Basic Mathematical Techniques for Computer Scientists Propositional Logic, Part Two

October 29, 2012

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

October 29, 2012

▶ What is a *proof*?

- ▶ What is a proof?
 - Axioms

- ▶ What is a *proof*?
 - Axioms
 - Propositions

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - From axioms to a proposition, using logical deductions.

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - ► OR

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - ► OR
 - NOT

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication
 - Equivalence

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication
 - Equivalence
- Truth tables

- ▶ What is a proof?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication
 - Equivalence
- Truth tables
- Predicates

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication
 - Equivalence
- Truth tables
- Predicates
- Quantifiers
 - For all
 - There exists

- ▶ What is a *proof*?
 - Axioms
 - Propositions
 - Logical deductions
 - ▶ From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
 - AND
 - OR
 - NOT
 - Implication
 - Equivalence
- Truth tables
- Predicates
- Quantifiers
 - For all
 - There exists

• A proposition which is *assumed* to be true

- A proposition which is *assumed* to be true
- But why do we need such a thing?

- A proposition which is *assumed* to be true
- But why do we need such a thing?
 - ▶ We need to start *somewhere* ...

- A proposition which is *assumed* to be true
- But why do we need such a thing?
 - We need to start *somewhere* ...
- We start with a set of axioms

- A proposition which is *assumed* to be true
- But why do we need such a thing?
 - ▶ We need to start *somewhere* ...
- We start with a set of axioms
 - Which seem reasonable to assume as correct without proof

- A proposition which is assumed to be true
- But why do we need such a thing?
 - We need to start *somewhere* ...
- We start with a set of axioms
 - Which seem reasonable to assume as correct without proof
 - As elementary or modest as we can make them

- A proposition which is assumed to be true
- But why do we need such a thing?
 - ▶ We need to start *somewhere* ...
- We start with a set of axioms
 - Which seem reasonable to assume as correct without proof
 - As elementary or modest as we can make them
 - And still get away with it

- A proposition which is assumed to be true
- But why do we need such a thing?
 - ▶ We need to start *somewhere* ...
- We start with a set of axioms
 - Which seem reasonable to assume as correct without proof
 - As elementary or modest as we can make them
 - And still get away with it
 - Why is this a good thing?

Axioms Example: Number theory

• A candidate axiom for number theory

(The study of integers, primes, and so on.)

- A candidate axiom for number theory
 - (The study of integers, primes, and so on.)
- Assume we have defined
 - What it means to divide one integer by another
 - What a prime number is

- A candidate axiom for number theory
 - (The study of integers, primes, and so on.)
- Assume we have defined
 - What it means to divide one integer by another
 - What a prime number is
- "If a prime number p divides the product ab of two integers a and b, then p divides at least one of {a, b}."
 - ▶ In symbols: $\forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$

- A candidate axiom for number theory
- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$

- A candidate axiom for number theory
- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - Does this seem to be true?

- A candidate axiom for number theory
- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - Does this seem to be true?
 - Does this hold for non-prime numbers p?

- A candidate axiom for number theory
- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - Does this seem to be true?
 - Does this hold for non-prime numbers p?
- Is it reasonable to take this as an axiom?

- A candidate axiom for number theory
- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - Does this seem to be true?
 - Does this hold for non-prime numbers p?
- Is it reasonable to take this as an axiom?
 - Depends on what "reasonable" means to you ...
 - This does seem to be a "fundamental" property of integers

- A candidate axiom for number theory
- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - Does this seem to be true?
 - Does this hold for non-prime numbers p?
- Is it reasonable to take this as an axiom?
 - Depends on what "reasonable" means to you ...
 - This does seem to be a "fundamental" property of integers
 - I mean, how much more basic can we get than this?

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g.

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g.
 - 1. 0 is a natural number

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:
 - 1. 0 is a natural number
 - 2. For every natural number *n* there is a natural number S(n)
 - ► The "successor" function.

