Basic Mathematical Techniques for Computer Scientists Functions

November 19, 2012

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

November 19, 2012

Sets: Well-defined collections

- Ways of expressing sets
- Equality of sets
- Cardinality of finite sets
- The empty set

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
 - Cartesian product of two or more sets
 - Cartesian powers of a set

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
 - Subset, union, intersection, difference
 - Universal sets and the complement of a set
 - Indexed collections of sets

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
 - Reflexive
 - Symmetric
 - Transitive
 - Equivalence

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- More on equivalence relations
 - Equivalence classes
 - Partitioning a set

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- Two theorems about equivalence relations:
 - Two elements are related *iff* their equivalence classes coincide.

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], (), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- > Two theorems about equivalence relations:
 - ▶ Two elements are related *iff* their equivalence classes coincide.
 - Equivalence classes partition the underlying set.

Questions?

- Sets: Well-defined collections
- ▶ Intervals on the real line: [], (], [), ()
- Ordered pairs

- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- > Two theorems about equivalence relations:
 - ▶ Two elements are related *iff* their equivalence classes coincide.
 - Equivalence classes partition the underlying set.

- A relation *between* sets A and B:
 - Is a subset of A × B
 - $(a,b) \in \mathbb{R}$ is often written as $a\mathbb{R}b$
 - $(a,b) \notin \mathbb{R}$ is often written as $a \not R b$
 - Examples?
- A *function f* from set A to set B:
 - Is denoted $f : A \rightarrow B$
 - Is a relation from A to B
 - $f \subseteq \mathbf{A} \times \mathbf{B}$
 - For each $a \in A$ there is *exactly one* $b \in B$ such that: $(a, b) \in f$
 - $(a,b) \in f$ is also written as: f(a) = b
 - Examples?
 - Non-examples?
- ► A function *f* from set A to Set B
 - ► Is not necessarily a short "rule" to convert from A to B ...
 - ... though many functions you come across will be/have such rules.

Some definitions

- $\blacktriangleright\,$ A relation between sets A and B is a subset of A $\times\,$ B
- ► A function *f* from A to B is a special relation from A to B
 - ▶ Each element of the set A "occurs" exactly once in *f*
- Given $f : A \rightarrow B$
 - ► The set A is the *domain* of function *f*
 - ► The set B is the *codomain* of function *f*
 - The set $\{f(x) \mid x \in A\}$ is the range of f
 - This is the same as $\{b \in B \mid (a, b) \in f\}$
 - Why two names, codomain and range?
 - Can these be different?
 - Examples?

Equality

- ▶ When are two functions $f : A \rightarrow B$ and $g : C \rightarrow D$ equal?
- ▶ These functions *f*, *g* are defined to be equal if
 - $\blacktriangleright A = C, B = D$
 - ► $\forall a \in A f(a) = g(a).$
 - Equal domains, equal codomains, and f = g as sets.

Some more names

- Function $f : A \rightarrow B$ is one-one or injective if
 - $\forall x, y \in A \ x \neq y \implies f(x) \neq f(y)$
- Can there be another kind?
 - The other kind is called many-one
- Examples of injective functions?
- Non-examples?
- Function $f : A \rightarrow B$ is onto or surjective if
 - $\forall y \in \mathbf{B} \exists x \in \mathbf{A} | f(x) = y$
- Can there be another kind?
- Examples of surjective functions?
- Non-examples?

Some more names

- Function $f : A \rightarrow B$ is
 - one-one or injective if $\forall x, y \in A \ x \neq y \implies f(x) \neq f(y)$
 - onto or surjective if $\forall y \in B \exists x \in A | f(x) = y$
 - bijective—or one-one and onto—if it is both injective and surjective
- Example of a bijective function (*bijection*)?
- Non-example?
- ► These notions are widely used.

Some examples

• Function $f : A \rightarrow B$ is

- one-one or injective if $\forall x, y \in A \ x \neq y \implies f(x) \neq f(y)$
- onto or surjective if $\forall y \in B \exists x \in A | f(x) = y$
- bijective if it is both injective and surjective
- Let $f : (\mathbb{R} \setminus \{0\} \to \mathbb{R})$ be defined by $f(x) = 1 + \frac{1}{x}$
 - Is f injective?
 - Is f surjective?
- Let $f : (\mathbb{R} \to \mathbb{R})$ be defined by $f(x) = x^2$
 - Is f injective?
 - Is f surjective?

The Pigeonhole Principle

Theorem (The Pigeonhole Principle)

Let A and B be two finite sets, and let $f : A \rightarrow B$ be some function. Then

- If |A| > |B|, then f is not injective.
- If |A| < |B|, then f is not surjective.
- ▶ While this sounds quite innocent, it is mighty useful.
 - ► In fact, it is kind of awesome ...

The Pigeonhole Principle

An example of its application

Definition

Two natural numbers are said to be *coprime* or *mutually prime* if they have exactly one common divisor, which is 1.

- The numbers themselves do *not* have to be prime.
- Examples?

Fact

Let A be **any** set of eleven natural numbers chosen from $\{1, 2, ..., 20\}$. Then the set A contains at least two numbers which are coprime.

Fact

Let A be any set of (n + 1) natural numbers chosen from $\{1, 2, ..., 2n\}$. Then the set A contains at least two numbers which are coprime.

The Pigeonhole Principle

Another example

Fact

Let A be **any** set of ten natural numbers chosen from $\{1, 2, ..., 100\}$. Then there are two subsets X and Y of A such that

- $X \neq Y$, and,
- The sums of the numbers in X and in Y are equal.

Cardinalities of sets

- When do two sets A and B have the same cardinality?
- The naïve notion does not suffice when
 - It is too difficult to count their elements
 - More importantly: when the sets are not finite.
 - We need a different notion . . .

Definition (Cardinalities of sets)

Two sets A and B are said to have the **same cardinality** if there exists a bijection $f : A \rightarrow B$. In this case we write |A| = |B|. If no such bijective function exists, then the sets have **unequal** cardinalities, and we write $|A| \neq |B|$.

- The definition applies to finite sets *and* to infinite sets.
 - Example: $|\mathbb{N}| = |\mathbb{Z}|$
 - Example: $|\mathbb{N}| \neq |\mathbb{R}|$

Countable sets, uncountable sets

Definition

The cardinality of the empty set is zero. Let A be a nonempty set.

- ► The set A is said to be finite if there is positive integer n such that there is a bijection from A to the set {1,...,n}. The set A is said to be infinite otherwise.
- ► The set A is said to be countable if there is a bijection from A to some subset of N.
- The set A is **countably infinite** if there is a bijection from A to \mathbb{N} .
- ► The set A is **uncountable** (or *uncountably infinite*) if A is infinite and there exists no bijection from A to N.

Thank You!