Basic Mathematical Techniques for Computer Scientists
 Propositional Logic

October 22, 2012

What is a proof?

- What is a proof?

What is a proof?

- What is a proof?
- Mathematical proof
- Propositions
- Statements which are either true, or false
- Axioms
- Loosely put: "self-evident" truths
- Logical deductions
- Ways to combine true propositions to get more such

What is a proof?

- What is a proof?
- Mathematical proof
- Propositions
- Statements which are either true, or false
- Axioms
- Loosely put: "self-evident" truths
- Logical deductions
- Ways to combine true propositions to get more such
- Definition: A mathematical proof of a proposition is
- A sequence of logical deductions
- Starting from a set of axioms
- And leading to the proposition

Propositions

- A statement which is either true, or false.
- Example?

Propositions

- A statement which is either true, or false.
- Example?
- Non-example?

Propositions

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
- Every tree has a leaf.

Propositions

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
- Every tree has a leaf.
- Any pair of lines in the plane intersect.

Propositions

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
- Every tree has a leaf.
- Any pair of lines in the plane intersect.
- $n^{2}+n+41$ is a prime number.

Propositions

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
- Every tree has a leaf.
- Any pair of lines in the plane intersect.
- $n^{2}+n+41$ is a prime number.
- Propositions can be combined to form other propositions.

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.
- Examples:
- We are in class and today is Tuesday.

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.
- Examples:
- We are in class and today is Tuesday.
- We are in class and I wish I were somewhere else.

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.
- Examples:
- We are in class and today is Tuesday.
- We are in class and I wish I were somewhere else.
- $(n<3) \wedge(n>5)$

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.
- Examples:
- We are in class and today is Tuesday.
- We are in class and I wish I were somewhere else.
- $(n<3) \wedge(n>5)$
- Note:
- The word "and" has many meanings in English ...
- (Wiktionary lists around fifteen.)
- ... of which exactly one is valid in propositional logic.

Conjunction

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $\mathrm{P} \wedge \mathrm{Q}$ is true exactly when both P and Q are true.

Table: The truth table for "AND".

P	Q	$\mathrm{P} \wedge \mathrm{Q}$
False	False	False
False	True	False
True	False	False
True	True	True

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, OR
- Q is true, OR
- Both P and Q are true.

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.
- Examples:
- We are in class or today is Tuesday.

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.
- Examples:
- We are in class or today is Tuesday.
- We are in class or I wish I were somewhere else.

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.
- Examples:
- We are in class or today is Tuesday.
- We are in class or I wish I were somewhere else.
- $(n<3) \vee(n>5)$

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.
- Examples:
- We are in class or today is Tuesday.
- We are in class or I wish I were somewhere else.
- $(n<3) \vee(n>5)$
- Note:
- The word "or" has many meanings in English ...
- (Wiktionary lists five.)
- ... of which exactly one is valid in propositional logic.

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.
- Note:
- The word "or" has many meanings in English ...
- ... of which exactly one is valid in propositional logic.
- Beware, in particular, about the following uses:
- The exclusive or: "Coffee or tea?"
- Otherwise: "Hurry or you will miss the bus!"
- The logical "or" is neither of these.

Disjunction

- "OR" : some proposition OR some proposition
- Written \vee for short
- $\mathrm{P} \vee \mathrm{Q}$ is true when at least one of P and Q is true.
- $\mathrm{P} \vee \mathrm{Q}$ is true when:
- P is true, $O R$
- Q is true, OR
- Both P and Q are true.

Table: The truth table for "OR".

P	Q	$\mathrm{P} \vee \mathrm{Q}$
False	False	False
False	True	True
True	False	True
True	True	True

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.
- Exercise: Is the negation of the following, true or false?
- We are in class or today is Tuesday.

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.
- Exercise: Is the negation of the following, true or false?
- We are in class and today is Tuesday.

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.
- Exercise: Is the negation of the following, true or false?
- $(n<3) \vee(n>5)$

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.
- Exercise: Is the negation of the following, true or false?
- $(n<3) \wedge(n>5)$

Negation

- "NOT" : NOT some proposition
- Written \neg for short
- $\neg \mathrm{P}$ is true when P is false.
- Exercise: Draw the truth table for "NOT".

Predicates

- Consider:
- $n^{2}+n+41$ is a prime number.
- L_{1}, L_{2} intersect in the plane.
- $(n<3) \wedge(n>5)$

Predicates

- Consider:
- $n^{2}+n+41$ is a prime number.
- L_{1}, L_{2} intersect in the plane.
- $(n<3) \wedge(n>5)$
- A predicate is a proposition whose truth (or falsity) depends on the value of one or more variables.
- A predicate can be thought of as a function ...

