Basic Mathematical Techniques for Computer Scientists

Sets and Relations

November 12, 2012

Recap

Questions?

- Some proof techniques
- Direct proof
 - Argue directly from axioms and known theorems
- Proof by contrapositive
 - ▶ To prove $P \implies Q \dots$
 - ▶ ... prove $\neg Q \implies \neg P$ instead.
 - Contrapositive is **not** the same as Converse
- Proof by contradiction
 - ► To prove P ...
 - ▶ ... assume ¬P and arrive at a falsity.
- ▶ Proof by induction
 - ▶ To prove $\forall n \in \mathbb{N} \ P(n)$:
 - 1. Prove P(0)
 - 2. Prove $\forall n \in \mathbb{N} \ (P(n) \implies P(n+1))$

- ▶ Set: A *well-defined* collection of objects
 - ► Things in the collection are *elements* of the set
 - ▶ $x \in A$: "Element x is in set A"
 - Order does not matter
 - Elements have multiplicity 1
- Different ways of expressing sets?
- ▶ When are two sets said to be *equal*?
 - When are two sets not equal?
- ► The *cardinality* of a set A
 - ▶ Denoted |A|
- ► The empty set, ∅

- ▶ Notation for intervals on the real line:
 - ▶ *Closed* interval $[a,b] = \{x \in \mathbb{R} \mid a \le x \le b\}$
 - ▶ *Open* interval $(a, b) = \{x \in \mathbb{R} \mid a < x < b\}$
 - ▶ *Half open* interval $(a,b] = \{x \in \mathbb{R} \mid a < x \le b\}$
 - ▶ *Half open* interval $[a,b) = \{x \in \mathbb{R} \mid a \le x < b\}$ }

- ▶ An *ordered pair* is a list (x,y)
 - ► *Order* matters: $(x,y) \neq (y,x)$ unless ... x = y
- ▶ The Cartesian product of two sets A, B
 - $A \times B = \{(a,b) | a \in A, b \in B\}$
- ▶ Example: The set of all points in the plane
- Cartesian products of three or more sets
- ► Cartesian *powers* of sets

$$A^n = A \times A \times \cdots \times A = \{(a_1, a_2, \dots, a_n) | a_1, a_2 \dots, a_n \in A\}$$

- Some common examples:
 - $ightharpoonspice \mathbb{R}^2$
 - $ightharpoonup \mathbb{R}^3$
 - $ightharpoonup \mathbb{Z}^2$

- ▶ Set A is a *subset* of set B if
 - Every element of A is also an element of B
 - ▶ Written $A \subseteq B$
 - ► The negation is written A ⊈ B
 - ▶ When is this true?
 - ▶ For any set A, $\emptyset \subseteq A$

- ▶ The *union* of two sets A and B is $A \cup B = \{x | (x \in A) \lor (x \in B)\}$
- ▶ The *intersection* of A and B is $A \cap B = \{x | (x \in A) \land (x \in B)\}$
- ► The set difference of A and B is $A \setminus B = \{x | (x \in A) \land (x \notin B)\}$
 - ightharpoonup [1, 10] \cup [7, 12] = [1, 12]
 - $[1,10] \cap [7,12] = [7,10]$
 - ightharpoonup [1, 10] \ [7, 12] =[1, 7)
 - $\blacktriangleright \ [1,10] \setminus [5,7] = [1,5) \cup (7,10]$

- Universal set
 - ► A set which contains all "currently interesting" sets as its subsets
 - ▶ Is not explicitly stated in many cases
 - If not explicitly given, we implicitly use a natural candidate
 - ightharpoonup E.g: When considering primes, usually the universal set is $\mathbb N$
 - ► And not—say—ℝ, unless explicitly stated
 - Denoted U unless a named universal set is specified
- ▶ The complement of a set
 - $\blacktriangleright \ \bar{A} = U \setminus A$

- ▶ $A_1 \cup A_2 \cup \cdots \cup A_n = \{x \mid x \in A_i \text{ for at least one } 1 \le i \le n\}$
- $A_1 \cap A_2 \cap \cdots \cap A_n = \{x \mid x \in A_i \text{ for every } 1 \le i \le n\}$
- ► Notation:

$$\bigcup_{i\in[n]} A_i = \bigcup_{i=1}^n A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$

$$\bigcap_{i\in[n]} A_i = \bigcap_{i=1}^n A_i = A_1 \cap A_2 \cap \dots \cap A_n$$

