Basic Mathematical Techniques for Computer Scientists

Counting, Part II

December 3, 2012

Recap

- Counting: Finding how many things there are
- Very important in CS
- Simplest way: tick off things against $1,2, \ldots$
- Not practical in most interesting cases
- Other ways to count
- General idea: Bijection from the known to the unknown
- Or in the other direction

Recap

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules:
- The Sum Rule
- The Product Rule

Recap

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules.
- Some terminology:
- List, sequence, string
- The length of a list/sequence/string
- Alphabet

Recap

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
- Very useful to count the number of sequences with extra restrictions

Recap

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
- The Quotient Rule
- Used to get the true count from an "overcount"

Recap

- Counting: Finding how many things there are
- Use bijections to make counting easier
- Two basic counting rules
- List, sequence, string, alphabet, length
- Generalized Product Rule
- The Quotient Rule
- Permutations and the factorial function
- Permutation: List of all the elements in a set, exactly once
- Factorial of $n \in \mathbb{N}$: The number of permutations of a set of size n.

Counting lists made up from a set

- Let A be a finite set with n elements
- How many lists of length k, of elements of A?
- If we allow elements to repeat in a list: n^{k}
- This makes sense only when $k \geq 0$
- If we do not allow elements to repeat in any list: $n \cdot(n-1) \cdot(n-2) \cdots(n-k+1)$
- This is equal to $\frac{n!}{(n-k)!}$
- This makes sense only when $0 \leq k \leq n$

Counting lists made up from a set

Two theorems

Theorem (Number of lists, no restrictions)
The number of lists of length $k \geq 0$ of elements chosen from a set of size n is

$$
n^{k}
$$

Theorem (Number of lists, no repetitions)

The number of lists of length $0 \leq k \leq n$ of elements chosen from a set of size n, when no element repeats in a list, is

$$
\frac{n!}{(n-k)!}
$$

A digression (important!)

- You should not memorize the formulas in these theorems
- Also true for the other formulas in this course
- And in most other courses
- If you spend effort in memorizing these formulas
- You will most probably not remember why they are true
- You will have forgotten the mathematics soon
- You will only be able to say "It's a rule"
- A failure for you (and your teacher)
- You are likely to make silly mistakes when applying them
- It is easy to misplace a bracket, for example

A digression (important!)

- You should not memorize the formulas in these theorems
- Also true for the other formulas in this course
- And in most other courses
- Instead, each time you do an exercise,
- Recall the argument which gets you the rule
- Take the help of the slides/Wikipedia/whatever
- If you do this,
- You can happily forget the rule
- Because you know that when you need it, ...
- ... you can derive it yourself!
- You will internalize the mathematics
- You will end up smarter than Joe Learnbyrote

Counting the subsets of a set

- Goal: Find the number of subsets of size k, of a set A of size $n \in \mathbb{N}$.
- These are called the k-subsets of A
- In general, a set of size n is sometimes called an n-set
- Use what we already know:
- The number of lists of size k, with or without repetition
- Various lemmas/theorems which we saw so far
- Question: How do we go from lists to subsets?
- How are these two different?
- How do we make use of this?

Counting the subsets of a set

Theorem (The number of subsets of a certain size)
Let A be a set of size $n \in \mathbb{N}$, and let $k \in \mathbb{Z}$.

- If $k<0$ or $k>n$, then the number of k-subsets of A is zero.
- Otherwise, the number of k-subsets of A is $\frac{n!}{k!(n-k)!}$.
- Notation: We use $\binom{n}{k}$ to denote the number of k-subsets of a set with n elements.
- So the theorem says:
- If $k<0$ or $k>n$, then $\binom{n}{k}=0$
- Otherwise, $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.

Playing Cards

A deck of 52 cards

- 4 suits, 13 cards in each suit

Vectorized Playing Cards 1.3-http://code.google.com/p/vectorized-playing-cards/
Copyright 2011 - Chris Aguilar
Licensed under LGPL 3 - www.gnu.org/copyleft/lesser.html

Playing Cards

A deck of 52 cards

- 4 suits, 13 cards in each suit
- A hand is a set of cards dealt from the deck
- How many different 6 -card hands are there?
- How many 6 -card hands, with 2 spades and 4 clubs?
- How many 7 -card hands, with 2 spades, 2 clubs, and 3 hearts?

