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Recap

I Experiment, outcome, event
I Many examples of computing probabilities

I When all outcomes are equally likely
I Involves counting subsets
I Very useful: Ways of counting things

I When all outcomes are equally likely
I The probability of an event:

Size of the event
Total number of possible outcomes

I Random choices, populations, sampling with/without
replacement
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Recap

I Formal framework:
I Sample space, events, and probability functions
I Axioms of discrete probability:

I Laws which a probability function must obey
I Probability spaces
I Impossible and certain events
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Questions?



Tossing a coin till it turns up Heads
Warm-up

I Experiment:
I Toss a fair coin repeatedly, . . .
I . . . till the first time it turns up Heads
I Outcome: the number of tosses it takes each time

I What is the sample space Ω?
I What is the probability that the outcome is i?

I For a fixed i ∈ N?

I If S ⊆ N+, then what is Pr(S)?
I If S = {2i | i ∈ N+}, then what is Pr(S)?
I Is this Pr a valid probability function?
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Axioms of Discrete Probability
Recap

A function Pr : 2Ω → R defined on a sample space Ω is said to be a
probability function if and only if it satisfies the following axioms:

1. (Non-negativity) For each S ⊆ Ω, Pr(S) ≥ 0

2. (Normalization) Pr(Ω) = 1

3. (Additivity) If S1,S2, . . . ,Sn are pairwise disjoint events, then

Pr(
n⋃
1

Si) =

n∑
i=1

Pr(Si)
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Simple applications of the axioms

I (Ω,Pr) is a probability space
I A,B are arbitrary events in the space
I Prove:

I If A ∩ B = ∅, then Pr(A ∪ B) = Pr(A) + Pr(B)
I Pr(A) = 1− Pr(A)
I Pr(A) ≤ 1
I A ⊆ B =⇒ Pr(B) ≥ Pr(A)
I Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)
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Bell Pepper
Aka sweet pepper, pepper, capsicum

I (For those who didn’t get it last time)

Figure : "Traffic lights" pack of bell peppers.

I Picture credit: Luc Viatour / www.Lucnix.be
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Stocking bell peppers
The tale of a shop assistant

I A shop assistant in a grocery starts stocking bell peppers on
shelves before the shop opens. When he comes to the last shelf,
there are 10 bell peppers remaining in his basket, 4 red and 6
green. Since there is plenty of space on the shelf for these, he
arranges these 10 peppers in a single row on this shelf.

I If the assistant puts these 10 bell peppers randomly on the shelf,
what is the probability that all peppers of at least one colour
appear together?
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Bell peppers
Good and bad

I When a bell pepper goes bad, sometimes it turns soft. A soft bell
pepper is probably not good to eat. So people don’t buy these.

I Here are the contents of our friend’s basket when he comes to the
last shelf on another day:

Good Soft Total
Red 4 3 7

Green 2 6 8
Total 6 9 15

I He picks a bell pepper at random from the basket
I What is the probability that it is red?

green?

I When he feels the pepper (before looking at it), he finds that it is
soft. What is the probability now that it is

red?green?
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More information affects probabilities

I Extra information: the picked pepper is soft
I This changed the probabilities of the pepper being of each colour
I In general: Additional information changes probabilities
I A common example:

I When two equally strong football teams play each other
I Each has an even chance of not losing
I (One could take this as the definition of “equally strong”!)

I If one player of team A is sent off with a red card in the first minute
I Then the probabilities change drastically!
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More information affects probabilities

I Consider a sample space with all outcomes equally likely:

A B

Ω

I What is Pr(A)?
I In terms of the cardinalities of the sets?

I What is Pr(A), given that event B has already happened?
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Conditional probability
The general case

I Let (Ω,Pr) be a probability space, and let A and B be two events
in this space. If Pr(B) > 0, then the conditional probability of A
given B is defined to be

Pr(A | B) =
Pr(A ∩ B)

Pr(B)
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Conditional probability
Blind coin tosses

I You are blindfolded for these experiments
I You toss three fair coins

I What is the probability that all tosses are Heads?
I Somebody tells you that at least one coin turned up Heads

I Now what is the probability that all tosses are heads?
I Does this change make sense?
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Independent events
In real life

I When are two events in real life “independent”?
I Examples?
I Non-examples?

I Two events A and B are said to be independent if
I The occurrence of one does not affect the probability of the other
I Both ways!
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Independent events
In probability theory

I Two events A and B are said to be independent if
I The occurrence of one does not affect the probability of the other
I (We assume some probability space where A and B live)

I Suppose A and B are a pair of independent events
I (This means they are independent with respect to each other . . .
I . . . not that they are independent in some wider sense!)
I What does this mean in terms of the probabilities of A and B?

I Hint: Think conditional probabilities
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Independent events
In probability theory

I If A and B are a pair of independent events,

Pr(A | B) = Pr(A)

and
Pr(B | A) = Pr(B)

I The probability that A happens is independent of whether B
happened or not

I And vice versa

I This leads us to the formal definition of independence
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Independent events
In probability theory

I Two events A and B are said to be independent if (and only if!)

Pr(A ∩ B) = Pr(A)× Pr(B)

I Two events A and B which are not independent are said to be
dependent

I Meh!
I Suppose A and B are independent

I Are A and B independent, or dependent?
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Independence
Examples

I Pick the top card from a shuffled deck
I A = {The card is a King}
I B = {The card is a spade}
I Are A and B independent?

I Pick the first two cards from a shuffled deck
I A = {The first card is a King}
I B = {The second card is a spade}
I Are A and B independent?

I Pick the first two cards from a shuffled deck
I A = {The first card is a spade}
I B = {The second card is a spade}
I Are A and B independent?

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists January 28, 2013



Thank You!
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