When the list of sets is infinite:

$$\bigcup_{i\in\mathbb{N}} \mathsf{A}_i = \bigcup_{i=1}^{\infty} \mathsf{A}_i \quad = \mathsf{A}_1 \cup \mathsf{A}_2 \cup \dots = \{x \,|\, x \in \mathsf{A}_i \text{ for at least one } 1 \leq i\}$$
$$\bigcap_{i\in\mathbb{N}} \mathsf{A}_i = \bigcap_{i=1}^{\infty} \mathsf{A}_i \quad = \mathsf{A}_1 \cap \mathsf{A}_2 \cap \dots = \{x \,|\, x \in \mathsf{A}_i \text{ for every } 1 \leq i\}$$

- ▶ More generally, the set of indices can be *any* set
 - ▶ Not just $\{1, 2, ..., n\}$ or \mathbb{N}
- Let I be a set. Once we (somehow) associate a set A_{α} for each $\alpha \in I$,

$$\bigcup_{\alpha \in \mathcal{I}} \mathbf{A}_{\alpha} = \{ x \, | \, x \in \mathbf{A}_{\alpha} \text{ for at least one } \alpha \in \mathcal{I} \}$$
$$\bigcap_{\alpha \in \mathcal{I}} \mathbf{A}_{\alpha} = \{ x \, | \, x \in \mathbf{A}_{\alpha} \text{ for every } \alpha \in \mathcal{I} \}$$

- Indexed collections of sets
 - ▶ I is the index set

- Why are indexed collections useful?
- ► Example: Stating the Principle of Inclusion and Exclusion

Theorem (Principle of Inclusion and Exclusion)

Let *U* be a universe and let $A_1, \ldots, A_n \subseteq U$. Then

$$|\bigcap_{i\in[n]}A_i|=\sum_{X\subseteq[n]}(-1)^{|X|}|\bigcap_{i\in X}\bar{A_i}|,$$

where

$$\bigcap_{i\in\emptyset}\bar{A}_i\triangleq U.$$

- Examples of mathematical relations?
- Formal way of definiting relations:
 - ▶ A relation on a set A is a subset $R \subseteq A \times A$
 - $(a,b) \in R$ is often written as aRb
- An example:
 - $A = \{1, 2, 3, 4\}$
 - $\qquad \qquad R = \{(2,1), (3,2), (3,1), (4,3), (4,2), (4,1)\} \subseteq A \times A$
 - What is the relation R?
 - ▶ What would be the relation \(\mathbb{R} \)?
- Every mathematical relation on A is a subset of $A \times A$
 - ► Conversely, every subset of A × A is (by definition) a relation on A
 - Such a subset may not have a name, though.
- ▶ What does the subset corresponding to the relation = on \mathbb{R} look like?

Let R be a relation on a set A

- xRy is a predicate
 - ► Why?
 - We can use logical operators on such relational expressions
- ▶ R is reflexive if $\forall x \in A \ xRx$
 - Example?
 - Non-example?
- ▶ R is symmetric if $\forall x, y \in A \ xRy \implies yRx$
 - Example?
 - Non-example?
- ▶ R is transitive if $\forall x, y, z \in A \ (xRy \land yRz) \implies xRz$
 - Example?
 - Non-example?

Let R be a relation on a set A

- ▶ R is an equivalence relation on A if
 - ▶ R is reflexive, symmetric, and transitive.
 - Examples?
 - Non-examples?
 - Equivalence relations are very special!
- ▶ Let R be an equivalence relation on set A, and let $a \in A$
 - $\{x \in A \mid xRa\}$ is the equivalence class containing a
 - ▶ Denoted [a]. Thus $[a] = \{x \in A \mid xRa\}$

Theorem

Let R be an equivalence relation on a set A, and let $a, b \in A$. Then $[a] = [b] \iff aRb$.

Definition (Partition)

A partition of a set A is a collection S of subsets of the set A such that:

- 1. $\emptyset \notin \mathcal{S}$
- $2. \bigcup_{X \in \mathcal{S}} X = A$
- 3. $\forall X, Y \in \mathcal{S} \ (X \neq Y \implies X \cap Y = \emptyset)$

Theorem

Let R be an equivalence relation on a set A. Then the equivalence classes of R partition the set A.

Thank You!