10W in each case); a defeats d, b defeats e, c defeats f
(9W in each case); d defeats b and c, e defeats a and c, f defeats a and b (9W
in each case). So, the only pairwise elections left to be determined are the ones
between a, b and c. We now specify the remaining 8K − 1 votes in S: there are
2K − 1 votes (c, b, a, p, d, e, f ) and 2K − 1 votes (b, a, c, p, d, e, f ), and 1 vote
(b, c, a, p, d, e, f ). As a result, given all the votes in S, b is 4K − 1 votes ahead
of a in their pairwise election, b is 1 vote ahead of c, and c is 1 vote ahead of a.
We claim that the votes in T can be cast so as to make a defeat b, b defeat c, and
c defeat a, if and only if a partition of the ki exists. If a partition exists, let the
votes corresponding to one half of the partition be (a, b, c, p, d, e, f ), and those
corresponding to the other half be (c, a, b, p, d, e, f ); this is easily verified to yield
the desired result. Conversely, suppose there is a way to cast the votes in T so as to
yield the desired result. Then, since each vote in T has even weight, all the votes in
T rank a above b; at least half the vote weight ranks b above c; and at least half the
vote weight ranks c above a. Since, if a is ranked above b, it is impossible to have
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Final round

"bye" position

Quarterfinal 2 (q2)Quarterfinal 1 (q1) Quarterfinal 3 (q3)

Semifinal 1 (s1) Semifinal 2 (s2)

FIG. 1. The cup used in the proof.

c be ranked simultaneously both below b and above a, it follows that precisely half
the vote weight ranks b above c (and the other half, c above a); and hence, we have
a partition. To complete the proof of the theorem, we claim that making a defeat b,
b defeat c, and c defeat a strictly maximizes the probability that p wins. From this
claim, it follows that if we set r to a number slightly smaller than the probability
that p wins if a defeats b, b defeats c, and c defeats a, then it is possible for the
votes in T to make p win with probability at least r , if and only if there is a partition
of the ki . To prove the claim, we do a careful case-by-case analysis on the structure
of the cup (see Figure 1).

For each situation in which two of a, b and c face each other in a round, we
analyze whose winning would be most favorable to p. If p does not get the “bye”
position, it can only win by facing each of a, b and c in some round, which is
impossible if any two of those ever face each other; so, in this case, the results of
the pairwise elections between them are irrelevant as far as p’s chances of winning
are concerned. So let us assume p gets the bye position. If two of a, b and c face
each other in s1, then the outcome of this round is irrelevant as p would defeat
either one in the final. If two of a, b and c face each other in q3, then the outcome
of this round is irrelevant as p would defeat either one in s2. Now suppose a and b
face each other in q1. Then, the only way for p to make it to the final is if c faces
f in q3, so let us assume this happens. Then, d and e face each other in q2, which
confrontation d will win. If a defeats b in q1, it will win s1 against d, and p will
defeat it in the final. On the other hand, if b defeats a in q1, it will lose s1 against
d , and d will defeat p in the final. It follows that in this case, if we want p to win,
we would (strictly) prefer a to defeat b in their pairwise election. Symmetrically,
we also prefer a to defeat b if they face each other in q2. Since we have analyzed
all possibilities where a may face b, and in these is always favorable to p for a to
defeat b, sometimes strictly so; it follows that it is strictly favorable to p’s chances
of winning if a defeats b in their pairwise election. Analogously (or by symmetry),
it can be shown that it is strictly favorable to p’s chances of winning if b defeats c,
and c defeats b in their pairwise elections. Hence, achieving these pairwise results
simultaneously strictly maximizes p’s chance of winning the election.
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Recall that the cup protocol (without randomization) is easy to manipulate con-
structively for any number of candidates. Thus, the previous result shows that
randomizing over instantiations of the protocols (such as schedules of a cup) can
be used to make manipulation hard.

4.2. DESTRUCTIVE MANIPULATION. We now present our results for destructive
manipulation.

4.2.1. Easiness Results. We begin by laying out some cases where destructive
manipulation can be done in polynomial time. It is easy to see that destructive ma-
nipulation can never be harder than constructive manipulation (except by a factor
m) because in order to solve the former, we may simply solve the latter once for
each candidate besides h. Thus, we immediately know that the plurality and cup
protocols can be destructively manipulated in polynomial time, for any number
of candidates. Interestingly, for most of the other protocols under study, destruc-
tive manipulation turns out to be drastically easier than constructive manipulation!
The following theorem shows a sufficient condition for protocols to be easy to
manipulate destructively.

THEOREM 12. Consider any voting protocol where each candidate receives a
numerical score based on the votes, and the candidate with the highest score wins.
Suppose that the score function is monotone, that is, if voter i changes its vote so
that {b : a old

i b} ⊆ {b : a new
i b} (here, a i b means that voter i prefers a to

b), a’s score will not decrease. Finally, assume that the winner can be determined
in polynomial time. Then for this protocol, destructive manipulation can be done
in polynomial time.

