Basic Mathematical Techniques for Computer Scientists (Some) Proof Techniques

November 5, 2012

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

November 5, 2012

Recap

Axioms

- Why we need them
- As simple as possible
- Examples: Number theory, Geometry
- Some names
 - Tautology, Contradiction, Contingency
- Logical deductions
 - Rules of replacement
 - Based on equivalences
 - Used to replace parts of propositions
 - Examples: Double Negation, Commutativity, Associativity, De Morgan's Laws
 - Rules of inference
 - Based on implications
 - Used to replace propositions wholesale
 - ► Examples: Disjunctive Syllogism, Modus Ponens, Modus Tollens

Questions?

Examples

► Why?

Direct Proof

- All proofs we saw till now
- Structure matches definition of "proof"
 - Combine axioms and previous theorems
 - In a "linear" fashion
- Many proofs are of this form, but ...
- ... there are proofs with other "structures" as well

Examples

Proof by Contrapositive

Based on the following theorem

$$\blacktriangleright (P \implies Q) \iff (\neg Q \implies \neg P)$$

- So to prove $P \implies Q$, we *instead* prove $\neg Q \implies \neg P$
 - From the above theorem, this is enough
- ▶ $\neg Q \implies \neg P$ is the *contrapositive* of $P \implies Q$
 - Also: $P \implies Q$ is the *contrapositive* of $\neg Q \implies \neg P$
- Very useful!
 - ▶ In many cases, the contrapositive is *much* easier to prove
 - Like in the following examples . . .

Proof by Contrapositive

More examples

$$\blacktriangleright \forall a \in \mathbb{Z} \ 2 \mid (a^2 - 4a + 7) \implies 2 \nmid a$$

Proof by Contrapositive

More examples

▶
$$\forall a \in \mathbb{N} \ (2^a - 1)$$
 is prime $\implies a$ is prime

Contrapositive and Converse

► Two similar-sounding words, with distinctly different meanings

•
$$\neg Q \implies \neg P$$
 is the contrapositive of $P \implies Q$

- Also: $P \implies Q$ is the *contrapositive* of $\neg Q \implies \neg P$
- > An implication and its contrapositive are *equivalent*
 - Per above theorem

Contrapositive and Converse

- ► Two similar-sounding words, with distinctly different meanings
- $\neg Q \implies \neg P$ is the contrapositive of $P \implies Q$
- An implication and its contrapositive are equivalent
- $\blacktriangleright \ \ \text{The converse of } P \implies Q \text{ is } Q \implies P$
 - Also: $P \implies Q$ is the converse of $Q \implies P$
- An implication and its converse are *not* equivalent
 - One may be **true** and the other **false**
 - At the same time
 - An implication does not always imply its converse
 - Examples?

Examples

- ▶ $\forall a, b \in \mathbb{Z} \ a^2 4b \neq 6$
 - True or not?
 - Proof?
- What are prime numbers?
- How many primes numbers are there?
 - Let p_1, p_2, \ldots, p_n be all the primes
 - Consider $a = (\prod_{i=1}^{n} p_i) + 1$
 - (Shorthand for $a = p_1 \cdot p_2 \cdot \cdots \cdot p_n + 1$)
- What kind of numbers inhabit the number line?
 - Integers
 - Fractions (Rational numbers)
 - What else?
 - Are there numbers which cannot be expressed as ratios?

Proof by Contradiction

Based on the following *inference rule*

$$\frac{\neg P \implies false}{P}$$

- ► To prove P, prove the following: "¬P implies a falsehood"
- Extremely useful!

Examples

- ► $\forall n \in \mathbb{N} \ 4 \mid (5^n 1)$
 - True or not?
 - Proof?
- The sum of the first *n* positive integers is $\frac{n(n+1)}{2}$
- Proof?

Proof by Induction

- The sum of the first *n* positive integers is $\frac{n(n+1)}{2}$
- ▶ Proof: By *induction* on *n*.
 - 1. Express the statement as a predicate:

$$\forall n \in \mathbb{N}^+ \ P(n) \triangleq \sum_{i=1}^n i = \frac{n(n+1)}{2}$$

- 2. *Basis step:* Show that P(1) is true.
- 3. *Induction step:* Prove the following *implication:* $\forall n \in \mathbb{N}^+ \ P(n) \implies P(n+1)$
- 4. Done!

Proof by Induction

More examples

- The sum of the first *n* odd positive integers is n^2
- Proof by induction?
- ▶ $\forall n \in \mathbb{N} \ 2 \mid (n^2 + n)$
- Proof by induction?

Thank You!