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:
 - 1. 0 is a natural number
 - 2. For every natural number *n* there is a natural number S(n)
 - ► The "successor" function.
 - 3. For every natural number n, S(n) = 0 is false

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:
 - 1. 0 is a natural number
 - 2. For every natural number *n* there is a natural number S(n)
 - ► The "successor" function.
 - 3. For every natural number n, S(n) = 0 is false
 - 4. $\forall m, n \in \mathbb{N} \ S(m) = S(n) \implies m = n$

- $\blacktriangleright \quad \forall prime \ p \ \forall a, b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- ▶ It is *possible* to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:
 - 1. 0 is a natural number
 - 2. For every natural number *n* there is a natural number S(n)
 - ► The "successor" function.
 - 3. For every natural number n, S(n) = 0 is false
 - 4. $\forall m, n \in \mathbb{N} \ S(m) = S(n) \implies m = n$
 - 5. ... etc.

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do *not* include the above as an axiom, but

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do *not* include the above as an axiom, but
 - *Derive* it as a **theorem** from more basic axioms.

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do *not* include the above as an axiom, but
 - *Derive* it as a **theorem** from more basic axioms.
- So the above proposition is indeed true

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do *not* include the above as an axiom, but
 - *Derive* it as a **theorem** from more basic axioms.
- So the above proposition is indeed true
- And its truth depends on very basic axioms

- $\blacktriangleright \ \forall prime \ p \ \forall a,b \in \mathbb{I} \ p \ | \ ab \implies (p \ | \ a) \lor (p \ | \ b)$
 - True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do *not* include the above as an axiom, but
 - *Derive* it as a **theorem** from more basic axioms.
- So the above proposition is indeed true
- And its truth depends on very basic axioms
- ► For some commonly accepted but vague notion of "basic"

- Five postulates
- ► Five common notions

Example: Euclid's axioms for plane geometry (Elements, Book I)

Five postulates

- 1. One can draw a unique straight line through any given pair of points.
- 2. One can extend any (finite) line segment to a unique (infinite) straight line.
- 3. Given any point *c* and any length *r*, one can draw a unique circle which has centre *c* and radius *r*.
- 4. All right angles are equal to one another.
- 5. For any line *l* and a point *p* not on *l*, there is exactly one line through *p* which is parallel to *l*.

Example: Euclid's axioms for plane geometry (Elements, Book I)

► Five common notions

- 1. Things that are equal to the same thing are also equal to one another.
- 2. If equals are added to equals, then the wholes are equal.
- 3. If equals are subtracted from equals, then the remainders are equal.
- 4. Things that coincide with one another equal one another.
- 5. The whole is greater than the part.

Example: Euclid's axioms for plane geometry (Elements, Book I)

 Reasonable assumptions to make about geometric objects on an ideal "flat" plane

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- ► *Not* necessarily true for
 - Other geometries which are equally (perhaps more) "real"
 - Other mathematical systems

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- Not necessarily true for
 - Other geometries which are equally (perhaps more) "real"
 - The fifth (parallel) postulate does not hold for geometry on spherical surfaces.
 - Other mathematical systems

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- Not necessarily true for
 - Other geometries which are equally (perhaps more) "real"
 - The fifth (parallel) postulate does not hold for geometry on spherical surfaces.
 - Other mathematical systems
 - The fifth common notion does not hold for infinite sets.
 - If we take "greater" to mean "contains more elements".

What will our axioms be?

▶ For homework exercises, for instance?

- ► For homework exercises, for instance?
- For exercises (in this class and most others)
 - We assume commonly known stuff
 - We do not argue from first principles

- ► For homework exercises, for instance?
- For exercises (in this class and most others)
 - We assume commonly known stuff
 - We do not argue from first principles
 - This will make life boring to the extreme

- ► For homework exercises, for instance?
- For exercises (in this class and most others)
 - We assume commonly known stuff
 - We do not argue from first principles
 - This will make life boring to the extreme
- Exception: When learning a new sub-field of mathematics
 - E.g: In a first course on Topology or Group Theory
 - You will argue many things starting from the respective axioms
 - This is to get practice thinking in the new way

- ► For homework exercises, for instance?
- For exercises (in this class and most others)
 - We assume commonly known stuff
 - We do not argue from first principles
 - This will make life boring to the extreme
- Exception: When learning a new sub-field of mathematics
 - E.g: In a first course on Topology or Group Theory
 - You will argue many things starting from the respective axioms
 - This is to get practice thinking in the new way
 - Rarely done in a second course or later

- ► For homework exercises
 - In this course, and usually in others
- > You are allowed to assume commonly known stuff

- ► For homework exercises
 - In this course, and usually in others
- > You are allowed to assume commonly known stuff
 - Don't assume the solution itself!