PROOF. Consider the following algorithm: For each candidate a besides h, we
determine what the outcome of the election would be for the following coalitional
vote. All the colluders place a at the top of their votes, h at the bottom, and order
the other candidates in whichever way. We claim there is a vote for the colluders
with which h does not win if and only if h does not win in one of these m − 1
elections. The if part is trivial. For the only if part, suppose there is a coalitional
vote that makes a �= h win the election. Then, in the coalitional vote we examine
where a is always placed on top and h always at the bottom, by monotonicity, a’s
score cannot be lower (because for each manipulator i , {b : a >i b} is maximal)
and h’s cannot be higher (because for each manipulator i , {b : h >i b} is minimal)
than in the successful coalitional vote. It follows that here, too, a’s score is higher
than h’s, and hence h does not win the election. The algorithm is in P since we do
m − 1 winner determinations, and winner determination is in P.

COROLLARY 2. Destructive manipulation can be done in polynomial time for
the veto, Borda, Copeland, and maximin protocols.

4.2.2. Hardness Results. Theorem 12 does not apply to the STV and plurality
with runoff protocols. We now show that destructive manipulation is in fact hard
for these protocols, even with only three candidates.

THEOREM 13. For the STV protocol with three candidates, DESTRUCTIVE CW-
MANIPULATION is NP-complete.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we reduce
an arbitrary PARTITION instance to the following DESTRUCTIVE CW-MANIPULATION
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instance. The three candidates are a, b and h. In S, there are 6K voters voting
(a, h, b), 6K voters voting (b, h, a), and 8K − 1 voters voting (h, a, b). In T , for
every ki there is a vote of weight 2ki . We show the instances are equivalent.

We first observe that h will not win if and only if it gets eliminated in the first
round: for if it survives the first round, either a or b gets eliminated in the first
round. Hence, either all the votes in S that ranked a at the top or all those that
ranked b at the top will transfer to h, leaving h with at least 14K − 1 votes in the
final round out of a total of 24K − 1, so that h is guaranteed to win the final round.

Now, if a partition of the ki exists, let the votes in T corresponding to one half
of the partition vote (a, b, h), and let the other ones vote (b, a, h). Then, in the first
round, a and b each have 8K votes, and h only has 8K − 1 votes, so that h gets
eliminated. So there exists a manipulation.

On the other hand, if a manipulation exists, we know by the above that with
this manipulation, h is eliminated in the first round. Hence, at least 2K − 1 of the
vote weight in T ranks a at the top, and at least 2K − 1 of the vote weight in T
ranks b at the top. Let A be the set of all the ki corresponding to votes in T ranking
a at the top; then

∑
ki ∈A ki ≥ K − 1

2 , and since the ki are integers, this implies∑
ki ∈A ki ≥ K . If we let B be the set of all the ki corresponding to votes in T

ranking b at the top, then similarly,
∑

ki ∈B ki ≥ K . Since A and B are disjoint, it
follows that

∑
ki ∈A ki = ∑

ki ∈B ki = K . So there exists a partition.

This result also allows us to establish the hardness of destructive manipulation
in the plurality with runoff protocol:

THEOREM 14. For the plurality with runoff protocol with three candidates,
DESTRUCTIVE CW-MANIPULATION is NP-complete.

PROOF. Showing the problem is in NP is easy. To show it is NP-hard, we observe
that with three candidates, plurality with runoff coincides with STV, and DESTRUC-
TIVE MANIPULATION for STV with three candidates is NP-hard, as we proved in
Theorem 13.

5. Effect of Uncertainty about Others’ Votes

So far, we have discussed the complexity of coalitional manipulation when the
others’ votes are known. We now show how those results can be related to the
complexity of manipulation by an individual voter when only a distribution over
the others’ votes is known. If we allow for arbitrary distributions, we need to
specify a probability for each possible combination of votes by the others, that is,
exponentially many probabilities (even with just two candidates). It is impracti-
cal to specify so many probabilities.8 Therefore, we should acknowledge that it is
likely that the language used for specifying these probabilities would not be fully
expressive (or would at least not be very convenient for specifying complex distri-
butions). We derive the complexity results of this section for extremely restricted
probability distributions, which any reasonable language should allow for. Thus, our
results apply to any reasonable language. We only present results on constructive

8Furthermore, if the input is exponential in the number of voters, an algorithm that is exponential in
the number of voters is not necessarily complex in the usual sense of input complexity.
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manipulations, but all results apply to the destructive cases as well and the proofs
are analogous. We restrict our attention to deterministic protocols.

5.1. WEIGHTED VOTERS. First, we show that with weighted voters, in protocols
where coalitional manipulation is hard in the complete-information case, even eval-
uating a candidate’s winning probability is hard when there is uncertainty about the
votes (even when there is no manipulator).

