Basic Mathematical Techniques for Computer Scientists

Counting

November 26, 2012

Recap

Recap

- Functions: A special kind of relation
- More abstract than "rules"
- Domain, co-domain, range
- Equality of functions

Recap

- Functions: A special kind of relation
- Special kinds of functions:
- One-one (injective)
- Many-one
- Onto (surjective)
- One-one and onto (bijective)

Recap

- Functions: A special kind of relation
- One-one, many-one, onto, and bijective functions
- The Pigeonhole Principle: For finite sets A and B and $f: \mathrm{A} \rightarrow \mathrm{B}$,
- $|\mathrm{A}|>|\mathrm{B}| \Longrightarrow f$ is not one-one
- $|\mathrm{A}|<|\mathrm{B}| \Longrightarrow f$ is not onto

Recap

- Functions: A special kind of relation
- One-one, many-one, onto, and bijective functions
- The Pigeonhole Principle
- Comparing the cardinalities of two sets
- $|\mathrm{A}|=|\mathrm{B}| \Longleftrightarrow$ there is a bijection from A to B.

Recap

- Functions: A special kind of relation
- One-one, many-one, onto, and bijective functions
- The Pigeonhole Principle
- Comparing the cardinalities of two sets
- $|\mathrm{A}|=|\mathrm{B}| \Longleftrightarrow$ there is a bijection from A to B.
- Finite, countable, and uncountably infinite sets

Recap

- Functions: A special kind of relation
- One-one, many-one, onto, and bijective functions
- The Pigeonhole Principle
- Comparing the cardinalities of two sets
- $|\mathrm{A}|=|\mathrm{B}| \Longleftrightarrow$ there is a bijection from A to B.
- Finite, countable, and uncountably infinite sets

Questions?

Counting

Counting

- Finding the how many things are there
- In a set, or some other kind of object
- Why is this important in CS?
- Used all over CS. E.g:
- The analysis of algorithms
- Discrete probability
- How do we count the number of objects in (say) a set?
- One way: Tick off the objects against $1,2, \ldots$
- Are there other ways?

An example

How many crosses?

An example

How many crosses?

- How did we count the crosses?
- We did not tick them off $1,2, \ldots$
- This is the stupid way to count these
- Bijection from the set of crosses to $\{1,2, \ldots, 5\} \times\{1,2, \ldots, 8\}$
- The rule for the cardinality of a Cartesian product
- A general idea for counting large and/or complicated sets:
- Come up with a bijection from the set we want to count
- To some set which we know how to count
- We will see many specific instances of this idea

Two basic counting rules

The Sum Rule

Theorem (The Sum Rule)

If $A_{1}, A_{2} \ldots, A_{n}$ are finite disjoint sets, then

$$
\left|A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right|=\left|A_{1}\right|+\left|A_{2}\right|+\cdots+\left|A_{n}\right| .
$$

- How can we prove this?
- Does this hold for sets which intersect?

Two basic counting rules

The Product Rule

Theorem (The Product Rule)

If $A_{1}, A_{2} \ldots, A_{n}$ are finite sets, then

$$
\left|A_{1} \times A_{2} \times \cdots \times A_{n}\right|=\left|A_{1}\right| \cdot\left|A_{2}\right| \cdots \cdots\left|A_{n}\right| .
$$

- How can we prove this?
- Does this hold for sets which intersect?

Using the basic counting rules

An example

- A website's restrictions on your password:
- From six to eight symbols long
- The first symbol must be a letter from the English alphabet
- The rest must be letters or digits
- How many different passwords are possible?

Using the basic counting rules

Another example

- How many subsets does an n-element set have?

Some terminology

Definition (List/String/Sequence)

Let $\mathrm{A}=\left\{a_{1}, a_{2} \ldots, a_{n}\right\}$ be a finite set, and let $k \in \mathbb{N}$. A list of k elements drawn from the set A is an element of A^{k}. Such a list is also called a sequence or string over the set A. The length of such a list (string/sequence) is k.

- Sometimes written without parens and commas.
- When using "string", the set A is called the alphabet.

Example

$(1,1,1,1)$ is a list of 4 elements drawn from the set $\{0,1\}$. It is also:

- written as 1111 when there is no scope for confusion;
- a sequence of length 4 over $\{0,1\}$, and,
- a string of length 4 over the alphabet $\{0,1\}$.

Strings over an alphabet

An example

- Consider the alphabet $\mathrm{A}=\{a, b, c, d, e, f, g\}$.
- Example of a string of length 4 over A?
- How many strings of length four over A?
- How many strings of length four over A, if no letter should repeat?

Generalized product rule

Theorem (Generalized Product Rule)

Let $k \in \mathbb{N} ; k \geq 2$, and let S be a set of sequences of length k over some set A. If there are:

- n_{1} possible ways of choosing an element of A as the first element in a sequence of S;
- given any choice of the first element, there are n_{2} possible ways of choosing the second element in a sequence of S;
- given any choice of the first two elements, there are n_{3} possible ways of choosing the second element in a sequence of S;
- and so on up till the kth element, then

$$
|S|=n_{1} \cdot n_{2} \cdots \cdot n_{k} .
$$

- How can we prove this?

Strings over an alphabet

The example, continued

- Consider the alphabet $\mathrm{A}=\{a, b, c, d, e, f, g\}$.
- How many strings of length four over A which contain the letter a, and has no repeating letter?
- How many strings of length four over A which contain the letter a ?

Example

Three chessmen on a board

- In how many ways can we place a pawn (p), a knight (k), and a bishop (b) on an (8×8) chessboard such that no two of these share a row or a column?

(a) Valid placement.

				k			
		p					
				b			

(b) Invalid placement.

Example

Two rooks of the same colour

- In how many ways can we place two black rooks on an (8×8) chessboard such that they don't share a row or a column?

The Quotient Rule

Definition (k-to-1 functions)
For any positive integer k, a function $f: \mathrm{A} \rightarrow \mathrm{B}$ is said to be k-to- $\mathbf{1}$ if, for each $y \in \mathrm{~B},(\exists x \in \mathrm{~A} \mid f(x)=y) \Longrightarrow|\{x \in \mathrm{~A} \mid f(x)=y\}|=k$.

Theorem (Quotient Rule)
Let $k \in \mathbb{N}$. If a function $f: A \rightarrow B$ is k-to- 1 and onto, then $|A|=k \cdot|B|$.

Permutations

- A permutation of a set A is
- A list of all the elements in the set A
- Of length $|\mathrm{A}|$: Each element appears exactly once
- Which of the following are permutations of $\{1,2,3,4,5\}$?
- (1, 2, 3, 4, 5)
- $(1,4,1,2,3)$
- $(5,4,3,2,1)$
- $(1,4,5,2,3)$
- $(1,4,5,2,3,5)$
- How many permutations does an n-element set have?

Permutations

The factorial function

Definition (The factorial function)

For $n \in \mathbb{N}$, the factorial of n, denoted $n!$, is defined to be the number of permutations of a set with n elements.

- From the definition, we get:
- $0!=1$
- 1 ! $=1$

Theorem
For $n \in \mathbb{N}, n>1, n!=n \cdot(n-1) \cdot(n-2) \cdots \cdot 2 \cdot 1$.

Example

Seating people

- In how many different ways can we seat n people in a row?
- In how many different ways can we seat n people around a round table, if
- Absolute positions matter
- There is a special seat
- Absolute positions do not matter
- No special seat
- Only relative positions matter

Thank You!