- ► For homework exercises
 - In this course, and usually in others
- > You are allowed to assume commonly known stuff
 - Don't assume the solution itself!
 - ... or something very close to it
 - That is cheating!!

- ► For homework exercises
 - In this course, and usually in others
- > You are allowed to assume commonly known stuff
 - Don't assume the solution itself!
 - ... or something very close to it
 - That is cheating!!
- When in doubt, explicitly declare your assumptions

- ► For homework exercises
 - In this course, and usually in others
- > You are allowed to assume commonly known stuff
 - Don't assume the solution itself!
 - ... or something very close to it
 - That is cheating!!
- ▶ When in doubt, explicitly declare your assumptions
- Check if the question mentions "axioms" or some such

Logical deductions

• Ways of combining axioms and true propositions

To form new true propositions

Logical deductions

- Ways of combining axioms and true propositions
 - To form new true propositions
- ► Also called *Rules of Inference*

Logical deductions

- Ways of combining axioms and true propositions
 - To form new true propositions
- Also called Rules of Inference
- There are many such rules
 - Some of these have fancy Latin names
 - Most of them are just "common sense"

Some special kinds of propositions Tautology

Some special kinds of propositions Tautology

A compound proposition

Some special kinds of propositions

- A compound proposition
- True regardless of the truth values of its component simple propositions

Some special kinds of propositions

- A compound proposition
- True regardless of the truth values of its component simple propositions
- Examples?
- A compound proposition
- True regardless of the truth values of its component simple propositions
- Examples?
- The truth of a tautology comes
 - From the principles of propositional logic
 - Not from any "outside" information

Contradiction

A compound proposition

- A compound proposition
- ► *False* regardless of the truth values of its component simple propositions

- A compound proposition
- ► *False* regardless of the truth values of its component simple propositions
- Examples?

- A compound proposition
- ► *False* regardless of the truth values of its component simple propositions
- Examples?
- The falsity of a tautology comes
 - From the principles of propositional logic
 - Not from any "outside" information

Contingent proposition

► A proposition which is neither a tautology nor a contradiction

Contingent proposition

- A proposition which is neither a tautology nor a contradiction
- Examples?

Contingent proposition

- ► A proposition which is neither a tautology nor a contradiction
- Examples?
- Not very special, really ...

- ► A rule used to transform some part of a logical expression
 - Replace some part by an *equivalent* part

- ► A rule used to transform some part of a logical expression
 - Replace some part by an *equivalent* part
- Many rules have names
 - We will see a few
 - Many of these are "common sense"

Double negation

Double negation

- Two rules
- Can replace
 - A anywhere with $(\neg \neg A)$
 - $(\neg \neg A)$ anywhere with A

Double negation

- Two rules
- Can replace
 - A anywhere with $(\neg \neg A)$
 - $(\neg \neg A)$ anywhere with A
- ► Why are these OK?

Commutativity

► Four rules, two each for AND and OR

Commutativity

- ▶ Four rules, two each for AND and OR
- Can replace
 - $A \land B$ anywhere with $B \land A$
 - And conversely
 - $A \lor B$ anywhere with $B \lor A$
 - And conversely

Commutativity

- ▶ Four rules, two each for AND and OR
- Can replace
 - $A \land B$ anywhere with $B \land A$
 - And conversely
 - $A \lor B$ anywhere with $B \lor A$
 - And conversely
- Why are these OK?