Definition 4 (Weighted Evaluation). We are given a weight for each voter, a
distribution over all possible vectors of votes, a candidate p, and a number r , where
0 ≤ r ≤ 1. We are asked whether the probability of p winning is greater than r .

THEOREM 15. If CONSTRUCTIVE CW-MANIPULATION is NP-hard for a deter-
ministic protocol (even with k candidates), then WEIGHTED EVALUATION is also
NP-hard for it (even with k candidates), even if r = 0, the votes are drawn indepen-
dently, and only the following types of (marginal) distributions are allowed: (1) the
vote’s distribution is uniform over all possible votes, or (2) the vote’s distribution
puts all of the probability mass on a single vote.

PROOF. For the reduction from CONSTRUCTIVE CW-MANIPULATION to
WEIGHTED EVALUATION, we use exactly the same voters, and p remains the same
as well. If a voter was not a colluder in the CONSTRUCTIVE CW-MANIPULATION
instance and we were thus given its vote, in the WEIGHTED EVALUATION instance
its distribution places all of the probability mass on that vote. If the voter was in
the collusion, its distribution is now uniform. We set r = 0. Now, clearly, in the
WEIGHTED EVALUATION instance there is a chance of p winning if and only if there
exists some way for the latter votes to be cast so as to make p win—that is, if
and only if there is an effective collusion in the CONSTRUCTIVE CW-MANIPULATION
problem.

Next we show that if evaluating the winning probability is hard, individual ma-
nipulation is also hard.

Definition 5 (Constructive Individual Weighted (IW)-Manipulation under
Uncertainty). We are given a single manipulative voter with a weight, weights
for all the other voters, a distribution over all the others’ votes, a candidate p, and
a number r , where 0 ≤ r ≤ 1. We are asked whether the manipulator can cast its
vote so that p wins with probability greater than r .

While this definition appears natural and is easy to work with, one may wonder
whether the following scenario is possible: it is always easy for the manipulator to
determine its strategically optimal vote (or at least just a vote that is better than a
truthful vote, if such a vote exists), but hard to determine whether this vote (or any
other vote) makes p’s probability of winning greater than r . If this were so, then
the protocol would be hard to manipulate in the sense of the above definition, but
would still always be manipulated. However, it seems that determining the strate-
gically optimal vote (or even just a vote that is better than a truthful vote) would
generally be hard if manipulation in the sense of the above definition is hard. For
example, suppose that the manipulator has a utility of r for some candidate a, a
utility of 1 for p, and a utility of 0 for any other candidate that has any possibility of
winning. Additionally, suppose that the manipulator has the choice only between
casting votes (including the truthful vote) that make a win with probability 1, or
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casting votes that make a win with probability 0. (For example, under STV, there
can be a situation where, if the manipulator (truthfully) votes for some third can-
didate b (that has no possibility of winning), this would rescue b from elimination
in the first round, after which a is guaranteed to win due to how the votes transfer;
but if the manipulator does not vote for b, then b is eliminated, after which a is
immediately eliminated.) If this is the case, then the question of whether the ma-
nipulator can beneficially manipulate comes down to whether the manipulator can
make p win with probability greater than r (the above definition). We note that this
argument/proof sketch takes us beyond constructive and destructive manipulation
(there are at least three different utilities for the manipulator); covering this in more
detail would take us too far afield. Instead, we return to the above definition.

THEOREM 16. If WEIGHTED EVALUATION is NP-hard for a protocol (even
with k candidates and restrictions on the distribution), then CONSTRUCTIVE IW-
MANIPULATION UNDER UNCERTAINTY is also NP-hard for it (even with k candidates
and the same restrictions).

PROOF. For the reduction from WEIGHTED EVALUATION to CONSTRUCTIVE IW-
MANIPULATION UNDER UNCERTAINTY, simply add a manipulator with weight 0.

Combining Theorems 15 and 16, we find that with weighted voters, if in some
protocol coalitional manipulation is hard in the complete-information setting, then
even individual manipulation is hard if others’ votes are uncertain. Applying this
to the hardness results from Section 4, this means that all of the protocols of this
article other than plurality and cup are hard to manipulate by individuals in the
weighted case when the manipulator is uncertain about the others’ votes.

Finally, we show that WEIGHTED EVALUATION can be hard even if CONSTRUCTIVE
CW-MANIPULATION is not. If we relax the requirement that a vote is represented
by a total order over the candidates, we can also allow for the following common
voting protocol:

—approval. Each voter labels each candidate as either approved or disapproved.
The candidate that is approved by the largest number of voters wins.

For the approval protocol, CONSTRUCTIVE CW-MANIPULATION is trivial: the uni-
versally most potent manipulation is for all of the manipulators to approve the
preferred candidate p, and to disapprove all other candidates. However, WEIGHTED
EVALUATION is hard:

THEOREM 17. In the approval protocol, WEIGHTED EVALUATION is NP-hard,
even if r = 0, the votes are drawn independently, and the distribution over each
vote has positive probability for at most two of the votes.

