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Recap

I Counting: Finding how many things there are
I Very important in CS
I Simplest way: tick off things against 1, 2, . . .

I Not practical in most interesting cases
I Other ways to count
I General idea: Bijection from the known to the unknown

I Or in the other direction
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Recap

I Counting: Finding how many things there are
I Use bijections to make counting easier
I Two basic counting rules:

I The Sum Rule
I The Product Rule
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Recap

I Counting: Finding how many things there are
I Use bijections to make counting easier
I Two basic counting rules.
I Some terminology:

I List, sequence, string
I The length of a list/sequence/string
I Alphabet
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Recap

I Counting: Finding how many things there are
I Use bijections to make counting easier
I Two basic counting rules
I List, sequence, string, alphabet, length
I Generalized Product Rule

I Very useful to count the number of sequences with extra restrictions
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Recap

I Counting: Finding how many things there are
I Use bijections to make counting easier
I Two basic counting rules
I List, sequence, string, alphabet, length
I Generalized Product Rule
I The Quotient Rule

I Used to get the true count from an "overcount"
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Recap

I Counting: Finding how many things there are
I Use bijections to make counting easier
I Two basic counting rules
I List, sequence, string, alphabet, length
I Generalized Product Rule
I The Quotient Rule
I Permutations and the factorial function

I Permutation: List of all the elements in a set, exactly once
I Factorial of n ∈ N: The number of permutations of a set of size n.
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Counting lists made up from a set

I Let A be a finite set with n elements
I How many lists of length k, of elements of A?

I If we allow elements to repeat in a list: nk

I This makes sense only when k ≥ 0
I If we do not allow elements to repeat in any list:

n · (n− 1) · (n− 2) · · · (n− k + 1)
I This is equal to n!

(n−k)!
I This makes sense only when 0 ≤ k ≤ n
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Counting lists made up from a set
Two theorems

Theorem (Number of lists, no restrictions)
The number of lists of length k ≥ 0 of elements chosen from a set of size
n is

nk.

Theorem (Number of lists, no repetitions)
The number of lists of length 0 ≤ k ≤ n of elements chosen from a set of
size n, when no element repeats in a list, is

n!
(n− k)!

.
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A digression (important!)

I You should not memorize the formulas in these theorems
I Also true for the other formulas in this course
I And in most other courses

I If you spend effort in memorizing these formulas
I You will most probably not remember why they are true

I You will have forgotten the mathematics soon
I You will only be able to say "It’s a rule"
I A failure for you (and your teacher)

I You are likely to make silly mistakes when applying them
I It is easy to misplace a bracket, for example
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A digression (important!)

I You should not memorize the formulas in these theorems
I Also true for the other formulas in this course
I And in most other courses

I Instead, each time you do an exercise,
I Recall the argument which gets you the rule

I Take the help of the slides/Wikipedia/whatever
I If you do this,

I You can happily forget the rule
I Because you know that when you need it, . . .
I . . . you can derive it yourself!
I You will internalize the mathematics
I You will end up smarter than Joe Learnbyrote
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Counting the subsets of a set

I Goal: Find the number of subsets of size k, of a set A of size
n ∈ N.

I These are called the k-subsets of A
I In general, a set of size n is sometimes called an n-set

I Use what we already know:
I The number of lists of size k, with or without repetition
I Various lemmas/theorems which we saw so far

I Question: How do we go from lists to subsets?
I How are these two different?
I How do we make use of this?
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Counting the subsets of a set

Theorem (The number of subsets of a certain size)
Let A be a set of size n ∈ N, and let k ∈ Z.

I If k < 0 or k > n, then the number of k-subsets of A is zero.
I Otherwise, the number of k-subsets of A is n!

k!(n−k)! .

I Notation: We use
(n

k

)
to denote the number of k-subsets of a set

with n elements.
I So the theorem says:

I If k < 0 or k > n, then
(n

k

)
= 0

I Otherwise,
(n

k

)
= n!

k!(n−k)! .