Associativity

► Four rules, two each for AND and OR

Associativity

- ► Four rules, two each for AND and OR
- Can replace
 - $(A \land B) \land C$ anywhere with $A \land (B \land C)$
 - And conversely
 - $(A \lor B) \lor C$ anywhere with $A \lor (B \lor C)$
 - And conversely

Associativity

- Four rules, two each for AND and OR
- Can replace
 - $(A \land B) \land C$ anywhere with $A \land (B \land C)$
 - And conversely
 - $(A \lor B) \lor C$ anywhere with $A \lor (B \lor C)$
 - And conversely
- Why are these OK?

De Morgan's laws

► Four rules, two each for AND and OR

De Morgan's laws

- ▶ Four rules, two each for AND and OR
- Can replace
 - $\neg(A \land B)$ anywhere with $\neg A \lor \neg B$
 - And conversely
 - $\neg(A \lor B)$ anywhere with $\neg A \land \neg B$
 - And conversely

De Morgan's laws

- ▶ Four rules, two each for AND and OR
- Can replace
 - $\neg(A \land B)$ anywhere with $\neg A \lor \neg B$
 - And conversely
 - $\neg(A \lor B)$ anywhere with $\neg A \land \neg B$
 - And conversely
- Why are these OK?

Takes one or more "premises" as 'input'

Each premise is a proposition

Takes one or more "premises" as 'input'

- Each premise is a proposition
- 'Returns' one or more propositions
 - These are called the "conclusion"

- Takes one or more "premises" as 'input'
 - Each premise is a proposition
- 'Returns' one or more propositions
 - These are called the "conclusion"
- A rule of inference is **valid** if:
 - The premises are all true \implies the conclusion is true

- Takes one or more "premises" as 'input'
 - Each premise is a proposition
- 'Returns' one or more propositions
 - These are called the "conclusion"
- A rule of inference is valid if:
 - The premises are all true \implies the conclusion is true
- Unlike a rule of replacement
 - Rules of inference acts on whole propositions
 - Not on their parts

- Takes one or more "premises" as 'input'
 - Each premise is a proposition
- 'Returns' one or more propositions
 - These are called the "conclusion"
- A rule of inference is valid if:
 - The premises are all true \implies the conclusion is true
- Unlike a rule of replacement
 - Rules of inference acts on whole propositions
 - Not on their parts
- Used to *infer* new propositions from old

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

- "If everything above the bar is true, then the thing below the bar is also true."
 - Above the bar are the *premises*, below the bar the *conclusion*

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

▶ If at least one of {P, Q} is true, and P is *not* true, then Q is true.

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

- ▶ If at least one of {P, Q} is true, and P is *not* true, then Q is true.
- ► Example:
 - \blacktriangleright I drank coffee today, or I drank tea today. (P \lor Q)
 - ► I did not drink coffee today. (¬P)
 - So: I drank tea today. (Q)

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

Seems legit?

▶ What would be a *proof* for this?

Disjunctive Syllogism

$$\frac{P \lor Q, \ \neg P}{Q}$$

- ► Seems legit?
- What would be a proof for this?
- \blacktriangleright One way: the truth table of $P \lor Q$

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$
Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

• If P is true and $(P \implies Q)$ is true, then Q is true.

$$\frac{P, \ P \implies Q}{Q}$$

- If P is true and $(P \implies Q)$ is true, then Q is true.
- ► Example:
 - If it is Monday and it is not a holiday, then we have class. (P \implies Q)

$$\frac{P, \ P \implies Q}{Q}$$

- If P is true and $(P \implies Q)$ is true, then Q is true.
- Example:
 - If it is Monday and it is not a holiday, then we have class. (P \implies Q)
 - It is Monday, and it is not a holiday. (P)
 - So: We have class. (Q)

$$\frac{P, \ P \implies Q}{Q}$$

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

► Seems legit?

▶ What would be a *proof* for this?

$$\frac{P, \ P \implies Q}{Q}$$

- ► Seems legit?
- What would be a proof for this?
- One way: the truth table of

$$\frac{P, \ P \implies Q}{Q}$$

- Seems legit?
- ▶ What would be a *proof* for this?
- One way: the truth table of $P \implies Q$

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Another way: A "formal" proof

$$\frac{P, \ P \implies Q}{Q}$$

- Another way: A "formal" proof
 - Start with the premises

$$\frac{P, \ P \implies Q}{Q}$$

- Another way: A "formal" proof
 - Start with the premises
 - Use the various rules we know

$$\frac{P, \ P \implies Q}{Q}$$

- Another way: A "formal" proof
 - Start with the premises
 - Use the various rules we know
 - End up with the conclusion

$$\frac{P, \ P \implies Q}{Q}$$

- Another way: A "formal" proof
 - Start with the premises
 - Use the various rules we know
 - End up with the conclusion
 - Done!

