Basic Mathematical Techniques for Computer Scientists Counting, Part II

December 3, 2012

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists

December 3, 2012

• Counting: Finding how many things there are

- Very important in CS
- Simplest way: tick off things against 1, 2, ...
 - Not practical in most interesting cases
- Other ways to count
- General idea: Bijection from the known to the unknown
 - Or in the other direction

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules:
 - The Sum Rule
 - The Product Rule

- Counting: Finding *how many* things there are
- Use bijections to make counting easier
- Two basic counting rules.
- Some terminology:
 - List, sequence, string
 - The length of a list/sequence/string
 - Alphabet

- Counting: Finding *how many* things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
 - Very useful to count the number of sequences with extra restrictions

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
- The Quotient Rule
 - Used to get the true count from an "overcount"

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
- The Quotient Rule
- Permutations and the factorial function
 - Permutation: List of all the elements in a set, exactly once
 - Factorial of $n \in \mathbb{N}$: The number of permutations of a set of size n.

Questions?

Counting lists made up from a set

- Let A be a finite set with *n* elements
- ▶ How many lists of length *k*, of elements of A?
 - ▶ If we allow elements to repeat in a list: *n*^k
 - This makes sense only when $k \ge 0$
 - If we do not allow elements to repeat in any list: $n \cdot (n-1) \cdot (n-2) \cdots (n-k+1)$
 - This is equal to $\frac{n!}{(n-k)!}$
 - This makes sense only when $0 \le k \le n$

Counting lists made up from a set

Two theorems

Theorem (Number of lists, no restrictions) The number of lists of length $k \ge 0$ of elements chosen from a set of size n is

Theorem (Number of lists, no repetitions)

The number of lists of length $0 \le k \le n$ of elements chosen from a set of size n, when no element repeats in a list, is

 n^k

$$\frac{n!}{(n-k)!}.$$

A digression (important!)

> You should *not* memorize the formulas in these theorems

- Also true for the other formulas in this course
- And in most other courses

If you spend effort in memorizing these formulas

- > You will most probably not remember *why* they are true
 - You will have forgotten the mathematics soon
 - You will only be able to say "It's a rule"
 - A failure for you (and your teacher)
- You are likely to make silly mistakes when applying them
 - It is easy to misplace a bracket, for example

A digression (important!)

> You should *not* memorize the formulas in these theorems

- Also true for the other formulas in this course
- And in most other courses

Instead, each time you do an exercise,

- Recall the *argument* which gets you the rule
 - Take the help of the slides/Wikipedia/whatever
- If you do this,
 - You can *happily* forget the rule
 - Because you know that when you need it, ...
 - ... you can derive it yourself!
 - > You will *internalize* the mathematics
 - > You will end up *smarter* than Joe Learnbyrote

Counting the subsets of a set

► Goal: Find the number of subsets of size k, of a set A of size $n \in \mathbb{N}$.

- ▶ These are called the *k*-subsets of A
- ▶ In general, a set of size *n* is sometimes called an *n*-set
- Use what we already know:
 - ▶ The number of *lists* of size *k*, with or without repetition
 - Various lemmas/theorems which we saw so far
- Question: How do we go from *lists* to *subsets*?
 - How are these two different?
 - How do we make use of this?

Counting the subsets of a set

Theorem (The number of subsets of a certain size) Let A be a set of size $n \in \mathbb{N}$, and let $k \in \mathbb{Z}$.

- If k < 0 or k > n, then the number of k-subsets of A is zero.
- Otherwise, the number of k-subsets of A is $\frac{n!}{k!(n-k)!}$.
- ► Notation: We use ⁿ_k to denote the number of *k*-subsets of a set with *n* elements.
- So the theorem says:
 - If k < 0 or k > n, then $\binom{n}{k} = 0$
 - Otherwise, $\binom{n}{k} = \frac{n!}{k!(n-k)!}$.

Playing Cards

A deck of 52 cards

▶ 4 *suits*, 13 cards in each suit

Vectorized Playing Cards 1.3- http://code.google.com/p/vectorized-playing-cards/ Copyright 2011 - Chris Aguilar Licensed under LGPL 3- www.gnu.org/copyleft/lesser.html

Basic Mathematical Techniquesfor Computer Scientists

Playing Cards A deck of 52 cards

- 4 suits, 13 cards in each suit
- A hand is a set of cards dealt from the deck
 - How many different 6-card hands are there?
 - How many 6-card hands, with 2 spades and 4 clubs?
 - ▶ How many 7-card hands, with 2 spades, 2 clubs, and 3 hearts?