PROOF. We reduce an arbitrary PARTITION instance to the following WEIGHTED
EVALUATION instance. There are three candidates, p, a, and b. There are 2K + 1
votes approving {p}. Additionally, for each ki in the PARTITION instance, there is a
vote of weight 2ki that approves {a} with probability 1

2 , and {b} with probability 1
2 .

We set r = 0. Clearly, p wins if and only if a and b are each approved by precisely
2K of the vote weight. But this is possible (and happens with positive probability)
if and only if there is a partition.
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5.2. UNWEIGHTED VOTERS. Finally, we study what implications can be derived
for the hardness of manipulation in settings with unweighted voters.

Definition 6. UNWEIGHTED EVALUATION is the special case of WEIGHTED EVAL-
UATION where all the weights are 1. CONSTRUCTIVE INDIVIDUAL UNWEIGHTED
(IU)-MANIPULATION UNDER UNCERTAINTY is the special case of CONSTRUCTIVE
INDIVIDUAL WEIGHTED (IW)-MANIPULATION UNDER UNCERTAINTY where all the
weights are 1.

First, we show that for protocols for which WEIGHTED EVALUATION is hard, UN-
WEIGHTED EVALUATION is also hard. This assumes that the language for specifying
the probability distribution is rich enough to allow for perfect correlations between
votes (i.e., some votes are identical with probability one9).

In this section, we will assume that the manipulation instance is represented in
a somewhat concise manner, namely, that if there are k perfectly correlated votes,
then this is represented by a single description of the distribution of such a vote,
plus the number k in binary representation. If k is given in unary representation, or
a separate description is given for each vote, then the proofs do not work. Whether
this assumption is reasonable presumably depends on the application setting.

THEOREM 18. If WEIGHTED EVALUATION is NP-hard for a protocol (even with
k candidates and restrictions on the distribution), then UNWEIGHTED EVALUATION
is also NP-hard for it if we allow for perfect correlations (even with k candidates
and the same restrictions—except those conflicting with perfect correlations).

PROOF. For the reduction from WEIGHTED EVALUATION to its unweighted ver-
sion, we replace each vote of weight k with k unweighted votes; we then make these
k votes perfectly correlated. Subsequently we pick a representative vote from each
perfectly correlated group, and we impose a joint distribution on this vote identical
to the one on the corresponding vote in the WEIGHTED EVALUATION problem. This
determines a joint distribution over all votes. It is easy to see that the distribution
over outcomes is the same as in the instance from which we reduced; hence, the
decision questions are equivalent.

We would like to have an analog of Theorem 16 here, to show that UNWEIGHTED
EVALUATION being hard also implies that CONSTRUCTIVE IU-MANIPULATION UNDER
UNCERTAINTY is hard. Unfortunately, the strategy used in the proof of Theorem 16—
setting the manipulator’s weight to 0—does not work, because the weight of the
manipulator must now be 1. (One may perhaps have felt uncomfortable with our
use of a manipulator of weight 0 in the proof of Theorem 16; the below can also
be used to avoid using such a manipulator in that setting.) Instead, we rely on
the following two theorems, which each require an additional precondition. The
first one shows that if the WEIGHTED EVALUATION problem is hard even when we
restrict our attention to instances where no ties can occur, then the CONSTRUCTIVE
IU-MANIPULATION UNDER UNCERTAINTY problem is also hard. (Formally, we say
that a tie occurs if a voter of arbitrarily small weight (not necessarily an integer)
can change the outcome of the election (i.e., whether p wins).)

9Representation of such distributions can still be concise.
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THEOREM 19. If WEIGHTED EVALUATION is NP-hard for a protocol even when
restricting our attention to instances where ties cannot occur (even with k can-
didates and restrictions on the distribution of the votes), then CONSTRUCTIVE IU-
MANIPULATION UNDER UNCERTAINTY is also NP-hard (with the same r ) if we allow
for perfect correlations (even with k candidates and the same restrictions on the
distribution of the nonmanipulators’ votes—except those conflicting with perfect
correlations).

PROOF. We reduce the EVALUATION instance to a MANIPULATION instance by
first adding a single manipulator. Because ties cannot occur, there must exist a
(rational) weight w > 0 such that if the manipulator’s vote has this weight, then
the manipulator’s vote will never affect the outcome. Without loss of generality, we
can assume that this weight can be written as w = 1

M for some sufficiently large
integer M . Now, multiply all the weights by M so that the manipulator’s vote has
weight 1 and all the weights are integers again. Then, replace each voter of weight
k by k perfectly correlated, unweighted voters. Clearly, the manipulator will still
not affect the outcome, and thus the distribution over outcomes is the same as in
the instance we reduced from; hence, the decision questions are equivalent.

