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Recap

I Functions: A special kind of relation
I More abstract than "rules"
I Domain, co-domain, range
I Equality of functions
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Recap

I Functions: A special kind of relation
I Special kinds of functions:

I One-one (injective)
I Many-one
I Onto (surjective)
I One-one and onto (bijective)
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Recap

I Functions: A special kind of relation
I One-one, many-one, onto, and bijective functions
I The Pigeonhole Principle: For finite sets A and B and f : A→ B,

I |A| > |B| =⇒ f is not one-one
I |A| < |B| =⇒ f is not onto
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Recap

I Functions: A special kind of relation
I One-one, many-one, onto, and bijective functions
I The Pigeonhole Principle
I Comparing the cardinalities of two sets

I |A| = |B| ⇐⇒ there is a bijection from A to B.

I Finite, countable, and uncountably infinite sets
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Recap

I Functions: A special kind of relation
I One-one, many-one, onto, and bijective functions
I The Pigeonhole Principle
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Questions?



Counting

I Finding the how many things are there
I In a set, or some other kind of object

I Why is this important in CS?
I Used all over CS. E.g:

I The analysis of algorithms
I Discrete probability

I How do we count the number of objects in (say) a set?
I One way: Tick off the objects against 1, 2, . . .
I Are there other ways?
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An example
How many crosses?

1
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An example
How many crosses?

I How did we count the crosses?
I We did not tick them off 1, 2, . . .

I This is the stupid way to count these
I Bijection from the set of crosses to {1, 2, . . . , 5} × {1, 2, . . . , 8}
I The rule for the cardinality of a Cartesian product

I A general idea for counting large and/or complicated sets:
I Come up with a bijection from the set we want to count

I To some set which we know how to count
I We will see many specific instances of this idea
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Two basic counting rules
The Sum Rule

Theorem (The Sum Rule)
If A1,A2 . . . ,An are finite disjoint sets, then

|A1 ∪ A2 ∪ · · · ∪ An| = |A1|+ |A2|+ · · ·+ |An|.

I How can we prove this?
I Does this hold for sets which intersect?
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Two basic counting rules
The Product Rule

Theorem (The Product Rule)
If A1,A2 . . . ,An are finite sets, then

|A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An|.

I How can we prove this?
I Does this hold for sets which intersect?
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Using the basic counting rules
An example

I A website’s restrictions on your password:
I From six to eight symbols long
I The first symbol must be a letter from the English alphabet
I The rest must be letters or digits
I How many different passwords are possible?
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Using the basic counting rules
Another example

I How many subsets does an n-element set have?
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Some terminology

Definition (List/String/Sequence)
Let A = {a1, a2 . . . , an} be a finite set, and let k ∈ N. A list of k
elements drawn from the set A is an element of Ak. Such a list is also
called a sequence or string over the set A. The length of such a list
(string/sequence) is k.

I Sometimes written without parens and commas.
I When using “string”, the set A is called the alphabet.

Example
(1,1,1,1) is a list of 4 elements drawn from the set {0,1}. It is also:

I written as 1111 when there is no scope for confusion;
I a sequence of length 4 over {0,1}, and,
I a string of length 4 over the alphabet {0,1}.
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Strings over an alphabet
An example

I Consider the alphabet A = {a, b, c, d, e, f , g}.
I Example of a string of length 4 over A?
I How many strings of length four over A?
I How many strings of length four over A, if no letter should repeat?
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Generalized product rule

Theorem (Generalized Product Rule)
Let k ∈ N; k ≥ 2, and let S be a set of sequences of length k over some set
A. If there are:

I n1 possible ways of choosing an element of A as the first element in a
sequence of S;

I given any choice of the first element, there are n2 possible ways of
choosing the second element in a sequence of S;

I given any choice of the first two elements, there are n3 possible ways
of choosing the second element in a sequence of S;

I and so on up till the kth element, then
|S| = n1 · n2 · · · · · nk.

I How can we prove this?
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Strings over an alphabet
The example, continued

I Consider the alphabet A = {a, b, c, d, e, f , g}.
I How many strings of length four over A which contain the letter a,

and has no repeating letter?
I How many strings of length four over A which contain the letter a?
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Example
Three chessmen on a board

I In how many ways can we place a pawn (p), a knight (k), and a
bishop (b) on an (8× 8) chessboard such that no two of these
share a row or a column?

p
k

b

(a) Valid placement.

p
k

b

(b) Invalid placement.

1
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Example
Two rooks of the same colour

I In how many ways can we place two black rooks on an (8× 8)
chessboard such that they don’t share a row or a column?

r

r

(a) Valid placement.

r

r

(b) Invalid placement.

1
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The Quotient Rule

Definition (k-to-1 functions)
For any positive integer k, a function f : A→ B is said to be k-to-1 if,
for each y ∈ B, (∃x ∈ A | f(x) = y) =⇒ |{x ∈ A | f(x) = y}| = k.

Theorem (Quotient Rule)
Let k ∈ N. If a function f : A→ B is k-to-1 and onto, then |A| = k · |B|.
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Permutations

I A permutation of a set A is
I A list of all the elements in the set A
I Of length |A|: Each element appears exactly once

I Which of the following are permutations of {1,2,3,4,5}?
I (1, 2, 3, 4, 5)
I (1, 4, 1, 2, 3)
I (5, 4, 3, 2, 1)
I (1, 4, 5, 2, 3)
I (1, 4, 5, 2, 3, 5)

I How many permutations does an n-element set have?
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Permutations
The factorial function

Definition (The factorial function)
For n ∈ N, the factorial of n, denoted n!, is defined to be the number
of permutations of a set with n elements.

I From the definition, we get:
I 0! = 1
I 1! = 1

Theorem
For n ∈ N,n > 1, n! = n · (n− 1) · (n− 2) · · · · 2 · 1.
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Example
Seating people

I In how many different ways can we seat n people in a row?
I In how many different ways can we seat n people around a round

table, if
I Absolute positions matter

I There is a special seat
I Absolute positions do not matter

I No special seat
I Only relative positions matter
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Thank You!
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