Basic Mathematical Techniques for Computer Scientists
 Propositional Logic, Part Two

October 29, 2012

Recap

- What is a proof?

Recap

- What is a proof?
- Axioms

Recap

- What is a proof?
- Axioms
- Propositions

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication
- Equivalence

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication
- Equivalence
- Truth tables

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication
- Equivalence
- Truth tables
- Predicates

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication
- Equivalence
- Truth tables
- Predicates
- Quantifiers
- For all
- There exists

Recap

- What is a proof?
- Axioms
- Propositions
- Logical deductions
- From axioms to a proposition, using logical deductions.
- Some ways of combining propositions
- AND
- OR
- NOT
- Implication
- Equivalence
- Truth tables
- Predicates
- Quantifiers
- For all
- There exists

Axioms

- A proposition which is assumed to be true

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere . . .

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere ...
- We start with a set of axioms

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere ...
- We start with a set of axioms
- Which seem reasonable to assume as correct without proof

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere ...
- We start with a set of axioms
- Which seem reasonable to assume as correct without proof
- As elementary or modest as we can make them

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere ...
- We start with a set of axioms
- Which seem reasonable to assume as correct without proof
- As elementary or modest as we can make them
- And still get away with it

Axioms

- A proposition which is assumed to be true
- But why do we need such a thing?
- We need to start somewhere ...
- We start with a set of axioms
- Which seem reasonable to assume as correct without proof
- As elementary or modest as we can make them
- And still get away with it
- Why is this a good thing?

Axioms

Example: Number theory

- A candidate axiom for number theory
- (The study of integers, primes, and so on.)

Axioms

Example: Number theory

- A candidate axiom for number theory
- (The study of integers, primes, and so on.)
- Assume we have defined
- What it means to divide one integer by another
- What a prime number is

Axioms

Example: Number theory

- A candidate axiom for number theory
- (The study of integers, primes, and so on.)
- Assume we have defined
- What it means to divide one integer by another
- What a prime number is
- "If a prime number p divides the product $a b$ of two integers a and b, then p divides at least one of $\{a, b\} . "$
- In symbols: \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- Does this seem to be true?

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- Does this seem to be true?
- Does this hold for non-prime numbers p ?

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- Does this seem to be true?
- Does this hold for non-prime numbers p ?
- Is it reasonable to take this as an axiom?

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- Does this seem to be true?
- Does this hold for non-prime numbers p ?
- Is it reasonable to take this as an axiom?
- Depends on what "reasonable" means to you ...
- This does seem to be a "fundamental" property of integers

Axioms

Example: Number theory

- A candidate axiom for number theory
- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- Does this seem to be true?
- Does this hold for non-prime numbers p ?
- Is it reasonable to take this as an axiom?
- Depends on what "reasonable" means to you ...
- This does seem to be a "fundamental" property of integers
- I mean, how much more basic can we get than this?

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- . . . but this is not usually done

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- . . . but this is not usually done
- Axioms for number theory are much more basic. E.g:

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- . . . but this is not usually done
- Axioms for number theory are much more basic. E.g:

1. 0 is a natural number

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:

1. 0 is a natural number
2. For every natural number n there is a natural number $S(n)$

- The "successor" function.

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:

1. 0 is a natural number
2. For every natural number n there is a natural number $S(n)$

- The "successor" function.

3. For every natural number $n, S(n)=0$ is false

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:

1. 0 is a natural number
2. For every natural number n there is a natural number $S(n)$

- The "successor" function.

3. For every natural number $n, S(n)=0$ is false
4. $\forall m, n \in \mathbb{N} S(m)=S(n) \Longrightarrow m=n$

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- Turns out, we can get quite a bit more basic than this!
- It is possible to include the above proposition as an axiom, ...
- ... but this is not usually done
- Axioms for number theory are much more basic. E.g:

1. 0 is a natural number
2. For every natural number n there is a natural number $S(n)$

- The "successor" function.

3. For every natural number $n, S(n)=0$ is false
4. $\forall m, n \in \mathbb{N} S(m)=S(n) \Longrightarrow m=n$
5. ...etc.

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do not include the above as an axiom, but

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do not include the above as an axiom, but
- Derive it as a theorem from more basic axioms.