Theorem 19 applies to most of the protocols under study:

COROLLARY 3. For each one of the following protocols, CONSTRUCTIVE IU-
MANIPULATION UNDER UNCERTAINTY is NP-hard: Borda (even with three candi-
dates), veto (even with three candidates), STV (even with three candidates), plurality
with runoff (even with three candidates), and maximin (even with four candidates).
This holds even if r = 0, the votes are either drawn independently or perfectly cor-
related, and only the following types of (marginal) distributions are allowed: (1) the
vote’s distribution is uniform over all possible votes, or (2) the vote’s distribution
puts all of the probability mass on a single vote.

PROOF. To show that we can apply Theorem 19 to each of these protocols, we
first make the following observation. For each of these protocols, the reduction that
we gave to show that CONSTRUCTIVE CW-MANIPULATION is hard has the property
that if there exists no successful manipulation, candidate p cannot even be tied for
winning the election (and, of course, if there is a successful manipulation, no other
candidate will tie with p for winning the election). Because of this, when we apply
the reduction from Theorem 15 to these instances, there is no chance that a tie for
winning the election between p and another candidate will occur, and we can apply
Theorem 19.

Unfortunately, for the Copeland protocol, in the reduction given in Theorem 7,
an unsuccessful manipulation may still leave p tied for winning the election. To
show that CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is hard for this
protocol as well, we need the following theorem:

THEOREM 20. If WEIGHTED EVALUATION is NP-hard for a protocol even in
settings where r = 0 and one of the voters with a uniform distribution over votes
has weight 1 (even with k candidates and restrictions on the distribution of the
votes), then CONSTRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is also NP-
hard even in settings where r = 0 if we allow for perfect correlations (even with
k candidates and the same restrictions on the distribution of the nonmanipulators’
votes—except those conflicting with perfect correlations).
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FIG. 2. The flow of the theorems in this section.

PROOF. We reduce the EVALUATION instance to a MANIPULATION instance by
replacing the voter with a uniform distribution over votes and weight 1 by the
manipulator, and keeping the distributions over the other voters’ votes the same. If
there is nonzero probability of p winning in the EVALUATION instance, then there
must exist some vector of votes with nonzero probability for which p wins with
nonzero probability. Then, in the MANIPULATION instance, consider the vote in this
vote vector cast by the voter that was replaced by the manipulator. If the manipulator
places this vote, then with nonzero probability, the same vector will occur and p
will win with nonzero probability. Conversely, suppose that in the MANIPULATION
instance there exists a vote for the manipulator such that p wins with nonzero
probability. Then, in the EVALUATION instance, there is some nonzero probability
that the voter replaced by the manipulator casts this vote (because that voter’s
distribution over votes is uniform). It follows that there is nonzero probability
that p will win in the EVALUATION instance. Hence, the decision questions are
equivalent.

COROLLARY 4. For the Copeland protocol (even with four candidates), CON-
STRUCTIVE IU-MANIPULATION UNDER UNCERTAINTY is NP-hard. This holds even if
r = 0, the votes are either drawn independently or perfectly correlated, and only
the following types of (marginal) distributions are allowed: (1) the vote’s distribu-
tion is uniform over all possible votes, or (2) the vote’s distribution puts all of the
probability mass on a single vote.

PROOF. Because PARTITION is hard even when one of the integers to be parti-
tioned is 1, we can assume that one of the manipulators in the proof of Theorem 7
has weight 1, which allows us to apply Theorem 20.

As a final remark, we observe that the manipulation questions discussed in this
section are not necessarily even in NP. However, when r = 0, the manipulation
question can also be phrased as saying “does there exist a manipulation that has
some chance of succeeding?” We note that this question is in fact in NP.

Figure 2 summarizes the flow of the theorems presented in this section.

6. Conclusions and Future Research

In multiagent settings where the agents have different preferences, preference ag-
gregation is a central issue. Voting is a general method for preference aggregation,
but seminal results have shown that all general voting protocols are manipulable.
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One could try to avoid manipulation by using voting protocols where determin-
ing a beneficial manipulation is hard. Especially among computational agents, it
is reasonable to measure this hardness by computational complexity. Some earlier
work has been done in this area, but it was assumed that the number of voters
and candidates is unbounded. Such hardness results lose relevance when the num-
ber of candidates is small, because manipulation algorithms that are exponential
only in the number of candidates (and only slightly so) might be available. In
the appendix, we give such an algorithm for an individual agent to manipulate
the Single Transferable Vote (STV) protocol, which has been shown hard to ma-
nipulate in the above sense. The algorithm applies whether or not the voters are
weighted.

This motivated the core of this article, which studied the complexity of ma-
nipulating realistic elections where the number of candidates is a small constant.
We showed that with complete information about the others’ votes, individual
manipulation is easy, and coalitional manipulation is easy with unweighted vot-
ers. This left open two avenues for deriving high complexity results with few
candidates. The first avenue is to investigate the complete-information coalitional
manipulation problem when voters have different weights. While many human
elections are unweighted, the introduction of weights generalizes the usability
of voting schemes, and can be particularly important in multiagent systems set-
tings with very heterogenous agents. The second avenue is to ask whether there
are reasonable settings where evaluating a manipulation is NP-hard. For instance,
if we merely have probability distributions on the non-colluders’ votes, how
does the complexity of determining the probability that a given candidate wins
change?

