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What is a proof?

I What is a proof?

I Mathematical proof
I Propositions

I Statements which are either true, or false
I Axioms

I Loosely put: “self-evident” truths
I Logical deductions

I Ways to combine true propositions to get more such

I Definition: A mathematical proof of a proposition is
I A sequence of logical deductions
I Starting from a set of axioms
I And leading to the proposition
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Propositions

I A statement which is either true, or false.
I Example?

I Non-example?
I Some more examples:

I Every tree has a leaf.
I Any pair of lines in the plane intersect.
I n2 + n + 41 is a prime number.

I Propositions can be combined to form other propositions.
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Conjunction

I “AND” : some proposition AND some proposition
I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.
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I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.

I Examples:
I We are in class and today is Tuesday.

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniques for Computer Scientists October 22, 2012



Conjunction

I “AND” : some proposition AND some proposition
I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.

I Examples:
I We are in class and today is Tuesday.
I We are in class and I wish I were somewhere else.
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Conjunction

I “AND” : some proposition AND some proposition
I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.

I Examples:
I We are in class and today is Tuesday.
I We are in class and I wish I were somewhere else.
I (n < 3) ∧ (n > 5)
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Conjunction

I “AND” : some proposition AND some proposition
I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.

I Examples:
I We are in class and today is Tuesday.
I We are in class and I wish I were somewhere else.
I (n < 3) ∧ (n > 5)

I Note:
I The word “and” has many meanings in English . . .
I (Wiktionary lists around fifteen.)
I . . . of which exactly one is valid in propositional logic.
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Conjunction

I “AND” : some proposition AND some proposition
I Written ∧ for short
I P ∧ Q is true exactly when both P and Q are true.

Table: The truth table for “AND”.

P Q P ∧ Q
False False False
False True False
True False False
True True True
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Disjunction

I “OR” : some proposition OR some proposition
I Written ∨ for short
I P ∨ Q is true when at least one of P and Q is true.
I P ∨ Q is true when:

I P is true, OR
I Q is true, OR
I Both P and Q are true.
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Disjunction

I “OR” : some proposition OR some proposition
I Written ∨ for short
I P ∨ Q is true when at least one of P and Q is true.
I P ∨ Q is true when:

I P is true, OR
I Q is true, OR
I Both P and Q are true.

I Examples:
I We are in class or today is Tuesday.
I We are in class or I wish I were somewhere else.
I (n < 3) ∨ (n > 5)

I Note:
I The word “or” has many meanings in English . . .
I (Wiktionary lists five.)
I . . . of which exactly one is valid in propositional logic.
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Disjunction

I “OR” : some proposition OR some proposition
I Written ∨ for short
I P ∨ Q is true when at least one of P and Q is true.
I P ∨ Q is true when:

I P is true, OR
I Q is true, OR
I Both P and Q are true.

I Note:
I The word “or” has many meanings in English . . .
I . . . of which exactly one is valid in propositional logic.

I Beware, in particular, about the following uses:
I The exclusive or: “Coffee or tea?”
I Otherwise: “Hurry or you will miss the bus!”

I The logical “or” is neither of these.
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Disjunction

I “OR” : some proposition OR some proposition
I Written ∨ for short
I P ∨ Q is true when at least one of P and Q is true.
I P ∨ Q is true when:

I P is true, OR
I Q is true, OR
I Both P and Q are true.

Table: The truth table for “OR”.

P Q P ∨ Q
False False False
False True True
True False True
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Negation

I “NOT” : NOT some proposition
I Written ¬ for short
I ¬ P is true when P is false.
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I “NOT” : NOT some proposition
I Written ¬ for short
I ¬ P is true when P is false.

I Exercise: Is the negation of the following, true or false?
I We are in class or today is Tuesday.
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Negation

I “NOT” : NOT some proposition
I Written ¬ for short
I ¬ P is true when P is false.

I Exercise: Is the negation of the following, true or false?
I (n < 3) ∨ (n > 5)
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Negation

I “NOT” : NOT some proposition
I Written ¬ for short
I ¬ P is true when P is false.

I Exercise: Is the negation of the following, true or false?
I (n < 3) ∧ (n > 5)
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Negation

I “NOT” : NOT some proposition
I Written ¬ for short
I ¬ P is true when P is false.

I Exercise: Draw the truth table for “NOT”.
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Predicates

I Consider:
I n2 + n + 41 is a prime number.
I L1, L2 intersect in the plane.
I (n < 3) ∧ (n > 5)

I A predicate is a proposition whose truth (or falsity) depends on the
value of one or more variables.

