Basic Mathematical Techniques for Computer Scientists

Sets and Relations

November 12, 2012

Recap

Questions?

- Some proof techniques
- Direct proof
- Argue directly from axioms and known theorems
- Proof by contrapositive
- To prove $\mathrm{P} \Longrightarrow \mathrm{Q} \ldots$
- ... prove $\neg \mathrm{Q} \Longrightarrow \neg \mathrm{P}$ instead.
- Contrapositive is not the same as Converse
- Proof by contradiction
- To prove P...
- ... assume $\neg \mathrm{P}$ and arrive at a falsity.
- Proof by induction
- To prove $\forall n \in \mathbb{N} \mathrm{P}(n)$:

1. Prove $\mathrm{P}(0)$
2. Prove $\forall n \in \mathbb{N}(\mathrm{P}(n) \Longrightarrow \mathrm{P}(n+1))$

Sets

- Set: A well-defined collection of objects
- Things in the collection are elements of the set
- $x \in A$: "Element x is in set A "
- Order does not matter
- Elements have multiplicity 1
- Different ways of expressing sets?
- When are two sets said to be equal?
- When are two sets not equal?
- The cardinality of a set A
- Denoted $|\mathrm{A}|$
- The empty set, \emptyset

Sets

- Notation for intervals on the real line:
- Closed interval $[a, b]=\{x \in \mathbb{R} \mid a \leq x \leq b\}$
- Open interval $(a, b)=\{x \in \mathbb{R} \mid a<x<b\}$
- Half open interval $(a, b]=\{x \in \mathbb{R} \mid a<x \leq b\}$
- Half open interval $[a, b)=\{x \in \mathbb{R} \mid a \leq x<b\}\}$

Sets

- An ordered pair is a list (x, y)
- Order matters: $(x, y) \neq(y, x)$ unless $\ldots x=y$
- The Cartesian product of two sets A, B
- $\mathrm{A} \times \mathrm{B}=\{(a, b) \mid a \in \mathrm{~A}, b \in \mathrm{~B}\}$
- Example: The set of all points in the plane
- Cartesian products of three or more sets
- Cartesian powers of sets
- $\mathrm{A}^{n}=\mathrm{A} \times \mathrm{A} \times \cdots \times \mathrm{A}=\left\{\left(a_{1}, a_{2}, \ldots, a_{n}\right) \mid a_{1}, a_{2} \ldots, a_{n} \in \mathrm{~A}\right\}$
- Some common examples:
- \mathbb{R}^{2}
- \mathbb{R}^{3}
- \mathbb{Z}^{2}

Sets

- Set A is a subset of set B if
- Every element of A is also an element of B
- Written A \subseteq B
- The negation is written $\mathrm{A} \nsubseteq \mathrm{B}$
- When is this true?
- For any set $\mathrm{A}, \emptyset \subseteq \mathrm{A}$

Sets

- The union of two sets A and B is $\mathrm{A} \cup \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \vee(x \in \mathrm{~B})\}$
- The intersection of A and B is $\mathrm{A} \cap \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \in \mathrm{~B})\}$
- The set difference of A and B is $\mathrm{A} \backslash \mathrm{B}=\{x \mid(x \in \mathrm{~A}) \wedge(x \notin \mathrm{~B})\}$
- $[1,10] \cup[7,12]=[1,12]$
- $[1,10] \cap[7,12]=[7,10]$
- $[1,10] \backslash[7,12]=[1,7)$
- $[1,10] \backslash[5,7]=[1,5) \cup(7,10]$

Sets

- Universal set
- A set which contains all "currently interesting" sets as its subsets
- Is not explicitly stated in many cases
- If not explicitly given, we implicitly use a natural candidate
- E.g: When considering primes, usually the universal set is \mathbb{N}
- And not-say- \mathbb{R}, unless explicitly stated
- Denoted U unless a named universal set is specified
- The complement of a set
- $\overline{\mathrm{A}}=\mathrm{U} \backslash \mathrm{A}$

Sets

- $\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \cdots \cup \mathrm{~A}_{n}=\left\{x \mid x \in \mathrm{~A}_{i}\right.$ for at least one $\left.1 \leq i \leq n\right\}$
- $\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \cdots \cap \mathrm{~A}_{n}=\left\{x \mid x \in \mathrm{~A}_{i}\right.$ for every $\left.1 \leq i \leq n\right\}$
- Notation:

$$
\begin{aligned}
& \bigcup_{i \in[n]} \mathrm{A}_{i}=\bigcup_{i=1}^{n} \mathrm{~A}_{i}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \cdots \cup \mathrm{~A}_{n} \\
& \bigcap_{i \in[n]} \mathrm{A}_{i}=\bigcap_{i=1}^{n} \mathrm{~A}_{i}=\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \cdots \cap \mathrm{~A}_{n}
\end{aligned}
$$

