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Recap

I Some proof techniques
I Direct proof

I Argue directly from axioms and known theorems
I Proof by contrapositive

I To prove P =⇒ Q . . .
I . . . prove ¬Q =⇒ ¬P instead.

I Contrapositive is not the same as Converse

I Proof by contradiction
I To prove P . . .
I . . . assume ¬P and arrive at a falsity.

I Proof by induction
I To prove ∀n ∈ N P(n):

1. Prove P(0)
2. Prove ∀n ∈ N (P(n) =⇒ P(n + 1))

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists November 12, 2012

Questions?



Sets

I Set: A well-defined collection of objects
I Things in the collection are elements of the set
I x ∈ A: “Element x is in set A”
I Order does not matter
I Elements have multiplicity 1

I Different ways of expressing sets?
I When are two sets said to be equal?

I When are two sets not equal?
I The cardinality of a set A

I Denoted |A|
I The empty set, ∅
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Sets

I Notation for intervals on the real line:
I Closed interval [a, b] = {x ∈ R | a ≤ x ≤ b}
I Open interval (a, b) = {x ∈ R | a < x < b}
I Half open interval (a, b] = {x ∈ R | a < x ≤ b}
I Half open interval [a, b) = {x ∈ R | a ≤ x < b}}

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists November 12, 2012



Sets

I An ordered pair is a list (x, y)
I Order matters: (x, y) 6= (y, x) unless . . . x = y

I The Cartesian product of two sets A,B
I A× B = {(a, b)| a ∈ A, b ∈ B}

I Example: The set of all points in the plane
I Cartesian products of three or more sets
I Cartesian powers of sets

I An = A× A× · · · × A = {(a1, a2, . . . , an)| a1, a2 . . . , an ∈ A}
I Some common examples:

I R2

I R3

I Z2
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Sets

I Set A is a subset of set B if
I Every element of A is also an element of B
I Written A ⊆ B
I The negation is written A * B

I When is this true?
I For any set A, ∅ ⊆ A
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Sets

I The union of two sets A and B is A ∪ B = {x| (x ∈ A) ∨ (x ∈ B)}
I The intersection of A and B is A ∩ B = {x| (x ∈ A) ∧ (x ∈ B)}
I The set difference of A and B is A \ B = {x| (x ∈ A) ∧ (x /∈ B)}

I [1, 10] ∪ [7, 12] =[1, 12]
I [1, 10] ∩ [7, 12] =[7, 10]
I [1, 10] \ [7, 12] =[1, 7)
I [1, 10] \ [5, 7] =[1, 5) ∪ (7, 10]
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Sets

I Universal set
I A set which contains all “currently interesting” sets as its subsets
I Is not explicitly stated in many cases
I If not explicitly given, we implicitly use a natural candidate

I E.g: When considering primes, usually the universal set is N
I And not—say—R, unless explicitly stated

I Denoted U unless a named universal set is specified
I The complement of a set

I Ā = U \ A
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Sets

I A1 ∪ A2 ∪ · · · ∪ An= {x | x ∈ Ai for at least one 1 ≤ i ≤ n}
I A1 ∩ A2 ∩ · · · ∩ An= {x | x ∈ Ai for every 1 ≤ i ≤ n}
I Notation: ⋃

i∈[n]

Ai =

n⋃
i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

⋂
i∈[n]

Ai =

n⋂
i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An
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Sets

When the list of sets is infinite:⋃
i∈N

Ai =

∞⋃
i=1

Ai = A1 ∪ A2 ∪ · · · = {x | x ∈ Ai for at least one 1 ≤ i}

⋂
i∈N

Ai =

∞⋂
i=1

Ai = A1 ∩ A2 ∩ · · · = {x | x ∈ Ai for every 1 ≤ i}
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Sets

I More generally, the set of indices can be any set
I Not just {1, 2, . . . , n} or N

I Let I be a set. Once we (somehow) associate a set Aα for each
α ∈ I,

⋃
α∈I

Aα = {x | x ∈ Aα for at least one α ∈ I}⋂
α∈I

Aα = {x | x ∈ Aα for every α ∈ I}

I Indexed collections of sets
I I is the index set
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Sets

I Why are indexed collections useful?
I Example: Stating the Principle of Inclusion and Exclusion

Theorem (Principle of Inclusion and Exclusion)
Let U be a universe and let A1, . . . ,An ⊆ U. Then

|
⋂

i∈[n]

Ai| =
∑

X⊆[n]

(−1)|X||
⋂
i∈X

Āi|,

where ⋂
i∈∅

Āi , U.
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Relations

I Examples of mathematical relations?
I Formal way of definiting relations:

I A relation on a set A is a subset R ⊆ A× A
I (a, b) ∈ R is often written as aRb
I (a, b) /∈ R is often written as a�Rb

I An example:
I A = {1, 2, 3, 4}
I R = {(2, 1), (3, 2), (3, 1), (4, 3), (4, 2), (4, 1)} ⊆ A× A
I What is the relation R?
I What would be the relation �R?

I Every mathematical relation on A is a subset of A× A
I Conversely, every subset of A× A is (by definition) a relation on A
I Such a subset may not have a name, though.

I What does the subset corresponding to the relation = on R look
like?
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Relations

Let R be a relation on a set A
I xRy is a predicate

I Why?
I We can use logical operators on such relational expressions

I R is reflexive if ∀x ∈ A xRx
I Example?
I Non-example?

I R is symmetric if ∀x, y ∈ A xRy =⇒ yRx
I Example?
I Non-example?

I R is transitive if ∀x, y, z ∈ A (xRy ∧ yRz) =⇒ xRz
I Example?
I Non-example?
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Relations

Let R be a relation on a set A
I R is an equivalence relation on A if

I R is reflexive, symmetric, and transitive.
I Examples?
I Non-examples?
I Equivalence relations are very special!

I Let R be an equivalence relation on set A, and let a ∈ A
I {x ∈ A | xRa} is the equivalence class containing a
I Denoted [a]. Thus [a] = {x ∈ A | xRa}
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Relations

Theorem
Let R be an equivalence relation on a set A, and let a, b,∈ A. Then
[a] = [b] ⇐⇒ aRb.
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Relations

Definition (Partition)
A partition of a set A is a collection S of subsets of the set A such that:

1. ∅ /∈ S
2.

⋃
X∈S

X = A

3. ∀X,Y ∈ S (X 6= Y =⇒ X ∩ Y = ∅)

Theorem
Let R be an equivalence relation on a set A. Then the equivalence classes
of R partition the set A.
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Thank You!
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