We devoted most of this article to studying the first avenue. We studied both
constructive manipulation (making a given candidate win) and destructive manip-
ulation (making a given candidate not win). We studied not only whether any given
protocol is hard to manipulate with a constant number of candidates, but also how
many candidates are needed for the hardness to occur. This number is important
for evaluating the relative manipulability of different voting protocols (the lower
this number, the less manipulable the protocol). These results are summarized in
the following tables:

Number of candidates 2 3 4,5,6 ≥ 7
Borda P NP-complete NP-complete NP-complete
veto P NP-complete NP-complete NP-complete
STV P NP-complete NP-complete NP-complete
plurality with runoff P NP-complete NP-complete NP-complete
Copeland P P NP-complete NP-complete
maximin P P NP-complete NP-complete
randomized cup P P P NP-complete
regular cup P P P P

plurality P P P P

Complexity of CONSTRUCTIVE CW-MANIPULATION
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Number of candidates 2 ≥ 3
STV P NP-complete
plurality with runoff P NP-complete
Borda P P

veto P P

Copeland P P

maximin P P

regular cup P P

plurality P P

Complexity of DESTRUCTIVE CW-MANIPULATION

We devoted the remainder of this article to the second avenue. We showed that
under weak assumptions, if weighted coalitional manipulation with complete in-
formation about the others’ votes is hard in some voting protocol, then individual
unweighted manipulation is hard when there is uncertainty (allowing for correla-
tions) about the others’ votes. We also showed that the converse is not true, that
is, there exist protocols (such as approval) where weighted coalitional manipu-
lation with complete information about the others’ votes is easy, but individual
unweighted manipulation is hard when there is uncertainty (allowing for correla-
tions) about the others’ votes. To our knowledge, these are the first results on the
hardness of manipulation when there is uncertainty about the others’ votes.

In summary, our results give a comparison of the relative hardness of manipula-
tion in well-known voting protocols. Interestingly, the best-known protocol, plural-
ity, is (together with the cup protocol) the easiest to manipulate (both constructive
and destructive manipulation are in P for any number of candidates). In contrast,
STV and plurality with runoff are the hardest to manipulate (both constructive and
destructive manipulation are NP-complete, even with only three candidates). We
also showed that randomizing over the instantiations of a protocol, after the votes
are collected, can make manipulation harder (randomized cup is harder to manipu-
late than regular cup). Our results may also lead one to be generally less concerned
about the possibility of manipulation as it is hard in the common case where not
too much is known about how others will vote.

The results on complexity of manipulation to date (including ours) use NP-
hardness as the complexity measure.10,11 This is only a weak guarantee of hardness
of manipulation. It means that there are infinitely many hard instances, but many
instances may be easy to manipulate. Ideally, we would like to make all, or at least
most, instances hard to manipulate. Future work includes studying other notions of
hardness in the manipulation context, such as average-case completeness [Gurevich
1991] and instance complexity [Orponen et al. 1994]. Another interesting avenue
is to try to embed a practically hard problem (e.g., factoring) in the manipulation

10One exception, which was published after the conference papers corresponding to this article, is the
work by Conitzer and Sandholm on universal voting protocol tweaks [Conitzer and Sandholm 2003].
It uses not only NP-hardness, but also #P-hardness and PSPACE-hardness, as complexity measures.
All of those measures are still worst-case complexity measures and the criticisms below apply.
11 The same is true of studies of other complexity issues in voting settings, such as how
complex it is for an election chairperson to influence the result by voter/candidate addition/
suppression/partition [Bartholdi et al. 1992; Hemaspaandra et al. 2005], and how hard it is to bribe
voters effectively and with minimal cost [Faliszewski et al. 2006].
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problem. Future work also includes proving hardness of manipulation in more
restricted protocols such as auctions, and with more restricted preferences.

6.1. SUBSEQUENT WORK: CAN MANIPULATION BE MADE HARD FOR MOST
INSTANCES? Since the conference papers corresponding to this article were pub-
lished, there has already been follow-on work on studying whether it is possible to
make most instances hard to manipulate.

Ideally, one would like a voting rule where every instance is hard to manipulate.
However, this is too much to ask for: a manipulation algorithm could have a small
database of instances with precomputed solutions, and it would merely need to
check against this database to successfully manipulate some instances. Still, we
may ask whether it is possible to make (say) 99% of instances hard to manipulate.

Procaccia and Rosenschein [2006] show that a specific subclass of voting rules
is usually easy to manipulate when the number of candidates is constant and a
specific distribution over instances is used. (The distribution is chosen to have
certain properties that would appear to make manipulation more difficult.)