Sets

When the list of sets is infinite:

$$
\begin{aligned}
& \bigcup_{i \in \mathbb{N}} \mathrm{~A}_{i}=\bigcup_{i=1}^{\infty} \mathrm{A}_{i}=\mathrm{A}_{1} \cup \mathrm{~A}_{2} \cup \cdots=\left\{x \mid x \in \mathrm{~A}_{i} \text { for at least one } 1 \leq i\right\} \\
& \bigcap_{i \in \mathbb{N}} \mathrm{~A}_{i}=\bigcap_{i=1}^{\infty} \mathrm{A}_{i}=\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \cdots=\left\{x \mid x \in \mathrm{~A}_{i} \text { for every } 1 \leq i\right\}
\end{aligned}
$$

Sets

- More generally, the set of indices can be any set
- Not just $\{1,2, \ldots, n\}$ or \mathbb{N}
- Let I be a set. Once we (somehow) associate a set A_{α} for each $\alpha \in \mathrm{I}$,

$$
\begin{aligned}
& \bigcup_{\alpha \in \mathrm{I}} \mathrm{~A}_{\alpha}=\left\{x \mid x \in \mathrm{~A}_{\alpha} \text { for at least one } \alpha \in \mathrm{I}\right\} \\
& \bigcap_{\alpha \in \mathrm{I}} \mathrm{~A}_{\alpha}=\left\{x \mid x \in \mathrm{~A}_{\alpha} \text { for every } \alpha \in \mathrm{I}\right\}
\end{aligned}
$$

- Indexed collections of sets
- I is the index set

Sets

- Why are indexed collections useful?
- Example: Stating the Principle of Inclusion and Exclusion

Theorem (Principle of Inclusion and Exclusion)
Let U be a universe and let $A_{1}, \ldots, A_{n} \subseteq U$. Then

$$
\left|\bigcap_{i \in[n]} A_{i}\right|=\sum_{X \subseteq[n]}(-1)^{|X|}\left|\bigcap_{i \in X} \bar{A}_{i}\right|,
$$

where

$$
\bigcap_{i \in \emptyset} \bar{A}_{i} \triangleq U .
$$

Relations

- Examples of mathematical relations?
- Formal way of definiting relations:
- A relation on a set A is a subset $\mathrm{R} \subseteq \mathrm{A} \times \mathrm{A}$
- $(a, b) \in \mathrm{R}$ is often written as $a \mathrm{R} b$
- $(a, b) \notin \mathrm{R}$ is often written as $a R b$
- An example:
- $\mathrm{A}=\{1,2,3,4\}$
- $\mathrm{R}=\{(2,1),(3,2),(3,1),(4,3),(4,2),(4,1)\} \subseteq \mathrm{A} \times \mathrm{A}$
- What is the relation R ?
- What would be the relation $\not \subset$?
- Every mathematical relation on A is a subset of $\mathrm{A} \times \mathrm{A}$
- Conversely, every subset of $\mathrm{A} \times \mathrm{A}$ is (by definition) a relation on A
- Such a subset may not have a name, though.
- What does the subset corresponding to the relation $=$ on \mathbb{R} look like?

Relations

Let R be a relation on a set A

- $x \mathrm{Ry}$ is a predicate
- Why?
- We can use logical operators on such relational expressions
- R is reflexive if $\forall x \in \mathrm{~A} x \mathrm{R} x$
- Example?
- Non-example?
- R is symmetric if $\forall x, y \in \mathrm{~A} x \mathrm{R} y \Longrightarrow y \mathrm{R} x$
- Example?
- Non-example?
- R is transitive if $\forall x, y, z \in \mathrm{~A}(x \mathrm{R} y \wedge y \mathrm{Rz}) \Longrightarrow x \mathrm{Rz}$
- Example?
- Non-example?

Relations

Let R be a relation on a set A

- R is an equivalence relation on A if
- R is reflexive, symmetric, and transitive.
- Examples?
- Non-examples?
- Equivalence relations are very special!
- Let R be an equivalence relation on set A , and let $a \in \mathrm{~A}$
- $\{x \in \mathrm{~A} \mid x \mathrm{R} a\}$ is the equivalence class containing a
- Denoted $[a]$. Thus $[a]=\{x \in \mathrm{~A} \mid x \mathrm{R} a\}$

Relations

Theorem
Let R be an equivalence relation on a set A, and let $a, b, \in A$. Then $[a]=[b] \Longleftrightarrow a R b$.

Relations

Definition (Partition)

A partition of a set A is a collection \mathcal{S} of subsets of the set A such that:

1. $\emptyset \notin \mathcal{S}$
2. $\bigcup_{X \in S} X=\mathrm{A}$
3. $\forall X, Y \in \mathcal{S}(X \neq Y \Longrightarrow X \cap Y=\emptyset)$

Theorem
Let R be an equivalence relation on a set A. Then the equivalence classes of R partition the set A.

Thank You!

