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Recap

I Axioms
I Why we need them
I As simple as possible
I Examples: Number theory, Geometry

I Some names
I Tautology, Contradiction, Contingency

I Logical deductions
I Rules of replacement

I Based on equivalences
I Used to replace parts of propositions
I Examples: Double Negation, Commutativity, Associativity, De Morgan’s

Laws
I Rules of inference

I Based on implications
I Used to replace propositions wholesale
I Examples: Disjunctive Syllogism, Modus Ponens, Modus Tollens
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Questions?



Proof Techniques
Examples

I ∀a ∈ N 2 | a =⇒ 2 | a2

I True or not?
I Why?

I ∀a ∈ N 2 - a =⇒ 2 - a2

I True or not?
I Why?

I ∀a, b ∈ N (2 - a ∧ 2 - b) =⇒ 2 | (a + b)
I True or not?
I Why?
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Proof Techniques
Direct Proof

I All proofs we saw till now
I Structure matches definition of “proof”

I Combine axioms and previous theorems
I In a “linear” fashion

I Many proofs are of this form, but . . .
I . . . there are proofs with other “structures” as well
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Proof Techniques
Examples

I ∀a ∈ Z 5 - a2 =⇒ 5 - a
I True or not?
I Why?

I ∀a ∈ Z 2 | a2 =⇒ 2 | a
I True or not?
I Why?
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Proof by Contrapositive

I Based on the following theorem
I (P =⇒ Q) ⇐⇒ (¬Q =⇒ ¬P)

I So to prove P =⇒ Q, we instead prove ¬Q =⇒ ¬P
I From the above theorem, this is enough

I ¬Q =⇒ ¬P is the contrapositive of P =⇒ Q
I Also: P =⇒ Q is the contrapositive of ¬Q =⇒ ¬P

I Very useful!
I In many cases, the contrapositive is much easier to prove
I Like in the following examples . . .
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Proof by Contrapositive
More examples

I ∀a ∈ Z 2 | (a2 − 4a + 7) =⇒ 2 - a
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Proof by Contrapositive
More examples

I ∀a ∈ N (2a − 1) is prime =⇒ a is prime
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Contrapositive and Converse

I Two similar-sounding words, with distinctly different meanings
I ¬Q =⇒ ¬P is the contrapositive of P =⇒ Q

I Also: P =⇒ Q is the contrapositive of ¬Q =⇒ ¬P
I An implication and its contrapositive are equivalent

I Per above theorem
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Contrapositive and Converse

I Two similar-sounding words, with distinctly different meanings
I ¬Q =⇒ ¬P is the contrapositive of P =⇒ Q
I An implication and its contrapositive are equivalent

I The converse of P =⇒ Q is Q =⇒ P
I Also: P =⇒ Q is the converse of Q =⇒ P

I An implication and its converse are not equivalent
I One may be true and the other false

I At the same time
I An implication does not always imply its converse
I Examples?
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Proof Techniques
Examples

I ∀a, b ∈ Z a2 − 4b 6= 6
I True or not?
I Proof?

I What are prime numbers?
I How many primes numbers are there?

I Let p1, p2, . . . , pn be all the primes
I Consider a = (Πn

i=1pi) + 1
I (Shorthand for a = p1 · p2 · · · · · pn + 1)

I What kind of numbers inhabit the number line?
I Integers
I Fractions (Rational numbers)
I What else?

I Are there numbers which cannot be expressed as ratios?
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Proof Techniques
Proof by Contradiction

I Based on the following inference rule

I To prove P, prove the following: “¬P implies a falsehood”
I Extremely useful!
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¬P =⇒ false
P



Proof Techniques
Examples

I ∀n ∈ N 4 | (5n − 1)
I True or not?
I Proof?

I The sum of the first n positive integers is n(n+1)
2

I Proof?
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Proof Techniques
Proof by Induction

I The sum of the first n positive integers is n(n+1)
2

I Proof: By induction on n.
1. Express the statement as a predicate:

∀n ∈ N+ P(n) ,
n∑

i=1

i =
n(n + 1)

2
.

2. Basis step: Show that P(1) is true.
3. Induction step: Prove the following implication:

∀n ∈ N+ P(n) =⇒ P(n + 1)
4. Done!
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Proof by Induction
More examples

I The sum of the first n odd positive integers is n2

I Proof by induction?

I ∀n ∈ N 2 | (n2 + n)
I Proof by induction?
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Thank You!
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