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Recap

I Sets: Well-defined collections
I Ways of expressing sets
I Equality of sets
I Cardinality of finite sets
I The empty set
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Recap

I Sets: Well-defined collections
I Intervals on the real line: [], (], [), ()

I Ordered pairs
I Cartesian product of two or more sets
I Cartesian powers of a set
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Recap

I Sets: Well-defined collections
I Intervals on the real line: [], (], [), ()
I Ordered pairs
I Basic set operations

I Subset, union, intersection, difference
I Universal sets and the complement of a set
I Indexed collections of sets
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Recap

I Sets: Well-defined collections
I Intervals on the real line: [], (], [), ()
I Ordered pairs
I Basic set operations
I Relations: Subsets of cartesian products

I Special kinds of relations
I Reflexive
I Symmetric
I Transitive
I Equivalence
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Recap

I Sets: Well-defined collections
I Intervals on the real line: [], (], [), ()
I Ordered pairs
I Basic set operations
I Relations: Subsets of cartesian products
I Special kinds of relations
I More on equivalence relations

I Equivalence classes
I Partitioning a set
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Recap

I Sets: Well-defined collections
I Intervals on the real line: [], (], [), ()
I Ordered pairs
I Basic set operations
I Relations: Subsets of cartesian products
I Special kinds of relations
I Equivalence classes and partitions
I Two theorems about equivalence relations:

I Two elements are related iff their equivalence classes coincide.

I Equivalence classes partition the underlying set.
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Functions

I A relation between sets A and B:
I Is a subset of A× B
I (a, b) ∈ R is often written as aRb
I (a, b) /∈ R is often written as a�Rb
I Examples?

I A function f from set A to set B:
I Is denoted f : A→ B
I Is a relation from A to B
I f ⊆ A× B
I For each a ∈ A there is exactly one b ∈ B such that: (a, b) ∈ f

I (a, b) ∈ f is also written as: f(a) = b
I Examples?
I Non-examples?

I A function f from set A to Set B
I Is not necessarily a short “rule” to convert from A to B . . .
I . . . though many functions you come across will be/have such rules.
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Functions
Some definitions

I A relation between sets A and B is a subset of A× B
I A function f from A to B is a special relation from A to B

I Each element of the set A “occurs” exactly once in f
I Given f : A→ B

I The set A is the domain of function f
I The set B is the codomain of function f
I The set {f(x) | x ∈ A} is the range of f

I This is the same as {b ∈ B | (a, b) ∈ f}
I Why two names, codomain and range?
I Can these be different?
I Examples?
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Functions
Equality

I When are two functions f : A→ B and g : C→ D equal?
I These functions f , g are defined to be equal if

I A = C,B = D
I ∀a ∈ A f(a) = g(a).
I Equal domains, equal codomains, and f = g as sets.
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Functions
Some more names

I Function f : A→ B is one-one or injective if
I ∀x, y ∈ A x 6= y =⇒ f(x) 6= f(y)

I Can there be another kind?
I The other kind is called many-one

I Examples of injective functions?
I Non-examples?
I Function f : A→ B is onto or surjective if

I ∀y ∈ B∃x ∈ A | f(x) = y

I Can there be another kind?
I Examples of surjective functions?
I Non-examples?
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Functions
Some more names

I Function f : A→ B is
I one-one or injective if ∀x, y ∈ A x 6= y =⇒ f(x) 6= f(y)
I onto or surjective if ∀y ∈ B∃x ∈ A | f(x) = y
I bijective—or one-one and onto—if it is both injective and surjective

I Example of a bijective function (bijection)?
I Non-example?
I These notions are widely used.
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Functions
Some examples

I Function f : A→ B is
I one-one or injective if ∀x, y ∈ A x 6= y =⇒ f(x) 6= f(y)
I onto or surjective if ∀y ∈ B∃x ∈ A | f(x) = y
I bijective if it is both injective and surjective

I Let f : (R \ {0} → R) be defined by f(x) = 1 + 1
x

I Is f injective?
I Is f surjective?

I Let f : (R→ R) be defined by f(x) = x2

I Is f injective?
I Is f surjective?
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The Pigeonhole Principle

Theorem (The Pigeonhole Principle)
Let A and B be two finite sets, and let f : A→ B be some function. Then

I If |A| > |B|, then f is not injective.
I If |A| < |B|, then f is not surjective.

I While this sounds quite innocent, it is mighty useful.
I In fact, it is kind of awesome . . .
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The Pigeonhole Principle
An example of its application

Definition
Two natural numbers are said to be coprime or mutually prime if they
have exactly one common divisor, which is 1.

I The numbers themselves do not have to be prime.
I Examples?

Fact
Let A be any set of eleven natural numbers chosen from {1,2, . . . ,20}.
Then the set A contains at least two numbers which are coprime.

Fact
Let A be any set of (n + 1) natural numbers chosen from {1,2, . . . ,2n}.
Then the set A contains at least two numbers which are coprime.
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The Pigeonhole Principle
Another example

Fact
Let A be any set of ten natural numbers chosen from {1,2, . . . ,100}.
Then there are two subsets X and Y of A such that

I X 6= Y, and,
I The sums of the numbers in X and in Y are equal.
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Cardinalities of sets

I When do two sets A and B have the same cardinality?
I The naïve notion does not suffice when

I It is too difficult to count their elements
I More importantly: when the sets are not finite.
I We need a different notion . . .

Definition (Cardinalities of sets)
Two sets A and B are said to have the same cardinality if there exists
a bijection f : A→ B. In this case we write |A| = |B|.
If no such bijective function exists, then the sets have unequal
cardinalities, and we write |A| 6= |B|.

I The definition applies to finite sets and to infinite sets.
I Example: |N| = |Z|
I Example: |N| 6= |R|
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Countable sets, uncountable sets

Definition
The cardinality of the empty set is zero. Let A be a nonempty set.

I The set A is said to be finite if there is positive integer n such that
there is a bijection from A to the set {1, . . . ,n}. The set A is said
to be infinite otherwise.

I The set A is said to be countable if there is a bijection from A to
some subset of N.

I The set A is countably infinite if there is a bijection from A to N.
I The set A is uncountable (or uncountably infinite) if A is infinite

and there exists no bijection from A to N.
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Thank You!

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists November 19, 2012