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do not include the above as an axiom, but
- Derive it as a theorem from more basic axioms.
- So the above proposition is indeed true

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do not include the above as an axiom, but
- Derive it as a theorem from more basic axioms.
- So the above proposition is indeed true
- And its truth depends on very basic axioms

Axioms

Example: Number theory

- \forall prime $p \forall a, b \in \mathbb{I} p \mid a b \Longrightarrow(p \mid a) \vee(p \mid b)$
- True, and seems quite basic
- But we can get quite a bit more basic than this.
- Common axiomatizations of number theory do not include the above as an axiom, but
- Derive it as a theorem from more basic axioms.
- So the above proposition is indeed true
- And its truth depends on very basic axioms
- For some commonly accepted but vague notion of "basic"

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Five postulates
- Five common notions

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Five postulates

1. One can draw a unique straight line through any given pair of points.
2. One can extend any (finite) line segment to a unique (infinite) straight line.
3. Given any point c and any length r, one can draw a unique circle which has centre c and radius r.
4. All right angles are equal to one another.
5. For any line l and a point p not on l, there is exactly one line through p which is parallel to l.

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Five common notions

1. Things that are equal to the same thing are also equal to one another.
2. If equals are added to equals, then the wholes are equal.
3. If equals are subtracted from equals, then the remainders are equal.
4. Things that coincide with one another equal one another.
5. The whole is greater than the part.

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- Not necessarily true for
- Other geometries which are equally (perhaps more) "real"
- Other mathematical systems

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- Not necessarily true for
- Other geometries which are equally (perhaps more) "real"
- The fifth (parallel) postulate does not hold for geometry on spherical surfaces.
- Other mathematical systems

Axioms

Example: Euclid's axioms for plane geometry (Elements, Book I)

- Reasonable assumptions to make about geometric objects on an ideal "flat" plane
- Not necessarily true for
- Other geometries which are equally (perhaps more) "real"
- The fifth (parallel) postulate does not hold for geometry on spherical surfaces.
- Other mathematical systems
- The fifth common notion does not hold for infinite sets.
- If we take "greater" to mean "contains more elements".

Axioms

What will our axioms be?

- For homework exercises, for instance?

Axioms

What will our axioms be?

- For homework exercises, for instance?
- For exercises (in this class and most others)
- We assume commonly known stuff
- We do not argue from first principles

Axioms

What will our axioms be?

- For homework exercises, for instance?
- For exercises (in this class and most others)
- We assume commonly known stuff
- We do not argue from first principles
- This will make life boring to the extreme

Axioms

What will our axioms be?

- For homework exercises, for instance?
- For exercises (in this class and most others)
- We assume commonly known stuff
- We do not argue from first principles
- This will make life boring to the extreme
- Exception: When learning a new sub-field of mathematics
- E.g: In a first course on Topology or Group Theory
- You will argue many things starting from the respective axioms
- This is to get practice thinking in the new way

Axioms

What will our axioms be?

- For homework exercises, for instance?
- For exercises (in this class and most others)
- We assume commonly known stuff
- We do not argue from first principles
- This will make life boring to the extreme
- Exception: When learning a new sub-field of mathematics
- E.g: In a first course on Topology or Group Theory
- You will argue many things starting from the respective axioms
- This is to get practice thinking in the new way
- Rarely done in a second course or later

Axioms

What will our axioms be?

- For homework exercises
- In this course, and usually in others
- You are allowed to assume commonly known stuff

Axioms

What will our axioms be?

- For homework exercises
- In this course, and usually in others
- You are allowed to assume commonly known stuff
- Don't assume the solution itself!

Axioms

What will our axioms be?

- For homework exercises
- In this course, and usually in others
- You are allowed to assume commonly known stuff
- Don't assume the solution itself!
- ... or something very close to it
- That is cheating!!

Axioms

What will our axioms be?

- For homework exercises
- In this course, and usually in others
- You are allowed to assume commonly known stuff
- Don't assume the solution itself!
- ... or something very close to it
- That is cheating!!
- When in doubt, explicitly declare your assumptions

Axioms

What will our axioms be?