A couple of useful facts

About the numbers $\binom{n}{k}$

• We defined $\binom{n}{k}$ as the number of k-subsets of any n-set

A couple of useful facts

About the numbers $\binom{n}{k}$

• We defined $\binom{n}{k}$ as the number of k-subsets of any n-set

Claim:

$$\binom{n}{n} = 1$$

► Proof?

Claim:

$$\binom{n}{0} = 1$$

Proof?Claim:

$$\binom{n}{k} = \binom{n}{n-k}$$

Proof?Claim:

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Proof?

Winter Semester 2012, MPII, Saarbrücken

Basic Mathematical Techniquesfor Computer Scientists

- What is a bit?
- ▶ What is an *n*-bit vector?
- ▶ How many *n*-bit vectors have exactly *k* ones in them?

Theorem

For any $n \in \mathbb{N}$ and $k \in \mathbb{N}$, $0 \le k \le n$, the number of n-bit vectors with exactly k ones is $\binom{n}{k}$.

Monomials

Definition

Definition (Monomials)

A monomial is a product of non-negative integral constant powers of variables.

Example

- Some monomials: $x, y, xy, a^2bc, a^2b^3c^5x^{10}y$
- Some non-monomials: $x + y, a(b + x^2), a^3 + 3bx^2 - cx - yz, 7abc - 10xy$
- Some other non-monomials: $\sin x$, $\ln x$, $x\sqrt{xy}$, x^x
- The second list of non-monomials are all examples of polynomials—these are expressions formed by adding or subtracting two or more monomials.
- ► The prefix "*poly*" means "many".

Some monomials

Spot the pattern

Polynomial	Monomials	Count
(x+y)	$\{x, y\}$	2
$(x+y)^2$	$\{x^2, xy, xy, y^2\}$	4
$(x+y)^{3}$	$\{x^3, x^2y, x^2y, x^2y, xy^2, xy^2, xy^2, xy^2, xy^3\}$	8
$(x+y)^4$	$\{x^4, x^3y, x^3y, x^3y, x^2y^2, x^2y^2, x^2y^2, xy^3, x^3y, x^2y^2, x^2y^2, x^2y^2, xy^3, xy^3, xy^3, y^4\}$	16

• Given a list L_{100} of all the monomials the expansion of $(x + y)^{100}$

- How will you create the list L_{101} of the monomials of $(x + y)^{101}$?
- ▶ What pattern do the numbers in the rightmost column follow?

Spot the pattern

Relate it to something which we know

- Do we know something else which follows the same pattern of numbers?
- How do we "connect" the two?
 - "Why" this pattern among counts of monomials?
 - How do we map what we know to what we see?
 - What is a *bijection* from one to another?

Binomials

Definition

Definition (Binomials)

A *binomial* is a polynomial with exactly two terms—it is the sum (or difference) of two monomials.

• Examples:
$$x + y, x^7 a^3 b - abxy$$

Counting monomials

The Binomial Theorem

Theorem (The Binomial Theorem)

For any $n \in \mathbb{N}$, each **monomial** in the expansion of $(x + y)^n$ is of the form $x^i y^{n-i}$; $0 \le i \le n$. For each $k \in \mathbb{N}$, $0 \le k \le n$, the monomial $x^k y^{n-k}$ appears exactly $\binom{n}{k}$ times in this expansion. So the **coefficient** of $x^k y^{n-k}$ in $(x + y)^n$ is $\binom{n}{k}$. Thus,

$$(x+y)^{n} = \binom{n}{n} x^{n} y^{0} + \binom{n}{n-1} x^{n-1} y + \dots + \binom{n}{n-i} x^{n-i} y^{i} + \dots + \binom{n}{0} x^{0} y^{n}.$$

Using the equations we saw before, this is usually written:

$$(x+y)^n = x^n + \binom{n}{1}x^{n-1}y + \dots + \binom{n}{i}x^{n-i}y^i + \dots + y^n$$

Winter Semester 2012, MPII, Saarbrücken

Basic Mathematical Techniquesfor Computer Scientists

Thank You!