Quantifiers

- \forall, \exists

Quantifiers

- \forall, \exists
- "for all", "there exists"

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- $\exists n \in \mathbb{N} n^{2}+n+41$ is a prime number.

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- $\forall n \in \mathbb{N} n^{2}+n+41$ is a prime number.

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- $\exists a, b, c, n \in \mathbb{N}^{+}(n \geq 3) \wedge\left(a^{n}+b^{n}=c^{n}\right)$.

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- $\forall a, b, c, n \in \mathbb{N}^{+}(n \geq 3) \wedge\left(a^{n}+b^{n}=c^{n}\right)$.

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- \forall lines L_{1}, L_{2} in the plane: L_{1}, L_{2} intersect.

Quantifiers

- \forall, \exists
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
- Mostly followed by a declaration as to the "domain" of the quantifier
- This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- The predicate may itself involve other quantifiers
- Example
- \exists lines L_{1}, L_{2} in the plane: L_{1}, L_{2} intersect.

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \leq x$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \leq x$
- $\exists x \in \mathbb{N} \quad \forall y \in \mathbb{N} y \geq x$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \leq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \geq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \leq x$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \leq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \geq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \leq x$
- $\forall x, y \in \mathbb{Q} \exists z \in \mathbb{Q} x \leq z \leq y$

More examples

- $\exists x \in \mathbb{R} x^{2}-1=0$
- $\exists x \in \mathbb{R} x^{2}+1=0$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \geq x$
- $\forall x \in \mathbb{N} \exists y \in \mathbb{N} y \leq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \geq x$
- $\exists x \in \mathbb{N} \forall y \in \mathbb{N} y \leq x$
- $\forall x, y \in \mathbb{Q} \exists z \in \mathbb{Q} x \leq z \leq y$
- $\forall x, y \in \mathbb{Q} \exists z \in \mathbb{N} x \leq z \leq y$

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?
- What about the following?
- $\forall n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?
- What about the following?
- $\forall n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- $\exists n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?
- What about the following?
- $\forall n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- $\exists n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- The implication $\mathrm{A} \Longrightarrow \mathrm{B}$ is false only when:
- A is true, AND
- B is false.

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?
- What about the following?
- $\forall n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- $\exists n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- The implication $\mathrm{A} \Longrightarrow \mathrm{B}$ is false only when:
- A is true, AND
- B is false.
- $\mathrm{A} \Longrightarrow \mathrm{B}$ is true in all other cases.
- Including when A is false and B is true.
- This is counter-intuitive.

Implication

- $\forall n \in \mathbb{R} n \geq 2 \Longrightarrow n^{2} \geq 4$
- Read as: "... if $n \geq 2$ is true, then $n^{2} \geq 4$ is true."
- Is the above implication true?
- What about the following?
- $\forall n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- $\exists n \in \mathbb{R} n^{2} \geq 4 \Longrightarrow n \geq 2$
- The implication $\mathrm{A} \Longrightarrow \mathrm{B}$ is false only when:
- A is true, AND
- B is false.
- $\mathrm{A} \Longrightarrow \mathrm{B}$ is true in all other cases.
- Including when A is false and B is true.
- This is counter-intuitive.
- For instance, the following is true:
- If $2=3$, then I am the King of France.

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\forall x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\forall x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\exists x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\forall x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\exists x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\exists x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\forall x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\exists x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\exists x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\forall x, y, z \in \mathbb{N}(x<y) \wedge(y<z) \Longrightarrow(x<z)$

More examples

- $\forall x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\forall x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\exists x, y \in \mathbb{R} x>y \Longrightarrow x^{2}>y^{2}$
- $\exists x, y \in \mathbb{R} x<y \Longrightarrow x^{2}<y^{2}$
- $\forall x, y, z \in \mathbb{N}(x<y) \wedge(y<z) \Longrightarrow(x<z)$
- Exercise: Draw the truth table for $\mathrm{A} \Longrightarrow$ B.

Equivalence

- $\mathrm{A} \Longleftrightarrow \mathrm{B}$
- Read as "A if and only if B".
- Sometimes written as "A iff B".
- Note the non-standard word.
- Introduced by Halmos.
- $A \Longleftrightarrow B$ is true when
- $\mathrm{A} \Longrightarrow \mathrm{B}$ is true, AND
- $\mathrm{B} \Longrightarrow \mathrm{A}$ is true.
- It is false in all other cases.

Thank You!

