Basic Mathematical Techniques for Computer Scientists Propositional Logic

October 22, 2012

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniques for Computer Scientists

October 22, 2012

What is a proof?

▶ What is a proof?

What is a proof?

- What is a proof?
- Mathematical proof
 - Propositions
 - Statements which are either true, or false
 - Axioms
 - Loosely put: "self-evident" truths
 - Logical deductions
 - Ways to combine true propositions to get more such

What is a proof?

- What is a proof?
- Mathematical proof
 - Propositions
 - Statements which are either true, or false
 - Axioms
 - Loosely put: "self-evident" truths
 - Logical deductions
 - Ways to combine true propositions to get more such
- Definition: A mathematical proof of a proposition is
 - A sequence of *logical deductions*
 - Starting from a set of axioms
 - And leading to the proposition

• A statement which is either true, or false.

► Example?

- A statement which is either true, or false.
- ► Example?
- ► Non-example?

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
 - Every tree has a leaf.

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
 - Every tree has a leaf.
 - Any pair of lines in the plane intersect.

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
 - Every tree has a leaf.
 - Any pair of lines in the plane intersect.
 - $n^2 + n + 41$ is a prime number.

- A statement which is either true, or false.
- Example?
- Non-example?
- Some more examples:
 - Every tree has a leaf.
 - Any pair of lines in the plane intersect.
 - $n^2 + n + 41$ is a prime number.
- Propositions can be combined to form other propositions.

- ▶ "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.
- Examples:
 - We are in class and today is Tuesday.

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.
- ► Examples:
 - We are in class and today is Tuesday.
 - We are in class and I wish I were somewhere else.

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.
- ► Examples:
 - We are in class and today is Tuesday.
 - We are in class and I wish I were somewhere else.
 - $(n < 3) \land (n > 5)$

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.
- ► Examples:
 - We are in class and today is Tuesday.
 - We are in class and I wish I were somewhere else.
 - $(n < 3) \land (n > 5)$

Note:

- The word "and" has many meanings in English ...
- (Wiktionary lists around fifteen.)
- ... of which exactly one is valid in propositional logic.

- "AND" : some proposition AND some proposition
- Written \wedge for short
- $P \land Q$ is true exactly when *both* P *and* Q are true.

Table: The truth table for "AND".

Р	Q	$P \wedge Q$
False	False	False
False	True	False
True	False	False
True	True	True

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - Both P and Q are true.

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - Both P and Q are true.
- Examples:
 - We are in class *or* today is Tuesday.

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - Both P and Q are true.
- ► Examples:
 - We are in class *or* today is Tuesday.
 - We are in class *or* I wish I were somewhere else.

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - ▶ *Both* P *and* Q are true.
- ► Examples:
 - We are in class *or* today is Tuesday.
 - We are in class or I wish I were somewhere else.
 - ▶ (n < 3) ∨ (n > 5)

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - Both P and Q are true.
- Examples:
 - We are in class or today is Tuesday.
 - We are in class or I wish I were somewhere else.
 - $(n < 3) \lor (n > 5)$
- ► Note:
 - The word "or" has many meanings in English ...
 - (Wiktionary lists five.)
 - ... of which exactly one is valid in propositional logic.

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - ▶ *Both* P *and* Q are true.
- Note:
 - ► The word "or" has many meanings in English ...
 - ... of which exactly one is valid in propositional logic.
- **Beware**, in particular, about the following uses:
 - The exclusive or: "Coffee or tea?"
 - Otherwise: "Hurry or you will miss the bus!"
- ► The logical "or" is neither of these.

- "OR" : some proposition OR some proposition
- ▶ Written ∨ for short
- $P \lor Q$ is true when *at least one* of P and Q is true.
- $P \lor Q$ is true when:
 - P is true, OR
 - Q is true, OR
 - Both P and Q are true.

Table:	The	truth	table	for	"OR".
--------	-----	-------	-------	-----	-------

Р	Q	$P \lor Q$
False	False	False
False	True	True
True	False	True
True	True	True

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ ¬ P is true when P is *false*.

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ \neg P is true when P is *false*.
- Exercise: Is the *negation* of the following, true or false?
 - We are in class *or* today is Tuesday.

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ \neg P is true when P is *false*.
- Exercise: Is the *negation* of the following, true or false?
 - We are in class *and* today is Tuesday.

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ \neg P is true when P is *false*.
- Exercise: Is the *negation* of the following, true or false?
 - ▶ $(n < 3) \lor (n > 5)$

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ \neg P is true when P is *false*.
- Exercise: Is the *negation* of the following, true or false?
 - ▶ $(n < 3) \land (n > 5)$

- "NOT" : NOT some proposition
- ▶ Written ¬ for short
- ▶ ¬ P is true when P is *false*.
- Exercise: Draw the truth table for "NOT".

Predicates

Consider:

- $n^2 + n + 41$ is a prime number.
- L_1, L_2 intersect in the plane.
- ▶ $(n < 3) \land (n > 5)$

Predicates

- Consider:
 - $n^2 + n + 41$ is a prime number.
 - L_1, L_2 intersect in the plane.
 - ▶ $(n < 3) \land (n > 5)$
- A *predicate* is a proposition whose truth (or falsity) *depends* on the value of one or more variables.
 - A predicate can be thought of as a function ...

▶ ∀, ∃

- ▶ ∀,∃
- "for all", "there exists"

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- ► The predicate may itself involve other quantifiers

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- ► Example
 - ► $\exists n \in \mathbb{N} \ n^2 + n + 41$ is a prime number.

