
Basic Mathematical Techniques for Computer
Scientists – a few words on words strings

Paweł Gawrychowski

December 17, 2012

Paweł Gawrychowski ()A few words on words December 17, 2012 1 / 15

A word is simply a sequence of characters over some fixed alphabet.
We denote that by writing w ∈ Σ∗, which read “w is a word consisting
of a number of characters from alphabet Σ”.

aababaaab ∈ {a,b}∗

01101110 ∈ {0,1}∗

abracadabra ∈ {a,b, . . . , z}∗

Subwords, prefixes, suffixes
w [i ..j] denotes the subword of w starting at the i-th letter and ending at
the j-th letter. If i = 1 this is a prefix, and if j = |w | a suffix.

Paweł Gawrychowski ()A few words on words December 17, 2012 2 / 15

Lock puzzle
Say that we have a lock which a 3-digit code and the usual 0-9 keypad.
The lock remembers the last 3 digits, and opens if they’re the same as
the secret code, i.e., there is no enter key.

Example
123 after pressing 7 becomes 237.

Question
How many times do you need to press a button to check all possible
codes?

For 0-1 keypad, a good choice would be 0001011100.

Paweł Gawrychowski ()A few words on words December 17, 2012 3 / 15

Lets try to formulate the question in the language of words!

Lock puzzle, general version
For an alphabet Σ and an integer k , we want to find the shortest
possible word w such that any word of length k over Σ occurs at least
once as a subword in w .

There are two question:

1 what is the smallest possible length?
2 can we actually construct the corresponding w qucikly?

Whenever faced with a task like this, you should first try to find some
lowerbound on the solution size. In some , cases a reasonable
lowerbound will be actually the real answer.

Paweł Gawrychowski ()A few words on words December 17, 2012 4 / 15

How many words of length k over Σ there are? |Σ|n. Hence the length
of our solution must be at least |Σ|k + k − 1.

Lemma
There exists a word of length |Σ|k + k − 1 which contains each word of
length k over Σ exactly once as a subword.

We will try to prove this lemma. The key insight is to reformulate the
whole question in the language of graphs.

First approach
Nodes of the graph should correspond to possible words of length k .
What should be the edges? u c→ v if u becomes v after pressing key c.

Nice try, but not good enough.

Paweł Gawrychowski ()A few words on words December 17, 2012 5 / 15

Maybe words should correspond to edges, not nodes?

Second approach
Nodes of the graph should correspond to possible words of length
k − 1. What should be the edges? u c→ v if v = u[2..k − 1]c.

Now, any solution w corresponds to a walk of length |w | − (k − 1)
which visits each edge at least once.

Any walk of length ` which visits each edge at least once corresponds
to a solution w of length `+ (k − 1).

So we can completely forget about the original question, and focus on
finding shortest such walk in the graph GΣ,k .

Paweł Gawrychowski ()A few words on words December 17, 2012 6 / 15

Now, look at the graph again. What can be said about the out- and
in-degrees of the vertices?

Oservation
For any Σ and k , the graph GΣ,k is eulerian.

Hence we can actually find a walk which visits each edge exactly once.
This is clearly the best possible, and as the number of edges in the
graph is Σk , proves the lemma.

Lemma (what we proved)

There exists a word of length |Σ|k + k − 1 which contains each word of
length k over Σ exactly once as a subword.

Paweł Gawrychowski ()A few words on words December 17, 2012 7 / 15

We want to be computer scientists, so in most of the cases Σ = {0,1}.
Nevertheless, sometimes we need to work with a larger alphabet. A
natural solution is to encode it using zeroes and ones.

Σ = {a,b, c,d}
a → 00
b → 01
c → 10
d → 11

Now consider the following scenario: we have a very long string
w ∈ Σ, which we need to encode in binary. How should we encode
single characters?

Paweł Gawrychowski ()A few words on words December 17, 2012 8 / 15

Σ = {a,b, c,d} and w = a10000bcd

a → ?

b → ?

c → ?

d → ?

We should first formulate the question in more precise terms.

Alphabet encoding, general version
Given the frequencies of all characters of an alphabet Σ (i.e., f (c) is the
number of times c occurs), find a mapping h : Σ→ {0,1}∗ such that:

1 no h(c) is a prefix of h(c′), if c 6= c′,
2 the sum

∑
c∈Σ |h(c)|f (c) is minimized.

