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Playing cards
Shuffled decks

I Recall the deck of 52 playing cards
I In how many ways can you order the cards in this deck?
I In a shuffled deck, all these orderings are equally likely
I Suppose you deal a shuffled deck of cards to four players

I 13 cards each
I Cards 1 to 13 to the first player, 14 to 26 to the second, . . .

I What is the probability that each player gets a King?
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How do we find this probability?
One way

I Each ordering of the cards is equally likely
I By assumption

I The probability we want is the proportion of “good” orderings
I Define “success” as: All four players get a King
I A “good” or “favourable” ordering of the cards

I An ordering which results in success

I The probability of success:

Number of favourable orderings
Total number of orderings

I This makes sense because each ordering is equally likely

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists January 21, 2013



How do we find this probability?
Another way

I Only the positions of the Kings matters
I One King has to be present in each 13-block
I The order among these Kings doesn’t matter

I We can express the probability in terms of positions of the Kings
I A favourable position has one King in each 13-block

I The probability of success:

Number of favourable positions
Total number of positions

I Again, this makes sense because each ordering is equally likely
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Experiment, outcome, event

I Experiment: Some process which involves chances
I E.g: Shuffling the deck and dealing 13 cards each to 4 players

I Outcome: The result of one “trial” of the experiment
I E.g: The hands which the four players get after one deal

I Event: Some set of outcomes which we are interested in
I E.g: “Each player gets a King”
I Why does this match the definition of an event?
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A slightly different experiment

I Deal a shuffled deck equally among four players
I Suppose you are a player, and you get exactly one King
I Given this extra information,

I What is the probability that each player has a King?
I The experiment is different:

I Shuffle and deal 13 cards each
I Such that a specified player (you) gets exactly one King

I The set of outcomes is different
I Those deals in which you get no King are not outcomes
I A proper subset of the previous set of outcomes

I The event is the same
I “Each player gets a King”
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A slightly different experiment

I Deal a shuffled deck equally among four players
I Suppose you are a player, and you get exactly one King
I What is the probability that each player has a King?

I Will this be less, equal, or greater than before?
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Another variant

I Deal a shuffled deck equally among four players
I In a round-the-table fashion
I Player 1 gets card 1, player 2 card 2, . . . , player 4 card 4,
I Player 1 gets card 5, . . .

I What is the probability that each player gets a King:
1. In the absence of any extra information?
2. Given that a specific player got exactly one King?
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The six-sided die
A device commonly found in probability textbooks

I Plural: dice

I These are “rolled” or “thrown”
I A “fair” die is one which is equally likely to turn up each of

1,2, . . . ,6
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The origin of modern probability theory
Letter from a bemused gambler

I Letter from gambler de Méré to mathematician Pascal (1654):
I I used to bet 50-50 that I would get at least one 6 in four rolls of a

fair die
I The probability of this is four times the probability of getting a 6 in

a roll, namely, 4× 1
6 = 2

3
I Clearly this was in my favour, and indeed I was making money with

this
I I started betting 50-50 that I would get at least one (6, 6) in

twentyfour rolls of a pair of dice
I This has the same advantage ( 24

62 = 2
3 ), but now I am losing money!

I Why?!!
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A domestic example
Distribution of kids

I In a certain country, a newborn child is equally likely to be a girl
or a boy

I This is not necesssarily true in the real world

I In a family with six children, what is the probability that exactly
three are girls?

I The experiment:
I Picking a family with six children and tallying their genders

I The set of outcomes:
I All 6-length strings over the alphabet {G,B}

I The event we are interested in:
I The subset of strings which have an equal number of Gs and Bs
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Dice, again

I Consider rolling a fair die six times
I What is the probability that all the six numbers are different?
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Summarizing these examples

I Suppose an experiment has n equally likely outcomes
I Let S denote the set of all outcomes

I Let E ⊆ S be an event
I Let |E| = m

I The probability of event E occurring
I Is the probability that one of the outcomes in E happens
I Is equal to m

n

I Intuitively, the probability of an event E
I Is the proportion of times that one expects the event to happen

I This happens when one of the outcomes in the event happens
I In a very large number of repetitions of the experiment

I We can put our counting skills to good use!

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists January 21, 2013



More examples

I We toss four fair coins
I What is the probability that exactly two turn up heads?

I We roll two fair dice
I What is the probability that the sum of the two numbers is 7?