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	
2	Р	
3	$\neg P \lor Q$	
4	$\neg \neg P$	
5	Q	

^{*a*}Stolen from the Wikipedia entry on this rule.

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

October 29, 2012

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	Р	
3	$\neg P \lor Q$	
4	$\neg \neg P$	
5	Q	

^{*a*}Stolen from the Wikipedia entry on this rule.

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

October 29, 2012

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	Р	Given
3	$\neg P \lor Q$	
4	$\neg \neg P$	
5	Q	

^{*a*}Stolen from the Wikipedia entry on this rule.

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	Р	Given
3	$\neg P \lor Q$	Homework 1
4	$\neg \neg P$	
5	Q	

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	Р	Given
3	$\neg P \lor Q$	Homework 1
4	$\neg \neg P$	Double Negation
5	Q	-

Modus Ponens

$$\frac{P, \ P \implies Q}{Q}$$

Table: A formal proof of Modus Ponens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	Р	Given
3	$\neg P \lor Q$	Homework 1
4	$\neg \neg P$	Double Negation
5	Q	Disjunctive Syllogism

$$\frac{P \implies Q, \ \neg Q}{\neg P}$$

Modus Tollens

$$\frac{P \implies Q, \neg Q}{\neg P}$$

• If $P \implies Q$ is true, and Q is *false*, then P is false.

$$\frac{P \implies Q, \ \neg Q}{\neg P}$$

- If $P \implies Q$ is true, and Q is *false*, then P is false.
- Example:
 - If I am ill then I don't come to class.

$$(\mathsf{P}\implies\mathsf{Q})$$

- ► I come to class. (¬Q)
- ▶ So: I am not ill. (¬P)

$$\frac{P\implies Q, \ \neg Q}{\neg P}$$

$$\frac{P\implies Q, \ \neg Q}{\neg P}$$

- Seems legit?
- ▶ What would be a *proof* for this?

$$\frac{P\implies Q, \ \neg Q}{\neg P}$$

- Seems legit?
- ▶ What would be a *proof* for this?
- One way: the truth table of

$$\frac{P\implies Q, \ \neg Q}{\neg P}$$

- Seems legit?
- ▶ What would be a *proof* for this?
- $\blacktriangleright\,$ One way: the truth table of P $\implies\,$ Q

Modus Tollens

$$\frac{P \implies Q, \ \neg Q}{\neg P}$$

Table: A formal proof of Modus Tollens^a

	Proposition	Derivation
1	$P \implies Q$	
2	$\neg Q$	
3	$\neg P \lor Q$	
4	$\neg P$	

Modus Tollens

$$\frac{P\implies Q, \ \neg Q}{\neg P}$$

Table: A formal proof of Modus Tollens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	$\neg Q$	
3	$\neg P \lor Q$	
4	$\neg P$	

Modus Tollens

$$\frac{P \implies Q, \neg Q}{\neg P}$$

Table: A formal proof of Modus Tollens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	$\neg Q$	Given
3	$\neg P \lor Q$	
4	$\neg P$	

Modus Tollens

$$\frac{P \implies Q, \neg Q}{\neg P}$$

Table: A formal proof of Modus Tollens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	$\neg Q$	Given
3	$\neg P \lor Q$	Homework 1
4	$\neg P$	

Modus Tollens

$$\frac{P \implies Q, \neg Q}{\neg P}$$

Table: A formal proof of Modus Tollens^a

	Proposition	Derivation
1	$P \implies Q$	Given
2	$\neg Q$	Given
3	$\neg P \lor Q$	Homework 1
4	$\neg P$	Disjunctive Syllogism

Thank You!