Paweł Gawrychowski ()A few words on words December 17, 2012 9 / 15

Σ = {a,b, c,d} and w = a10000bcd

a → 0
b → 10
c → 110
d → 111

We should first formulate the question in more precise terms.

Alphabet encoding, general version
Given the frequencies of all characters of an alphabet Σ (i.e., f (c) is the
number of times c occurs), find a mapping h : Σ→ {0,1}∗ such that:

1 no h(c) is a prefix of h(c′), if c 6= c′,
2 the sum

∑
c∈Σ |h(c)|f (c) is minimized.

Paweł Gawrychowski ()A few words on words December 17, 2012 9 / 15

This time we will focus on how to construct the best possible encoding
in a reasonable time instead of looking for a simple formula.

How to visualize the solution?
We think that the encoding is a binary tree (or, more precisely, a trie).
The root corresponds to the empty word ε, and each node to a word
spelled out when following the path from the root. Each h(c)
corresponds to a leaf.

A few simple observations:
1 each inner node has exactly two children,
2 each leaf corresponds to some c ∈ Σ,
3 we want to minimize ∑

i

f (ci) depth(vi)

where vi is the leaf corresponding to the i-th character ci , and
depth(v) is the depth of v .

Paweł Gawrychowski ()A few words on words December 17, 2012 10 / 15

The task looks hopeless. We could try all possible trees, but for
|Σ| = 256 this would never finish before the end of the Universe.

We will try to develop a greedy method for this problem. The key
insight will be that we can (quickly) reduce the problem P to a smaller
one P ′ so that given an optimal solution to P ′ we can (quickly) recover
an optimal solution to P.

Let ci be the least frequent character. What can we say about the
depth of vi in an optimal tree?

Let ci and cj be the two least frequent characters (with i 6= j). What can
you say about the depths of vi and vj in an optimal tree?

Paweł Gawrychowski ()A few words on words December 17, 2012 11 / 15

Lemma
Let ci and cj be the two least frequent characters. Then there is some
optimal solution where vi and vj are brothers.

Proof.
Take any optimal solution (i.e., an optimal tree), and choose any inner
node v whose both children are leaves maximizing depth(v). Then:

1 if both vi and vj are children of v , we are done,
2 if none of vi and vj are children of v , we swap them with the two

children of v ,
3 if vi is a child of v but vj is not, we swap vj with the other child of v ,
4 if vj is a child of v but vi is not... symmetry.

Paweł Gawrychowski ()A few words on words December 17, 2012 12 / 15

This lemma actually gives us an efficient way of solving the original
problem.

Efficient?
Computer scientists usually denote the size of the problem by n. In our
case, n = |Σ|. Then they are happy if the number of steps required to
implement their method is roughly polynomial in n.

Roughly?
To make the notion of roughly more precise, we use the big-oh notion:

f (n) ∈ O(g(n)) ⇐⇒ ∃α>0∃n0∀n>n0 f (n) ≤ αg(n)

Paweł Gawrychowski ()A few words on words December 17, 2012 13 / 15

Now, using the lemma we get the following simple method:

1 if Σ = 2, return the trivial tree with one inner node
2 choose ci and cj with the smallest frequencies (and i 6= j)
3 “glue” characters ci and cj together, i.e., create a new character c

with frequency f (ci) + f (cj) and forget about ci , cj

4 construct an optimal solution recursively
5 replace in this optimal solution for the smaller problem the node

corresponding to c with an inner node with two children
corresponding to ci and cj

How many steps do we need to solve the problem of size n?

O(n2) naively. But, we can do much better!

Paweł Gawrychowski ()A few words on words December 17, 2012 14 / 15

Forget about actually constructing the solution. Say that we only want
to know its value. Then the following recursive formulation can be
changed so that we only need a data structure which stores the
frequencies and allows:

1 inserting a new number,
2 extracting the smallest number.

It is known that using something called a heap we can implement both
operations in O(log n) steps, hence the whole complexity becomes
O(n log n).

Paweł Gawrychowski ()A few words on words December 17, 2012 15 / 15