A couple of useful facts

About the numbers $\binom{n}{k}$

- We defined $\binom{n}{k}$ as the number of k-subsets of any n-set

A couple of useful facts

About the numbers $\binom{n}{k}$

- We defined $\binom{n}{k}$ as the number of k-subsets of any n-set
- Claim:

$$
\binom{n}{n}=1
$$

- Proof?
- Claim:

$$
\binom{n}{0}=1
$$

- Proof?
- Claim:

$$
\binom{n}{k}=\binom{n}{n-k}
$$

- Proof?
- Claim:

$$
\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}
$$

- Proof?

Example

Counting bits

- What is a bit?
- What is an n-bit vector?
- How many n-bit vectors have exactly k ones in them?

Theorem
For any $n \in \mathbb{N}$ and $k \in \mathbb{N}, 0 \leq k \leq n$, the number of n-bit vectors with exactly k ones is $\binom{n}{k}$.

Monomials

Definition

Definition (Monomials)

A monomial is a product of non-negative integral constant powers of variables.

Example

- Some monomials: $x, y, x y, a^{2} b c, a^{2} b^{3} c^{5} x^{10} y$
- Some non-monomials: $x+y, a\left(b+x^{2}\right), a^{3}+3 b x^{2}-c x-y z, 7 a b c-10 x y$
- Some other non-monomials: $\sin x, \ln x, x \sqrt{x y}, x^{x}$
- The second list of non-monomials are all examples of polynomials-these are expressions formed by adding or subtracting two or more monomials.
- The prefix "poly" means "many".

Some monomials

Spot the pattern

Polynomial	Monomials	Count
$(x+y)$	$\{x, y\}$	2
$(x+y)^{2}$	$\left\{x^{2}, x y, x y, y^{2}\right\}$	4
$(x+y)^{3}$	$\left\{x^{3}, x^{2} y, x^{2} y, x^{2} y, x y^{2}, x y^{2}, x y^{2}, y^{3}\right\}$	8
$(x+y)^{4}$	$\left\{x^{4}, x^{3} y, x^{3} y, x^{3} y, x^{2} y^{2}, x^{2} y^{2}, x^{2} y^{2}, x y^{3}, x^{3} y, x^{2} y^{2}, x^{2} y^{2}, x^{2} y^{2}, x y^{3}, x y^{3}, x y^{3}, y^{4}\right\}$	16

- Given a list L_{100} of all the monomials the expansion of $(x+y)^{100}$
- How will you create the list L_{101} of the monomials of $(x+y)^{101}$?
- What pattern do the numbers in the rightmost column follow?

Spot the pattern

Relate it to something which we know

- Do we know something else which follows the same pattern of numbers?
- How do we "connect" the two?
- "Why" this pattern among counts of monomials?
- How do we map what we know to what we see?
- What is a bijection from one to another?

Binomials

Definition

Definition (Binomials)

A binomial is a polynomial with exactly two terms-it is the sum (or difference) of two monomials.

- Examples: $x+y, x^{7} a^{3} b-a b x y$

Counting monomials

The Binomial Theorem

Theorem (The Binomial Theorem)

For any $n \in \mathbb{N}$, each monomial in the expansion of $(x+y)^{n}$ is of the form $x^{i} y^{n-i} ; 0 \leq i \leq n$.
For each $k \in \mathbb{N}, 0 \leq k \leq n$, the monomial $x^{k} y^{n-k}$ appears exactly $\binom{n}{k}$ times in this expansion.
So the coefficient of $x^{k} y^{n-k}$ in $(x+y)^{n}$ is $\binom{n}{k}$.
Thus,

$$
(x+y)^{n}=\binom{n}{n} x^{n} y^{0}+\binom{n}{n-1} x^{n-1} y+\cdots+\binom{n}{n-i} x^{n-i} y^{i}+\cdots+\binom{n}{0} x^{0} y^{n} .
$$

Using the equations we saw before, this is usually written:

$$
(x+y)^{n}=x^{n}+\binom{n}{1} x^{n-1} y+\cdots+\binom{n}{i} x^{n-i} y^{i}+\cdots+y^{n} .
$$

Thank You!

