# Basic Mathematical Techniques for Computer Scientists 

Functions

November 19, 2012

## Recap

## Recap

- Sets: Well-defined collections
- Ways of expressing sets
- Equality of sets
- Cardinality of finite sets
- The empty set


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Cartesian product of two or more sets
- Cartesian powers of a set


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Subset, union, intersection, difference
- Universal sets and the complement of a set
- Indexed collections of sets


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Reflexive
- Symmetric
- Transitive
- Equivalence


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- More on equivalence relations
- Equivalence classes
- Partitioning a set


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- Two theorems about equivalence relations:
- Two elements are related iff their equivalence classes coincide.


## Recap

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- Two theorems about equivalence relations:
- Two elements are related iff their equivalence classes coincide.
- Equivalence classes partition the underlying set.


## Recap

## Questions?

- Sets: Well-defined collections
- Intervals on the real line: [], (], [), ()
- Ordered pairs
- Basic set operations
- Relations: Subsets of cartesian products
- Special kinds of relations
- Equivalence classes and partitions
- Two theorems about equivalence relations:
- Two elements are related iff their equivalence classes coincide.
- Equivalence classes partition the underlying set.


## Functions

- A relation between sets A and B:
- Is a subset of $\mathrm{A} \times \mathrm{B}$
- $(a, b) \in \mathrm{R}$ is often written as $a \mathrm{R} b$
- $(a, b) \notin \mathrm{R}$ is often written as $a R b$
- Examples?
- A function $f$ from set A to set B :
- Is denoted $f: \mathrm{A} \rightarrow \mathrm{B}$
- Is a relation from A to B
- $f \subseteq \mathrm{~A} \times \mathrm{B}$
- For each $a \in \mathrm{~A}$ there is exactly one $b \in \mathrm{~B}$ such that: $(a, b) \in f$
- $(a, b) \in f$ is also written as: $f(a)=b$
- Examples?
- Non-examples?
- A function $f$ from set A to Set B
- Is not necessarily a short "rule" to convert from A to B ...
- ... though many functions you come across will be/have such rules.


## Functions

Some definitions

- A relation between sets $A$ and $B$ is a subset of $A \times B$
- A function $f$ from $A$ to $B$ is a special relation from $A$ to $B$
- Each element of the set A "occurs" exactly once in $f$
- Given $f: \mathrm{A} \rightarrow \mathrm{B}$
- The set A is the domain of function $f$
- The set B is the codomain of function $f$
- The set $\{f(x) \mid x \in \mathrm{~A}\}$ is the range of $f$
- This is the same as $\{b \in \mathrm{~B} \mid(a, b) \in f\}$
- Why two names, codomain and range?
- Can these be different?
- Examples?


## Functions

Equality

- When are two functions $f: \mathrm{A} \rightarrow \mathrm{B}$ and $g: \mathrm{C} \rightarrow \mathrm{D}$ equal?
- These functions $f, g$ are defined to be equal if
- $A=C, B=D$
- $\forall a \in \mathrm{~A} f(a)=g(a)$.
- Equal domains, equal codomains, and $f=g$ as sets.


## Functions

- Function $f: \mathrm{A} \rightarrow \mathrm{B}$ is one-one or injective if
- $\forall x, y \in \mathrm{~A} x \neq y \Longrightarrow f(x) \neq f(y)$
- Can there be another kind?
- The other kind is called many-one
- Examples of injective functions?
- Non-examples?
- Function $f: \mathrm{A} \rightarrow \mathrm{B}$ is onto or surjective if
- $\forall y \in \mathrm{~B} \exists x \in \mathrm{~A} \mid f(x)=y$
- Can there be another kind?
- Examples of surjective functions?
- Non-examples?


## Functions

- Function $f: \mathrm{A} \rightarrow \mathrm{B}$ is
- one-one or injective if $\forall x, y \in \mathrm{~A} x \neq y \Longrightarrow f(x) \neq f(y)$
- onto or surjective if $\forall y \in \mathrm{~B} \exists x \in \mathrm{~A} \mid f(x)=y$
- bijective-or one-one and onto-if it is both injective and surjective
- Example of a bijective function (bijection)?
- Non-example?
- These notions are widely used.


## Functions

## Some examples

- Function $f: \mathrm{A} \rightarrow \mathrm{B}$ is
- one-one or injective if $\forall x, y \in \mathrm{~A} x \neq y \Longrightarrow f(x) \neq f(y)$
- onto or surjective if $\forall y \in \mathrm{~B} \exists x \in \mathrm{~A} \mid f(x)=y$
- bijective if it is both injective and surjective
- Let $f:(\mathbb{R} \backslash\{0\} \rightarrow \mathbb{R})$ be defined by $f(x)=1+\frac{1}{x}$
- Is $f$ injective?
- Is $f$ surjective?
- Let $f:(\mathbb{R} \rightarrow \mathbb{R})$ be defined by $f(x)=x^{2}$
- Is $f$ injective?
- Is $f$ surjective?


## The Pigeonhole Principle

## Theorem (The Pigeonhole Principle)

Let $A$ and $B$ be two finite sets, and let $f: A \rightarrow B$ be some function. Then

- If $|A|>|B|$, then $f$ is not injective.
- If $|A|<|B|$, then $f$ is not surjective.
- While this sounds quite innocent, it is mighty useful.
- In fact, it is kind of awesome ...


## The Pigeonhole Principle

## An example of its application

## Definition

Two natural numbers are said to be coprime or mutually prime if they have exactly one common divisor, which is 1 .

- The numbers themselves do not have to be prime.
- Examples?


## Fact

Let $A$ be any set of eleven natural numbers chosen from $\{1,2, \ldots, 20\}$.
Then the set A contains at least two numbers which are coprime.

## Fact

Let $A$ be any set of $(n+1)$ natural numbers chosen from $\{1,2, \ldots, 2 n\}$. Then the set A contains at least two numbers which are coprime.

## The Pigeonhole Principle

## Another example

## Fact

Let $A$ be any set of ten natural numbers chosen from $\{1,2, \ldots, 100\}$. Then there are two subsets $X$ and $Y$ of $A$ such that

- $X \neq Y$, and,
- The sums of the numbers in $X$ and in $Y$ are equal.


## Cardinalities of sets

- When do two sets A and B have the same cardinality?
- The naïve notion does not suffice when
- It is too difficult to count their elements
- More importantly: when the sets are not finite.
- We need a different notion ...

Definition (Cardinalities of sets)
Two sets A and B are said to have the same cardinality if there exists a bijection $f: A \rightarrow B$. In this case we write $|A|=|B|$.
If no such bijective function exists, then the sets have unequal cardinalities, and we write $|A| \neq|B|$.

- The definition applies to finite sets and to infinite sets.
- Example: $|\mathbb{N}|=|\mathbb{Z}|$
- Example: $|\mathbb{N}| \neq|\mathbb{R}|$


## Countable sets, uncountable sets

## Definition

The cardinality of the empty set is zero. Let A be a nonempty set.

- The set A is said to be finite if there is positive integer $n$ such that there is a bijection from A to the set $\{1, \ldots, n\}$. The set A is said to be infinite otherwise.
- The set A is said to be countable if there is a bijection from A to some subset of $\mathbb{N}$.
- The set A is countably infinite if there is a bijection from A to $\mathbb{N}$.
- The set A is uncountable (or uncountably infinite) if A is infinite and there exists no bijection from A to $\mathbb{N}$.


## Thank You!