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- ► Example
 - ► $\forall n \in \mathbb{N}$ $n^2 + n + 41$ is a prime number.

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- Example
 - ► $\exists a, b, c, n \in \mathbb{N}^+$ $(n \ge 3) \land (a^n + b^n = c^n).$

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- Example
 - ► $\forall a, b, c, n \in \mathbb{N}^+$ $(n \ge 3) \land (a^n + b^n = c^n).$

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- Example
 - ▶ \forall lines L_1, L_2 in the plane: L_1, L_2 intersect.

- ▶ ∀,∃
- "for all", "there exists"
- "Existential", "Universal" quantifiers
- A quantifier is followed immediately by a variable
 - Mostly followed by a declaration as to the "domain" of the quantifier
 - This declaration is omitted if the domain is clear from the "context"
- After this comes a predicate which (typically, but not always) involves this variable
- > The predicate may itself involve other quantifiers
- ► Example
 - ▶ \exists lines L_1, L_2 in the plane: L_1, L_2 intersect.

$$\blacktriangleright \exists x \in \mathbb{R} \ x^2 - 1 = 0$$

- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$

- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \quad \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \leq x$

- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \ge x$

- ► $\exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \quad \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \leq x$

- ► $\exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \quad \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \ \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \ \forall x, y \in \mathbb{Q} \ \exists z \in \mathbb{Q} \ x \leq z \leq y$

- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 1 = 0$
- $\blacktriangleright \exists x \in \mathbb{R} \ x^2 + 1 = 0$
- $\blacktriangleright \quad \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \quad \forall x \in \mathbb{N} \ \exists y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \ge x$
- $\blacktriangleright \exists x \in \mathbb{N} \ \forall y \in \mathbb{N} \ y \leq x$
- $\blacktriangleright \ \forall x,y \in \mathbb{Q} \ \exists z \in \mathbb{Q} \ x \leq z \leq y$
- $\blacktriangleright \ \forall x,y \in \mathbb{Q} \ \exists z \in \mathbb{N} \ x \leq z \leq y$

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?
- What about the following?

$$\blacktriangleright \quad \forall n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$$

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?
- What about the following?

$$\blacktriangleright \quad \forall n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$$

$$\blacksquare \exists n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$$

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?
- What about the following?
 - $\blacktriangleright \quad \forall n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
 - $\blacktriangleright \exists n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
- The implication $A \implies B$ is *false* only when:
 - ► A is true, AND
 - B is false.

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?
- What about the following?
 - $\blacktriangleright \quad \forall n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
 - $\blacktriangleright \exists n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
- The implication $A \implies B$ is *false* only when:
 - ► A is true, AND
 - B is false.
- A \implies B is *true* in **all** other cases.
 - Including when A is *false* and B is *true*.
 - This is counter-intuitive.

- Read as: "... if $n \ge 2$ is true, then $n^2 \ge 4$ is true."
- Is the above implication true?
- What about the following?
 - $\blacktriangleright \quad \forall n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
 - $\blacktriangleright \exists n \in \mathbb{R} \ n^2 \ge 4 \implies n \ge 2$
- The implication $A \implies B$ is *false* only when:
 - ► A is true, AND
 - B is false.
- A \implies B is *true* in **all** other cases.
 - Including when A is *false* and B is *true*.
 - This is counter-intuitive.
- For instance, the following is *true*:
 - If 2 = 3, then I am the King of France.

$$\blacktriangleright \ \forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$
$$\forall x, y \in \mathbb{R} \ x < y \implies x^2 < y^2$$

$$\forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\forall x, y \in \mathbb{R} \ x < y \implies x^2 < y^2$$

$$\exists x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\begin{array}{l} \flat \quad \forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2 \\ \flat \quad \forall x, y \in \mathbb{R} \ x < y \implies x^2 < y^2 \\ \flat \quad \exists x, y \in \mathbb{R} \ x > y \implies x^2 > y^2 \\ \flat \quad \exists x, y \in \mathbb{R} \ x < y \implies x^2 < y^2 \end{array}$$

$$\begin{array}{l} \flat \quad \forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2 \\ \flat \quad \forall x, y \in \mathbb{R} \ x < y \implies x^2 < y^2 \\ \flat \quad \exists x, y \in \mathbb{R} \ x > y \implies x^2 > y^2 \\ \flat \quad \exists x, y \in \mathbb{R} \ x < y \implies x^2 < y^2 \\ \flat \quad \exists x, y \in \mathbb{R} \ x < y \implies x^2 < y^2 \\ \flat \quad \forall x, y, z \in \mathbb{N} \ (x < y) \land (y < z) \implies (x < z) \end{array}$$

October 22, 2012

$$\forall x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\forall x, y \in \mathbb{R} \ x < y \implies x^2 < y^2$$

$$\exists x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\exists x, y \in \mathbb{R} \ x > y \implies x^2 > y^2$$

$$\exists x, y \in \mathbb{R} \ x < y \implies x^2 < y^2$$

- $\blacktriangleright \ \forall x, y, z \in \mathbb{N} \ (x < y) \land (y < z) \implies (x < z)$
- Exercise: Draw the truth table for $A \implies B$.

Equivalence

$\blacktriangleright A \iff B$

- Read as "A if and only if B".
- Sometimes written as "A iff B".
 - Note the non-standard word.
 - Introduced by Halmos.
- A \iff B is true when
 - A \implies B is true, AND
 - $\blacktriangleright B \implies A \text{ is true.}$
- ▶ It is *false* in *all* other cases.

Thank You!