- For homework exercises
- In this course, and usually in others
- You are allowed to assume commonly known stuff
- Don't assume the solution itself!
- ... or something very close to it
- That is cheating!!
- When in doubt, explicitly declare your assumptions
- Check if the question mentions "axioms" or some such

Logical deductions

- Ways of combining axioms and true propositions
- To form new true propositions

Logical deductions

- Ways of combining axioms and true propositions
- To form new true propositions
- Also called Rules of Inference

Logical deductions

- Ways of combining axioms and true propositions
- To form new true propositions
- Also called Rules of Inference
- There are many such rules
- Some of these have fancy Latin names
- Most of them are just "common sense"

Some special kinds of propositions

Tautology

Some special kinds of propositions

Tautology

- A compound proposition

Some special kinds of propositions

Tautology

- A compound proposition
- True regardless of the truth values of its component simple propositions

Some special kinds of propositions

Tautology

- A compound proposition
- True regardless of the truth values of its component simple propositions
- Examples?

Some special kinds of propositions

Tautology

- A compound proposition
- True regardless of the truth values of its component simple propositions
- Examples?
- The truth of a tautology comes
- From the principles of propositional logic
- Not from any "outside" information

Some special kinds of propositions

Contradiction

Some special kinds of propositions

Contradiction

- A compound proposition

Some special kinds of propositions

Contradiction

- A compound proposition
- False regardless of the truth values of its component simple propositions

Some special kinds of propositions

Contradiction

- A compound proposition
- False regardless of the truth values of its component simple propositions
- Examples?

Some special kinds of propositions

Contradiction

- A compound proposition
- False regardless of the truth values of its component simple propositions
- Examples?
- The falsity of a tautology comes
- From the principles of propositional logic
- Not from any "outside" information

Some special kinds of propositions

Contingent proposition

- A proposition which is neither a tautology nor a contradiction

Some special kinds of propositions

Contingent proposition

- A proposition which is neither a tautology nor a contradiction
- Examples?

Some special kinds of propositions

Contingent proposition

- A proposition which is neither a tautology nor a contradiction
- Examples?
- Not very special, really ...

Rules of replacement

- A rule used to transform some part of a logical expression
- Replace some part by an equivalent part

Rules of replacement

- A rule used to transform some part of a logical expression
- Replace some part by an equivalent part
- Many rules have names
- We will see a few
- Many of these are "common sense"

Rules of replacement

Double negation

- Two rules

Rules of replacement

Double negation

- Two rules
- Can replace
- A anywhere with ($\neg \neg \mathrm{A})$
- ($\neg \neg \mathrm{A})$ anywhere with A

Rules of replacement

Double negation

- Two rules
- Can replace
- A anywhere with ($\neg \neg \mathrm{A})$
- ($\neg \neg \mathrm{A})$ anywhere with A
- Why are these OK?

Rules of replacement

Commutativity

- Four rules, two each for AND and OR

Rules of replacement

Commutativity

- Four rules, two each for AND and OR
- Can replace
- $A \wedge B$ anywhere with $B \wedge A$
- And conversely
- A $\vee \mathrm{B}$ anywhere with $\mathrm{B} \vee \mathrm{A}$
- And conversely

Rules of replacement

Commutativity

- Four rules, two each for AND and OR
- Can replace
- $A \wedge B$ anywhere with $B \wedge A$
- And conversely
- A $\vee \mathrm{B}$ anywhere with $\mathrm{B} \vee \mathrm{A}$
- And conversely
- Why are these OK?

Rules of replacement

Associativity

- Four rules, two each for AND and OR

Rules of replacement

Associativity

- Four rules, two each for AND and OR
- Can replace
- $(\mathrm{A} \wedge \mathrm{B}) \wedge \mathrm{C}$ anywhere with $\mathrm{A} \wedge(\mathrm{B} \wedge \mathrm{C})$
- And conversely
- $(\mathrm{A} \vee \mathrm{B}) \vee \mathrm{C}$ anywhere with $\mathrm{A} \vee(\mathrm{B} \vee \mathrm{C})$
- And conversely

Rules of replacement

Associativity

- Four rules, two each for AND and OR
- Can replace
- $(\mathrm{A} \wedge \mathrm{B}) \wedge \mathrm{C}$ anywhere with $\mathrm{A} \wedge(\mathrm{B} \wedge \mathrm{C})$
- And conversely
- $(\mathrm{A} \vee \mathrm{B}) \vee \mathrm{C}$ anywhere with $\mathrm{A} \vee(\mathrm{B} \vee \mathrm{C})$
- And conversely
- Why are these OK?

