Basic Mathematical Techniques for Computer Scientists Introduction to Discrete Probability, Part II

January 28, 2013

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

January 28, 2013

Recap

- Experiment, outcome, event
- Many examples of computing probabilities
 - When all outcomes are equally likely
 - Involves counting subsets
 - Very useful: Ways of counting things
- When all outcomes are equally likely
 - The probability of an event:

Size of the event

Total number of possible outcomes

 Random choices, populations, sampling with/without replacement

Recap

- Formal framework:
 - Sample space, events, and probability functions
 - Axioms of discrete probability:
 - Laws which a probability function must obey
 - Probability spaces
 - Impossible and certain events

Tossing a coin till it turns up Heads Warm-up

Experiment:

- Toss a fair coin repeatedly, ...
- ... till the *first* time it turns up Heads
- Outcome: the number of tosses it takes each time
- What is the sample space Ω?
- What is the probability that the outcome is *i*?
 - For a fixed $i \in \mathbb{N}$?
- If $S \subseteq \mathbb{N}^+$, then what is Pr(S)?
- If $S = \{2i \mid i \in \mathbb{N}^+\}$, then what is Pr(S)?
- Is this Pr a valid probability function?

Axioms of Discrete Probability Recap

A function $Pr : 2^{\Omega} \to \mathbb{R}$ defined on a sample space Ω is said to be a probability function if and only if it satisfies the following axioms:

- 1. (Non-negativity) For each $S\subseteq \Omega,$ $Pr(S)\geq 0$
- 2. (Normalization) $Pr(\Omega) = 1$
- 3. (Additivity) If S_1, S_2, \ldots, S_n are pairwise disjoint events, then

$$\Pr(\bigcup_{1}^{n} S_{i}) = \sum_{i=1}^{n} \Pr(S_{i})$$

Simple applications of the axioms

- (Ω, \Pr) is a probability space
- A, B are arbitrary events in the space
- ► Prove:
 - If $A \cap B = \emptyset$, then $Pr(A \cup B) = Pr(A) + Pr(B)$
 - $Pr(\overline{A}) = 1 Pr(A)$
 - $Pr(A) \leq 1$
 - $\blacktriangleright A \subseteq B \implies Pr(B) \ge Pr(A)$
 - $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$

Bell Pepper

Aka sweet pepper, pepper, capsicum

(For those who didn't get it last time)

Figure : "Traffic lights" pack of bell peppers.

Picture credit: Luc Viatour / www.Lucnix.be

Winter Semester 2012, MPII, Saarbrücken Basic Mathematica

Stocking bell peppers

The tale of a shop assistant

- A shop assistant in a grocery starts stocking bell peppers on shelves before the shop opens. When he comes to the last shelf, there are 10 bell peppers remaining in his basket, 4 red and 6 green. Since there is plenty of space on the shelf for these, he arranges these 10 peppers in a single row on this shelf.
- ► If the assistant puts these 10 bell peppers randomly on the shelf, what is the probability that all peppers of at least one colour appear together?

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
 - What is the probability that it is red?
 - When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
 - What is the probability that it is red?
 - When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is red?

- When a bell pepper goes bad, sometimes it turns soft. A soft bell pepper is probably not good to eat. So people don't buy these.
- Here are the contents of our friend's basket when he comes to the last shelf on another day:

	Good	Soft	Total
Red	4	3	7
Green	2	6	8
Total	6	9	15

- He picks a bell pepper at random from the basket
 - What is the probability that it is green?
 - When he feels the pepper (before looking at it), he finds that it is soft. What is the probability now that it is green?

More information affects probabilities

- Extra information: the picked pepper is soft
- This changed the probabilities of the pepper being of each colour
- In general: Additional information changes probabilities
- A common example:
 - When two equally strong football teams play each other
 - Each has an even chance of not losing
 - One could take this as the *definition* of "equally strong"!)
 - ▶ If one player of team A is *sent off* with a red card in the first minute
 - Then the probabilities change drastically!

More information affects probabilities

• Consider a sample space with all outcomes equally likely:

▶ What is Pr(*A*)?

- In terms of the cardinalities of the sets?
- ▶ What is Pr(*A*), *given that* event B has **already** happened?

Conditional probability

The general case

 Let (Ω, Pr) be a probability space, and let A and B be two events in this space. If Pr(B) > 0, then the *conditional probability of A given B* is defined to be

$$\Pr(\mathbf{A} \mid \mathbf{B}) = \frac{\Pr(\mathbf{A} \cap \mathbf{B})}{\Pr(\mathbf{B})}$$

Conditional probability

Blind coin tosses

- You are blindfolded for these experiments
- You toss three fair coins
 - What is the probability that all tosses are Heads?
 - Somebody tells you that at least one coin turned up Heads
 - Now what is the probability that all tosses are heads?
 - Does this change make sense?

In real life

- ▶ When are two events in real life "independent"?
 - Examples?
 - Non-examples?
- > Two events A and B are said to be independent if
 - The occurrence of one does **not** affect the probability of the other
 - Both ways!

In probability theory

- > Two events A and B are said to be independent if
 - The occurrence of one does **not** affect the probability of the other
 - (We assume some probability space where A and B live)
- Suppose A and B are a pair of independent events
 - ▶ (This means they are independent with respect to each other ...
 - ... not that they are independent in some wider sense!)
 - What does this mean in terms of the probabilities of A and B?
 - Hint: Think conditional probabilities

In probability theory

▶ If A and B are a pair of independent events,

$$\Pr(\mathbf{A} \mid \mathbf{B}) = \Pr(\mathbf{A})$$

and

$$\Pr(\mathbf{B} \mid \mathbf{A}) = \Pr(\mathbf{B})$$

- The probability that A happens is *independent* of whether B happened or not
 - And vice versa
- > This leads us to the formal definition of independence

In probability theory

► Two events A and B are said to be *independent* if (and only if!) $Pr(A \cap B) = Pr(A) \times Pr(B)$

Two events A and B which are **not** independent are said to be dependent

- Meh!
- Suppose A and B are independent
 - Are A and \overline{B} independent, or dependent?

Independence

Examples

Pick the top card from a shuffled deck

- ► A = {The card is a King}
- B = {The card is a spade}
- Are A and B independent?
- Pick the first two cards from a shuffled deck
 - ► A = {The first card is a King}
 - ► B = {The second card is a spade}
 - Are A and B independent?
- Pick the first two cards from a shuffled deck
 - ► A = {The first card is a spade}
 - ► B = {The second card is a spade}
 - Are A and B independent?

Thank You!