Conitzer and Sandholm [2006] provide an impossibility result that does not
require any restriction on the voting rule, number of candidates, or distribution over
instances. It states that a voting rule/instance distribution pair cannot simultaneously
be usually hard to manipulate, and have certain natural properties.

THEOREM 21 [CONITZER AND SANDHOLM 2006]. For any p ∈ [0, 1], there
does not exist any combination of an efficiently executable voting rule and a distri-
bution over instances such that

(1) the probability of drawing an instance that is both (a) weakly monotone, and
(b) such that either of exactly two candidates can be made to win, is at least p;
and

(2) for any computationally efficient manipulation algorithm, the probability that
an instance is drawn on which the algorithm succeeds is smaller than p.

Here, weak monotonicity is a very weak condition: A manipulation instance is
weakly monotone if for every pair of candidates c1, c2, we have (i) c2 does not win
for any manipulator votes, or (ii) if all the manipulators rank c2 first and c1 last,
then c1 does not win. Weak monotonocity on most (if not all) instances is certainly
a desirable property for a voting rule. A direct argument can also be made for why
the remainder of Condition 1 (that is, part (b)) corresponds to a desirable property
for a voting rule, but this argument is perhaps less convincing. Hence, this article
proceeds to show that Condition 1 of the theorem is usually satisfied in practice.

The above impossibility result sheds negative light on the agenda of trying to
construct voting rules that are usually hard to manipulate. Nevertheless, this article
offers three possible directions for future work down this avenue:

—Circumventing Property (1b) in the theorem by allowing low-ranked candidates
to win with some probability. Gibbard [1977] has shown that in order to make
beneficial manipulation impossible by using randomization in a voting rule, quite
extreme (undesirable) randomization is required. In contrast, here the idea is to
combine a moderate amount of randomization with computational complexity
to thwart manipulation.

—Expanding the definition of a voting rule. For example, if the pivotal voters
are banished in such a way that they will not enjoy or suffer from the chosen

Journal of the ACM, Vol. 54, No. 3, Article 14, Publication date: June 2007.



When Are Elections with Few Candidates Hard to Manipulate? 29

candidate, then truthful voting is a weakly dominant strategy. On the downside,
for any responsive voting rule, more than half of the voters can be pivotal and
hence may need to be banished. Future research could study expanding the
definition of a voting rule less than what is needed to make truthful voting
a dominant strategy, but enough to circumvent the theorem above. This way,
computational complexity may yet have the potential to thwart manipulation.

—Using voting rules that are hard to execute. Manipulation algorithms usually use
(and in particular, the one used to prove the theorem above uses) simulation of
the voting rule to determine what outcome would come about under different
insincere votes of the manipulators. If the voting rule itself is computationally
hard to execute, these simulations may become prohibitively complex and thus
complexity would thwart manipulation. On the downside, determining the elec-
tion winner will become hard as a side effect. On the bright side, the winner
needs to be determined only once, while the manipulation algorithm needs to
simulate the voting rule multiple times.

Appendix: Algorithm for Individually Manipulating the Single Transferable
Vote Protocol

When the number of candidates is unbounded, the STV protocol is known to be
NP-complete to constructively manipulate, even by a single manipulator when the
votes are not weighted [Bartholdi and Orlin 1991]. In this appendix, we present an
algorithm for manipulating STV as a single voter, when the votes of the others are
known. Votes may be weighted.

To study the complexity fundamental to manipulating STV, rather than com-
plexities introduced by tie-breaking rules, for this algorithm we make the following
assumption. We assume that the STV protocol uses some deterministic method for
breaking ties (when choosing the loser to be eliminated at the end of a round), where
the tie-breaking does not depend on aspects of the votes that the STV protocol has
not considered so far (such as who has been ranked lowest by the largest number
of voters). However, the tie-breaking can depend on the number of the round, can-
didates still in the running, etc. In the algorithm, the tie-breaking rule is used in the
arg min operator.

The algorithm simulates the various ways in which the elimination of candidates
may proceed given various votes by the manipulator. It follows the principle of
least commitment in deciding which manipulative votes to consider. It returns the
set of candidates that win for some vote by the manipulator. (It is easy to extend
the algorithm so that it also provides a vote to effect such a victory.) Again, let
there be n voters,where we index the manipulator n. Let C be the set of remaining
candidates. Let vi be the vote of voter i (1 ≤ i < n) and let wi be the weight of
voter i (1 ≤ i ≤ n). Let s j be the weight of the voters that rank candidate j first
among the remaining candidates.

Some stages of the simulation can be reached only if the manipulator has a certain
candidate f ranked first among the remaining candidates. At such stages, we will
know precisely how the elimination will proceed, until f is eliminated and the
manipulator’s vote is freed up again. We say that f = 0 when there is no constraint
on how the manipulator ranks the remaining candidates in the current stage of the
simulation.
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The function TRANSFERVOTES takes as input a candidate c, the remaining set
of candidates C , the vector (s1, . . . , sm), and the votes and weights. It returns what
would be the new vector (s1, . . . , sm) if c were eliminated in this round.