Rules of replacement

De Morgan's laws

- Four rules, two each for AND and OR

Rules of replacement

De Morgan's laws

- Four rules, two each for AND and OR
- Can replace
- $\neg(\mathrm{A} \wedge \mathrm{B})$ anywhere with $\neg \mathrm{A} \vee \neg \mathrm{B}$
- And conversely
- $\neg(\mathrm{A} \vee \mathrm{B})$ anywhere with $\neg \mathrm{A} \wedge \neg \mathrm{B}$
- And conversely

Rules of replacement

De Morgan's laws

- Four rules, two each for AND and OR
- Can replace
- $\neg(\mathrm{A} \wedge \mathrm{B})$ anywhere with $\neg \mathrm{A} \vee \neg \mathrm{B}$
- And conversely
- $\neg(\mathrm{A} \vee \mathrm{B})$ anywhere with $\neg \mathrm{A} \wedge \neg \mathrm{B}$
- And conversely
- Why are these OK?

Rules of Inference

- Takes one or more "premises" as 'input'
- Each premise is a proposition

Rules of Inference

- Takes one or more "premises" as 'input'
- Each premise is a proposition
- 'Returns' one or more propositions
- These are called the "conclusion"

Rules of Inference

- Takes one or more "premises" as 'input'
- Each premise is a proposition
- 'Returns' one or more propositions
- These are called the "conclusion"
- A rule of inference is valid if:
- The premises are all true \Longrightarrow the conclusion is true

Rules of Inference

- Takes one or more "premises" as 'input'
- Each premise is a proposition
- 'Returns' one or more propositions
- These are called the "conclusion"
- A rule of inference is valid if:
- The premises are all true \Longrightarrow the conclusion is true
- Unlike a rule of replacement
- Rules of inference acts on whole propositions
- Not on their parts

Rules of Inference

- Takes one or more "premises" as 'input'
- Each premise is a proposition
- 'Returns' one or more propositions
- These are called the "conclusion"
- A rule of inference is valid if:
- The premises are all true \Longrightarrow the conclusion is true
- Unlike a rule of replacement
- Rules of inference acts on whole propositions
- Not on their parts
- Used to infer new propositions from old

Rule of Inference

Disjunctive Syllogism

Rule of Inference

Disjunctive Syllogism

- "If everything above the bar is true, then the thing below the bar is also true."
- Above the bar are the premises, below the bar the conclusion

Rule of Inference

Disjunctive Syllogism

- If at least one of $\{P, Q\}$ is true, and P is not true, then Q is true.

Rule of Inference

Disjunctive Syllogism

$$
\frac{\mathrm{P} \vee \mathrm{Q}, \neg \mathrm{P}}{\mathrm{Q}}
$$

- If at least one of $\{P, Q\}$ is true, and P is not true, then Q is true.
- Example:
- I drank coffee today, or I drank tea today. ($\mathrm{P} \vee \mathrm{Q}$)
- I did not drink coffee today. $(\neg \mathrm{P})$
- So: I drank tea today. (Q)

Rule of Inference

Disjunctive Syllogism

- Seems legit?

Rule of Inference

Disjunctive Syllogism

- Seems legit?
- What would be a proof for this?

Rule of Inference

Disjunctive Syllogism

- Seems legit?
- What would be a proof for this?
- One way: the truth table of $\mathrm{P} \vee \mathrm{Q}$

Rule of Inference

Modus Ponens

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- If P is true and $(P \Longrightarrow Q)$ is true, then Q is true.

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- If P is true and $(P \Longrightarrow Q)$ is true, then Q is true.
- Example:
- If it is Monday and it is not a holiday, then we have class. ($\mathrm{P} \Longrightarrow \mathrm{Q}$)

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- If P is true and $(P \Longrightarrow Q)$ is true, then Q is true.
- Example:
- If it is Monday and it is not a holiday, then we have class. $(P \Longrightarrow Q)$
- It is Monday, and it is not a holiday. (P)
- So: We have class. (Q)

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- Seems legit?

Rule of Inference

Modus Ponens

- Seems legit?
- What would be a proof for this?