I We shuffle a deck of cards. What is the probability that
1. The first card in the deck is a King?
2. All the spades appear consecutively somewhere in the deck?
3. All cards of every suite appear together?
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Some terminology

I When we say that we make a random choice
I We mean we make a choice which is uniformly random
I Each choice is equally likely
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Some terminology

I A population is just a collection of some things
I E.g: The collection of cards which make up a deck

I The process of sampling from a population
I Choosing an object at random from the population
I Checking what its properties are

I E.g: Which colour/suite is a card?
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Some terminology

I Sampling with replacement
I Before picking each new sample, . . .
I . . . we put back the previous object back into the population

I Sampling without replacement
I We just pick an object when needed
I And do not put it back after sampling
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Sampling with and without replacement
Examples

I Seven pieces of paper in a bag
I Written on them: C, C, E, S, S, S, U

I Sample seven pieces of paper from the bag, without replacement
I Probability that the letters spell SUCCESS?

I Sample seven pieces of paper from the bag, with replacement
I Probability that the letters spell SUCCESS?
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Sampling with and without replacement
Examples

I A basket in the grocery store has 20 bell peppers
I 10 red, and 10 orange

I You pick five peppers at random from the basket
I What is the probability that exactly two are red?

1. If you pick without replacement?
2. If you pick with replacement?
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Sample spaces, events, and probability functions
For formalizing these notions of probability

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I What are the sample spaces of the following experiments?
I Tossing one coin and looking at its result
I Tossing two coins and looking at the results
I Drawing two cards from a shuffled deck and checking what they are
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Sample spaces, events, and probability functions

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I An event is a subset of the sample space
I Denoted E
I E ⊆ Ω

I Experiment: tossing three coins
I What is the sample space?
I What is the event “at least two coins turn up heads”?

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists January 21, 2013



Sample spaces, events, and probability functions

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I An event is a subset of the sample space
I Denoted E
I E ⊆ Ω

I Experiment: tossing three coins and counting the number of
heads which occur

I What is the sample space?
I What is the event “at least two coins turn up heads”?
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Sample spaces, events, and probability functions

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I An event is a subset of the sample space
I Denoted E
I E ⊆ Ω

I Experiment: Drawing three cards from a shuffled deck and
checking what they are

I What is the sample space?
I What is the event “the first card is an Ace”?
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Sample spaces, events, and probability functions

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I An event is a subset of the sample space
I Denoted E
I E ⊆ Ω

I An event E is said to occur as the result of an experiment
I If the outcome of the experiment is an element of E
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Sample spaces, events, and probability functions

I The sample space of an experiment is the set of all its possible
outcomes

I Denoted Ω

I An event is a subset of the sample space
I Denoted E
I E ⊆ Ω

I A probability function assigns a real number to each event
I Denoted Pr()
I Pr : 2Ω → R

I This number is usually the “physical” probability that we
associate with each event

I The function must obey certain simple, intuitive laws
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Axioms of Discrete Probability
For finite sample spaces

A function Pr : 2Ω → R defined on a sample space Ω is said to be a
probability function if and only if it satisfies the following axioms:

1. (Non-negativity) For each S ⊆ Ω, Pr(S) ≥ 0

2. (Normalization) Pr(Ω) = 1

3. (Additivity) If S1,S2, . . . ,Sn are pairwise disjoint events, then

Pr(
n⋃
1

Si) =
n∑

i=1

Pr(Si)

I Probabilities of events range from 0 to 1
I Events with probability zero are said to be “impossible” events
I Events with probability one are said to be “certain” events
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Axioms of Discrete Probability
For finite sample spaces

A function Pr : 2Ω → R defined on a sample space Ω is said to be a
probability function if and only if it satisfies the following axioms:

1. (Non-negativity) For each S ⊆ Ω, Pr(S) ≥ 0

2. (Normalization) Pr(Ω) = 1

3. (Additivity) If S1,S2, . . . ,Sn are pairwise disjoint events, then

Pr(
n⋃
1

Si) =

n∑
i=1

Pr(Si)

I Such a pair (Ω,Pr) is called a probability space
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Probability spaces
Examples

I For rolling a fair die:
I Ω = {1, 2, 3, 4, 5, 6}
I For S ⊆ Ω, Pr(S) = |S|

6
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Probability spaces
Examples

I For randomly picking five bell peppers from a bag of ten red and
ten orange bell peppers

I Ω = {R,O}5

I Alternatively, Ω =
I {0, 1, . . . , 5}
I {(r, o) | r, o ∈ N, r + o = 5}

I The choice of Ω depends . . .
I . . . on the aspect of the experiment which we want to study
I For S ⊆ Ω, Pr(S) =

I |S|
25 for the first Ω

I More involved in the other two cases
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Thank You!
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