I A predicate can be thought of as a function ...
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Quantifiers

I ∀, ∃

I “for all”, “there exists”
I “Existential”, “Universal” quantifiers
I A quantifier is followed immediately by a variable

I Mostly followed by a declaration as to the “domain” of the
quantifier

I This declaration is omitted if the domain is clear from the “context”

I After this comes a predicate which (typically, but not always)
involves this variable

I The predicate may itself involve other quantifiers
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Quantifiers

I ∀, ∃
I “for all”, “there exists”
I “Existential”, “Universal” quantifiers
I A quantifier is followed immediately by a variable

I Mostly followed by a declaration as to the “domain” of the
quantifier

I This declaration is omitted if the domain is clear from the “context”

I After this comes a predicate which (typically, but not always)
involves this variable

I The predicate may itself involve other quantifiers

I Example
I ∃a, b, c, n ∈ N+ (n ≥ 3) ∧ (an + bn = cn).

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniques for Computer Scientists October 22, 2012



Quantifiers

I ∀, ∃
I “for all”, “there exists”
I “Existential”, “Universal” quantifiers
I A quantifier is followed immediately by a variable

I Mostly followed by a declaration as to the “domain” of the
quantifier

I This declaration is omitted if the domain is clear from the “context”

I After this comes a predicate which (typically, but not always)
involves this variable

I The predicate may itself involve other quantifiers

I Example
I ∀a, b, c, n ∈ N+ (n ≥ 3) ∧ (an + bn = cn).

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniques for Computer Scientists October 22, 2012



Quantifiers

I ∀, ∃
I “for all”, “there exists”
I “Existential”, “Universal” quantifiers
I A quantifier is followed immediately by a variable

I Mostly followed by a declaration as to the “domain” of the
quantifier

I This declaration is omitted if the domain is clear from the “context”

I After this comes a predicate which (typically, but not always)
involves this variable

I The predicate may itself involve other quantifiers

I Example
I ∀ lines L1, L2 in the plane: L1, L2 intersect.
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Quantifiers

I ∀, ∃
I “for all”, “there exists”
I “Existential”, “Universal” quantifiers
I A quantifier is followed immediately by a variable

I Mostly followed by a declaration as to the “domain” of the
quantifier

I This declaration is omitted if the domain is clear from the “context”

I After this comes a predicate which (typically, but not always)
involves this variable

I The predicate may itself involve other quantifiers

I Example
I ∃ lines L1, L2 in the plane: L1, L2 intersect.
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More examples

I ∃x ∈ R x2 − 1 = 0

I ∃x ∈ R x2 + 1 = 0
I ∀x ∈ N ∃y ∈ N y ≥ x
I ∀x ∈ N ∃y ∈ N y ≤ x
I ∃x ∈ N ∀y ∈ N y ≥ x
I ∃x ∈ N ∀y ∈ N y ≤ x
I ∀x, y ∈ Q ∃z ∈ Q x ≤ z ≤ y
I ∀x, y ∈ Q ∃z ∈ N x ≤ z ≤ y
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Implication

I ∀n ∈ R n ≥ 2 =⇒ n2 ≥ 4
I Read as: “... if n ≥ 2 is true, then n2 ≥ 4 is true.”
I Is the above implication true?

I What about the following?
I ∀n ∈ R n2 ≥ 4 =⇒ n ≥ 2
I ∃n ∈ R n2 ≥ 4 =⇒ n ≥ 2

I The implication A =⇒ B is false only when:
I A is true, AND
I B is false.

I A =⇒ B is true in all other cases.
I Including when A is false and B is true.
I This is counter-intuitive.

I For instance, the following is true:
I If 2 = 3, then I am the King of France.
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More examples

I ∀x, y ∈ R x > y =⇒ x2 > y2

I ∀x, y ∈ R x < y =⇒ x2 < y2

I ∃x, y ∈ R x > y =⇒ x2 > y2

I ∃x, y ∈ R x < y =⇒ x2 < y2

I ∀x, y, z ∈ N (x < y) ∧ (y < z) =⇒ (x < z)
I Exercise: Draw the truth table for A =⇒ B.
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Equivalence

I A ⇐⇒ B
I Read as “A if and only if B”.
I Sometimes written as “A iff B”.

I Note the non-standard word.
I Introduced by Halmos.

I A ⇐⇒ B is true when
I A =⇒ B is true, AND
I B =⇒ A is true.

I It is false in all other cases.
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Thank You!
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