Basic Mathematical Techniques for Computer Scientists
 Introduction to Discrete Probability, Part II

January 28, 2013

Recap

- Experiment, outcome, event
- Many examples of computing probabilities
- When all outcomes are equally likely
- Involves counting subsets
- Very useful: Ways of counting things
- When all outcomes are equally likely
- The probability of an event:
$\frac{\text { Size of the event }}{\text { Total number of possible outcomes }}$
- Random choices, populations, sampling with/without replacement

Recap

- Formal framework:
- Sample space, events, and probability functions
- Axioms of discrete probability:
- Laws which a probability function must obey
- Probability spaces
- Impossible and certain events

Tossing a coin till it turns up Heads

- Experiment:
- Toss a fair coin repeatedly, ...
- . . . till the first time it turns up Heads
- Outcome: the number of tosses it takes each time
- What is the sample space Ω ?
- What is the probability that the outcome is i ?
- For a fixed $i \in \mathbb{N}$?
- If $S \subseteq \mathbb{N}^{+}$, then what is $\operatorname{Pr}(S)$?
- If $S=\left\{2 i \mid i \in \mathbb{N}^{+}\right\}$, then what is $\operatorname{Pr}(S)$?
- Is this Pr a valid probability function?

Axioms of Discrete Probability

A function $\operatorname{Pr}: 2^{\Omega} \rightarrow \mathbb{R}$ defined on a sample space Ω is said to be a probability function if and only if it satisfies the following axioms:

1. (Non-negativity) For each $S \subseteq \Omega, \operatorname{Pr}(S) \geq 0$
2. (Normalization) $\operatorname{Pr}(\Omega)=1$
3. (Additivity) If $S_{1}, S_{2}, \ldots, S_{n}$ are pairwise disjoint events, then

$$
\operatorname{Pr}\left(\bigcup_{1}^{n} S_{i}\right)=\sum_{i=1}^{n} \operatorname{Pr}\left(S_{i}\right)
$$

Simple applications of the axioms

- $(\Omega, \operatorname{Pr})$ is a probability space
- A, B are arbitrary events in the space
- Prove:
- If $\mathrm{A} \cap \mathrm{B}=\emptyset$, then $\operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})$
- $\operatorname{Pr}(\overline{\mathrm{A}})=1-\operatorname{Pr}(\mathrm{A})$
- $\operatorname{Pr}(\mathrm{A}) \leq 1$
- $\mathrm{A} \subseteq \mathrm{B} \Longrightarrow \operatorname{Pr}(\mathrm{B}) \geq \operatorname{Pr}(\mathrm{A})$
- $\operatorname{Pr}(\mathrm{A} \cup \mathrm{B})=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A} \cap \mathrm{B})$

Bell Pepper

Aka sweet pepper, pepper, capsicum

- (For those who didn't get it last time)

Figure : "Traffic lights" pack of bell peppers.

- Picture credit: Luc Viatour / www.Lucnix.be

Stocking bell peppers

The tale of a shop assistant

- A shop assistant in a grocery starts stocking bell peppers on shelves before the shop opens. When he comes to the last shelf, there are 10 bell peppers remaining in his basket, 4 red and 6 green. Since there is plenty of space on the shelf for these, he arranges these 10 peppers in a single row on this shelf.
- If the assistant puts these 10 bell peppers randomly on the shelf, what is the probability that all peppers of at least one colour appear together?

Bell peppers

Good and bad

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
- What is the probability that it is red?
- When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is

Bell peppers

Good and bad

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
- What is the probability that it is red?
- When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is red?

Bell peppers

Good and bad

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
- What is the probability that it is green?
- When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is green?

More information affects probabilities

- Extra information: the picked pepper is soft
- This changed the probabilities of the pepper being of each colour
- In general: Additional information changes probabilities
- A common example:
- When two equally strong football teams play each other
- Each has an even chance of not losing
- (One could take this as the definition of "equally strong"!)
- If one player of team A is sent off with a red card in the first minute
- Then the probabilities change drastically!

More information affects probabilities

- Consider a sample space with all outcomes equally likely:

- What is $\operatorname{Pr}(A)$?
- In terms of the cardinalities of the sets?
- What is $\operatorname{Pr}(A)$, given that event B has already happened?

Conditional probability

The general case

- Let $(\Omega, \operatorname{Pr})$ be a probability space, and let A and B be two events in this space. If $\operatorname{Pr}(\mathrm{B})>0$, then the conditional probability of A given B is defined to be

$$
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\frac{\operatorname{Pr}(\mathrm{A} \cap \mathrm{~B})}{\operatorname{Pr}(\mathrm{B})}
$$

Conditional probability

Blind coin tosses

- You are blindfolded for these experiments
- You toss three fair coins
- What is the probability that all tosses are Heads?
- Somebody tells you that at least one coin turned up Heads
- Now what is the probability that all tosses are heads?
- Does this change make sense?

Independent events

In real life

- When are two events in real life "independent"?
- Examples?
- Non-examples?
- Two events A and B are said to be independent if
- The occurrence of one does not affect the probability of the other
- Both ways!

Independent events
 In probability theory

- Two events A and B are said to be independent if
- The occurrence of one does not affect the probability of the other
- (We assume some probability space where A and B live)
- Suppose A and B are a pair of independent events
- (This means they are independent with respect to each other ...
- ... not that they are independent in some wider sense!)
- What does this mean in terms of the probabilities of A and B?
- Hint: Think conditional probabilities

Independent events

In probability theory

- If A and B are a pair of independent events,

$$
\operatorname{Pr}(\mathrm{A} \mid \mathrm{B})=\operatorname{Pr}(\mathrm{A})
$$

and

$$
\operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{B})
$$

- The probability that A happens is independent of whether B happened or not
- And vice versa
- This leads us to the formal definition of independence

Independent events

In probability theory

- Two events A and B are said to be independent if (and only if!)

$$
\operatorname{Pr}(\mathrm{A} \cap \mathrm{~B})=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B})
$$

- Two events A and B which are not independent are said to be dependent
- Meh!
- Suppose A and B are independent
- Are A and \bar{B} independent, or dependent?

Independence

Examples

- Pick the top card from a shuffled deck
- $\mathrm{A}=\{$ The card is a King $\}$
- $\mathrm{B}=\{$ The card is a spade $\}$
- Are A and B independent?
- Pick the first two cards from a shuffled deck
- $\mathrm{A}=\{$ The first card is a King $\}$
- $B=\{$ The second card is a spade $\}$
- Are A and B independent?
- Pick the first two cards from a shuffled deck
- $\mathrm{A}=\{$ The first card is a spade $\}$
- $B=\{$ The second card is a spade $\}$
- Are A and B independent?

Thank You!