Now, we are ready to present the manipulation algorithm, which, when called
with the original set of candidates C and f = 0, returns the set of all candidates
that will win for some vote by the manipulator.

MANIPULATE(C, (s1, . . . , sm), (v1, . . . , vn−1), (w1, . . . , wn), f )

if C = {c}
// we have eliminated all but a single candidate

return {c}
else if ( f �= 0)

// the manipulator’s vote is already committed to a candidate at this stage

c ← arg min j∈C (s j )

(t1, . . . , tm) ← TRANSFERVOTES(c, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))

if c = f

// the manipulator’s vote is freed up

return MANIPULATE(C − {c}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

else

// the manipulator’s vote remains committed

return MANIPULATE(C − {c}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), f )

else

// the manipulator’s vote is not committed at this stage

c1 ← arg min j∈C (s j )

// which candidate is losing before the manipulator assigns his vote?

sc1 ← sc1 + wn

c2 ← arg min j∈C (s j )

// which candidate loses if the manipulator supports c1?

(t1, . . . , tm) ← TRANSFERVOTES(c1, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))

if c1 = c2

// the manipulator cannot rescue c1 at this stage

return MANIPULATE(C − {c1}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

else

// the manipulator can choose to rescue c1 at this stage

S1 ← MANIPULATE(C − {c1}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), 0)

// case I: do not rescue c1

(t1, . . . , tm) ← TRANSFERVOTES(c2, C, (s1, . . . , sm), (v1, . . . , vn−1),

(w1, . . . , wn))
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S2 ← MANIPULATE(C − {c2}, (t1, . . . , tm), (v1, . . . , vn−1),

(w1, . . . , wn), c1)

// case II: do rescue c1

return S1 ∪ S2

We now analyze how many recursive calls we will make to this algorithm. Let
T (k) be the maximal number of calls we need for a set of remaining candidates of
size k. Let T0(k) be the maximal number of calls we need when the first call has
f �= 0. Then, we have the following recurrences:

T (k) ≤ 1 + T (k − 1) + T0(k − 1) (1)
T0(k) ≤ 1 + T (k − 1). (2)

Combining the two, we get

T (k) ≤ 2 + T (k − 1) + T (k − 2). (3)

The asymptotic bound that we derive from this recurrence is indeed tight for
the running time of MANIPULATE, as the following example shows. In the ex-
ample, candidates are eliminated sequentially, but the manipulator can postpone
the elimination of any candidate for exactly one round. Let the candidates be
(c1, . . . , cm). For candidate i , let there be exactly i voters that rank it first, for
a total of

∑m
i=1 i = ((m + 1)m)/2 voters other than the manipulator, of weight 1

each. All the voters other than the manipulator that do not rank candidate m first,
rank it second. The manipulator has weight 1 + ε.12 We claim that the arguments
passed to MANIPULATE always satisfy one of the following two properties:

—(1) C = {ci , ci+1, . . . , cm} and f = 0.
—(2) C = {ci , ci+2, ci+3, . . . , cm} and f = ci .

The initial call is of type (1). If the current call is of type (1), this will lead to two
recursive calls: one of type (1) (the manipulator does not rescue candidate ci ), and
one of type (2) (the manipulator does rescue ci ). (The exception is when i ≥ m − 1
but this is irrelevant to the asymptotic analysis.) This makes the recurrence in Eq. (1)
tight. If the current call is of type (2), this will lead to one recursive call of type
(1) because ci gets eliminated in spite of the fact that the manipulator is ranking it
first. This makes the recurrence in Eq. (2) tight. Because the recurrences in Eqs. (1)
and (2) are tight, the recurrence in Eq. (3) is tight.

The solution to the recurrence is O(( 1+√
5

2 )k). Observing that one call to
MANIPULATE (not counting the recursive calls to MANIPULATE, but count-
ing the calls to TRANSFERVOTES) can be done in O(m + n) time, we have the
following result.

THEOREM 22. The algorithm MANIPULATE runs in time O((m +n)( 1+√
5

2 )m),
where m is the number of candidates and n is the number of voters.

So, MANIPULATE runs in O((m + n) · 1.62m) time. While this function is
exponential in m (which is to be expected given that the problem is NP-complete),

12 Alternatively, we can assume unweighted votes and a tie-breaking mechanism that always breaks
ties towards lower-indexed candidates, that is, it breaks a tie between ci and ci+1 in favor of ci .
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it is nevertheless not exceedingly large for realistic numbers of candidates. For
instance, with 10 candidates, ( 1+√

5
2 )10 < 123. Furthermore, on most instances, the

algorithm is likely to terminate much faster than this, since we make two recursive
calls only when the manipulator can rescue a candidate from elimination in a given
round. In large elections where the manipulator’s weight is relatively insignificant,
it is unlikely that this would happen even more than once.
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