Rule of Inference

Modus Ponens

- Seems legit?
- What would be a proof for this?
- One way: the truth table of

Rule of Inference

Modus Ponens

- Seems legit?
- What would be a proof for this?
- One way: the truth table of $\mathrm{P} \Longrightarrow \mathrm{Q}$

Rule of Inference

Modus Ponens

- Another way: A "formal" proof

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- Another way: A "formal" proof
- Start with the premises

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- Another way: A "formal" proof
- Start with the premises
- Use the various rules we know

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- Another way: A "formal" proof
- Start with the premises
- Use the various rules we know
- End up with the conclusion

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

- Another way: A "formal" proof
- Start with the premises
- Use the various rules we know
- End up with the conclusion
- Done!

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	
2	P	
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \neg \mathrm{P}$	
5	Q	

${ }^{a}$ Stolen from the Wikipedia entry on this rule.

Rule of Inference

Modus Ponens

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	P	
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \neg \mathrm{P}$	
5	Q	

${ }^{a}$ Stolen from the Wikipedia entry on this rule.

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	P	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \neg \mathrm{P}$	
5	Q	

${ }^{a}$ Stolen from the Wikipedia entry on this rule.

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	P	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	Homework 1
4	$\neg \neg \mathrm{P}$	
5	Q	

${ }^{a}$ Stolen from the Wikipedia entry on this rule.

Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	P	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	Homework 1
4	$\neg \neg \mathrm{P}$	Double Negation
5	Q	

[^0]
Rule of Inference

Modus Ponens

$$
\frac{\mathrm{P}, \mathrm{P} \Longrightarrow \mathrm{Q}}{\mathrm{Q}}
$$

Table: A formal proof of Modus Ponens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	P	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	Homework 1
4	$\neg \neg \mathrm{P}$	Double Negation
5	Q	Disjunctive Syllogism

[^1]
Rule of Inference

Modus Tollens

Rule of Inference

Modus Tollens

- If $\mathrm{P} \Longrightarrow \mathrm{Q}$ is true, and Q is false, then P is false.

Rule of Inference

Modus Tollens

$$
\frac{\mathrm{P} \Longrightarrow \mathrm{Q}, \neg \mathrm{Q}}{\neg \mathrm{P}}
$$

- If $\mathrm{P} \Longrightarrow \mathrm{Q}$ is true, and Q is false, then P is false.
- Example:
- If I am ill then I don't come to class.
($\mathrm{P} \Longrightarrow \mathrm{Q}$)
- I come to class. $(\neg \mathrm{Q})$
- So: I am not ill. ($\neg \mathrm{P})$

Rule of Inference

Modus Tollens

- Seems legit?

Rule of Inference

Modus Tollens

- Seems legit?
- What would be a proof for this?

Rule of Inference

Modus Tollens

- Seems legit?
- What would be a proof for this?
- One way: the truth table of

Rule of Inference

Modus Tollens

- Seems legit?
- What would be a proof for this?
- One way: the truth table of $\mathrm{P} \Longrightarrow \mathrm{Q}$

Rule of Inference

Modus Tollens

Table: A formal proof of Modus Tollens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	
2	$\neg \mathrm{Q}$	
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \mathrm{P}$	

[^2]
Rule of Inference

Modus Tollens

Table: A formal proof of Modus Tollens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	$\neg \mathrm{Q}$	
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \mathrm{P}$	

[^3]
Rule of Inference

Modus Tollens

Table: A formal proof of Modus Tollens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	$\neg \mathrm{Q}$	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	
4	$\neg \mathrm{P}$	

[^4]
Rule of Inference

Modus Tollens

Table: A formal proof of Modus Tollens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	$\neg \mathrm{Q}$	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	Homework 1
4	$\neg \mathrm{P}$	

[^5]
Rule of Inference

Modus Tollens

Table: A formal proof of Modus Tollens ${ }^{a}$

	Proposition	Derivation
1	$\mathrm{P} \Longrightarrow \mathrm{Q}$	Given
2	$\neg \mathrm{Q}$	Given
3	$\neg \mathrm{P} \vee \mathrm{Q}$	Homework 1
4	$\neg \mathrm{P}$	Disjunctive Syllogism

[^6]
Thank You!

[^0]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^1]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^2]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^3]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^4]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^5]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

[^6]: ${ }^{a}$ Stolen from the Wikipedia entry on this rule.

