Basic Mathematical Techniques for Computer Scientists
 (Some) Proof Techniques

November 5, 2012

Recap

- Axioms

Questions?

- Why we need them
- As simple as possible
- Examples: Number theory, Geometry
- Some names
- Tautology, Contradiction, Contingency
- Logical deductions
- Rules of replacement
- Based on equivalences
- Used to replace parts of propositions
- Examples: Double Negation, Commutativity, Associativity, De Morgan's Laws
- Rules of inference
- Based on implications
- Used to replace propositions wholesale
- Examples: Disjunctive Syllogism, Modus Ponens, Modus Tollens

Proof Techniques

Examples

- $\forall a \in \mathbb{N} 2|a \Longrightarrow 2| a^{2}$
- True or not?
- Why?
- $\forall a \in \mathbb{N} 2 \nmid a \Longrightarrow 2 \nmid a^{2}$
- True or not?
- Why?
- $\forall a, b \in \mathbb{N}(2 \nmid a \wedge 2 \nmid b) \Longrightarrow 2 \mid(a+b)$
- True or not?
- Why?

Proof Techniques

Direct Proof

- All proofs we saw till now
- Structure matches definition of "proof"
- Combine axioms and previous theorems
- In a "linear" fashion
- Many proofs are of this form, but...
- ...there are proofs with other "structures" as well

Proof Techniques

Examples

- $\forall a \in \mathbb{Z} 5 \nmid a^{2} \Longrightarrow 5 \nmid a$
- True or not?
- Why?
- $\forall a \in \mathbb{Z} 2\left|a^{2} \Longrightarrow 2\right| a$
- True or not?
- Why?

Proof by Contrapositive

- Based on the following theorem
- $(\mathrm{P} \Longrightarrow \mathrm{Q}) \Longleftrightarrow(\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P})$
- So to prove $\mathrm{P} \Longrightarrow \mathrm{Q}$, we instead prove $\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$
- From the above theorem, this is enough
$-\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$ is the contrapositive of $\mathrm{P} \Longrightarrow \mathrm{Q}$
- Also: $\mathrm{P} \Longrightarrow \mathrm{Q}$ is the contrapositive of $\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$
- Very useful!
- In many cases, the contrapositive is much easier to prove
- Like in the following examples...

Proof by Contrapositive

More examples

- $\forall a \in \mathbb{Z} 2 \mid\left(a^{2}-4 a+7\right) \Longrightarrow 2 \nmid a$

Proof by Contrapositive

More examples

- $\forall a \in \mathbb{N}\left(2^{a}-1\right)$ is prime $\Longrightarrow a$ is prime

Contrapositive and Converse

- Two similar-sounding words, with distinctly different meanings
- $\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$ is the contrapositive of $\mathrm{P} \Longrightarrow \mathrm{Q}$
- Also: $\mathrm{P} \Longrightarrow \mathrm{Q}$ is the contrapositive of $\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$
- An implication and its contrapositive are equivalent
- Per above theorem

Contrapositive and Converse

- Two similar-sounding words, with distinctly different meanings
$\checkmark \neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$ is the contrapositive of $\mathrm{P} \Longrightarrow \mathrm{Q}$
- An implication and its contrapositive are equivalent
- The converse of $\mathrm{P} \Longrightarrow \mathrm{Q}$ is $\mathrm{Q} \Longrightarrow \mathrm{P}$
- Also: $\mathrm{P} \Longrightarrow \mathrm{Q}$ is the converse of $\mathrm{Q} \Longrightarrow \mathrm{P}$
- An implication and its converse are not equivalent
- One may be true and the other false
- At the same time
- An implication does not always imply its converse
- Examples?

Proof Techniques

Examples

- $\forall a, b \in \mathbb{Z} a^{2}-4 b \neq 6$
- True or not?
- Proof?
- What are prime numbers?
- How many primes numbers are there?
- Let $p_{1}, p_{2}, \ldots, p_{n}$ be all the primes
- Consider $a=\left(\prod_{i=1}^{n} p_{i}\right)+1$
- (Shorthand for $\left.a=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{n}+1\right)$
- What kind of numbers inhabit the number line?
- Integers
- Fractions (Rational numbers)
- What else?
- Are there numbers which cannot be expressed as ratios?

Proof Techniques

Proof by Contradiction

- Based on the following inference rule

$$
\frac{\neg \mathrm{P} \Longrightarrow \text { false }}{\mathrm{P}}
$$

- To prove P, prove the following: " \neg P implies a falsehood"
- Extremely useful!

Proof Techniques

Examples

- $\forall n \in \mathbb{N} 4 \mid\left(5^{n}-1\right)$
- True or not?
- Proof?
- The sum of the first n positive integers is $\frac{n(n+1)}{2}$
- Proof?

Proof Techniques

Proof by Induction

- The sum of the first n positive integers is $\frac{n(n+1)}{2}$
- Proof: By induction on n.

1. Express the statement as a predicate:

$$
\forall n \in \mathbb{N}^{+} P(n) \triangleq \sum_{i=1}^{n} i=\frac{n(n+1)}{2} .
$$

2. Basis step: Show that $P(1)$ is true.
3. Induction step: Prove the following implication:

$$
\forall n \in \mathbb{N}^{+} P(n) \Longrightarrow P(n+1)
$$

4. Done!

Proof by Induction

More examples

- The sum of the first n odd positive integers is n^{2}
- Proof by induction?
- $\forall n \in \mathbb{N} 2 \mid\left(n^{2}+n\right)$
- Proof by induction?

Thank You!