Winter Semester 2012, MPII, Saarbrücken Basic Mathematical Techniquesfor Computer Scientists December 3, 2012



Playing Cards
A deck of 52 cards

I 4 suits, 13 cards in each suit

Vectorized Playing Cards 1.3- http://code.google.com/p/vectorized-playing-cards/
Copyright 2011 - Chris Aguilar
Licensed under LGPL 3 - www.gnu.org/copyleft/lesser.html
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Playing Cards
A deck of 52 cards

I 4 suits, 13 cards in each suit
I A hand is a set of cards dealt from the deck

I How many different 6-card hands are there?
I How many 6-card hands, with 2 spades and 4 clubs?
I How many 7-card hands, with 2 spades, 2 clubs, and 3 hearts?
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A couple of useful facts
About the numbers

(n
k

)
I We defined

(n
k

)
as the number of k-subsets of any n-set

I Claim: (
n
n

)
= 1

I Proof?
I Claim: (

n
0

)
= 1

I Proof?
I Claim: (

n
k

)
=

(
n

n− k

)
I Proof?

I Claim: (
n + 1

k

)
=

(
n

k− 1

)
+

(
n
k

)
I Proof?
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Example
Counting bits

I What is a bit?
I What is an n-bit vector?
I How many n-bit vectors have exactly k ones in them?

Theorem
For any n ∈ N and k ∈ N,0 ≤ k ≤ n, the number of n-bit vectors with
exactly k ones is

(n
k

)
.
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Monomials
Definition

Definition (Monomials)
A monomial is a product of non-negative integral constant powers of
variables.

Example

I Some monomials: x, y, xy, a2bc, a2b3c5x10y
I Some non-monomials:

x + y, a(b + x2), a3 + 3bx2 − cx − yz,7abc− 10xy
I Some other non-monomials: sin x, ln x, x

√
xy, xx

I The second list of non-monomials are all examples of
polynomials—these are expressions formed by adding or
subtracting two or more monomials.

I The prefix "poly" means "many".
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Some monomials
Spot the pattern

Polynomial Monomials Count
(x + y) {x, y} 2
(x + y)2 {x2, xy, xy, y2} 4
(x + y)3 {x3, x2y, x2y, x2y, xy2, xy2, xy2, y3} 8
(x + y)4 {x4, x3y, x3y, x3y, x2y2, x2y2, x2y2, xy3, x3y, x2y2, x2y2, x2y2, xy3, xy3, xy3, y4} 16

I Given a list L100 of all the monomials the expansion of (x + y)100

I How will you create the list L101 of the monomials of (x + y)101?

I What pattern do the numbers in the rightmost column follow?
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Spot the pattern
Relate it to something which we know

I Do we know something else which follows the same pattern of
numbers?

I How do we “connect” the two?
I “Why” this pattern among counts of monomials?
I How do we map what we know to what we see?
I What is a bijection from one to another?
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Binomials
Definition

Definition (Binomials)
A binomial is a polynomial with exactly two terms—it is the sum (or
difference) of two monomials.

I Examples: x + y, x7a3b− abxy
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Counting monomials
The Binomial Theorem

Theorem (The Binomial Theorem)
For any n ∈ N, each monomial in the expansion of (x + y)n is of the
form xiyn−i ; 0 ≤ i ≤ n.
For each k ∈ N,0 ≤ k ≤ n, the monomial xkyn−k appears exactly

(n
k

)
times in this expansion.
So the coefficient of xkyn−k in (x + y)n is

(n
k

)
.

Thus,

(x+y)n =

(
n
n

)
xny0+

(
n

n− 1

)
xn−1y+· · ·+

(
n

n− i

)
xn−iyi+· · ·+

(
n
0

)
x0yn.

Using the equations we saw before, this is usually written:

(x + y)n = xn +

(
n
1

)
xn−1y + · · ·+

(
n
i

)
xn−iyi + · · ·+ yn.
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Thank You!
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