
Prof. Dr. Benjamin Doerr Winter 2012/13

Exercises for Randomized Methods in Computer Science
http://www.mpi-inf.mpg.de/departments/d1/teaching/ws12/rmcs/

Assignment 6 Due: Wednesday, November 28, 2012

Exercise 1 Understand the “quasirandom with restarts” rumor spreading protocol that was introduced
in the last lecture. To this aim, read the ICALP 2011 paper of Doerr and Fouz (will be on the course
page). Read it completely, take cursory note of the very precise bounds proven in the paper and of the
other works mentioned, but gain a deeper understanding of the working principles of this protocol.
Answer the following questions each in few sentences (in particular, without proofs).

a) Why is the basic version of this protocol not robust against adversarial failures? How is this
overcome? Could this also be overcome with the following trick: After the adversary failed
some nodes, the remaining nodes choose a random permutation and use this order instead of
the natural order 1, 2, 3, When using a random order, an adversarial choice of failed nodes
should be equivalent to a random choice.

b) Why (on a superficial level) does this protocol not work on a random graph of n vertices (n
nodes with each possible edge present with probability 1/2)?

c) Comment on the following alternative protocol: When a node i is informed, it next calls node
i+1 (modulo n, of course), then it calls random nodes. After R times having called an informed
node, it stops.

Exercise 2 In the next lecture, we shall start with the analysis of elementary randomized search
heuristics. As a warm-up, consider the following problems. Our aim is always to find the maximum
of a function f : {0,1}n→R. The elements of {0,1}n naturally are called bit-strings. We shall regard
the following two randomized search heuristics.

Randomized local search (RLS) starts with a random bit-string and repeatedly tries to improve it by
flipping a randomly chosen bit. In the following pseudo-code, no termination criterion is specified.
This is because we shall be interested in questions like “does this approach eventually find the optimal
solution” and “how long does this take”. In practice, of course, one always has some termination
criterion like a fixed number of iterations or a bound how many iterations without improvement are
tolerated.

Algorithm 1: Randomized Local Search (RLS)
1 Choose x ∈ {0,1}n uniformly at random;
2 repeat
3 y := x;
4 Choose i ∈ [n] uniformly at random;
5 yi := 1− yi ; // flip the ith bit

6 if f (y)≥ f (x) then
7 x := y

8 until forever;

A slight variant of RLS is what is called the (1+1) evolutionary algorithm ((1+1) EA). The only
difference is that now y is not obtained from flipping one random bit, but from flipping each bit
independently with probability 1/n.

Algorithm 2: (1+1) Evolutionary Algorithm ((1+1) EA)
1 Choose x ∈ {0,1}n uniformly at random;
2 repeat
3 y := x;
4 for each i ∈ [n] do
5 with probability 1/n do yi := 1− yi

6 if f (y)≥ f (x) then
7 x := y

8 until forever;

a) Convergence: A first useful property of a randomized search heuristic is convergence, that is,
that is surely finds an optimum (=maximum) of f if one waits sufficiently long. For which
functions f : {0,1}n→R do RLS and the (1+1) EA converge? Note: I’m really only asking for
convergence, so I don’t care how fast this convergence is (in this part of this exercise).

b) Run-time analysis: Indeed, it would be nice to know how long it takes (in expectation or with
high probability) until an optimal solution is found. An easy test function for randomized
search heuristics is the so-called ONEMAX function, simply counting the number of 1-bits and
formally defined by f : {0,1}n→R,x 7→∑

n
i=1 xi. Prove (formally) that both RLS and the (1+1)

EA find the optimum of ONEMAX in time Θ(n logn) and not faster. By time we here always
mean the number of evaluations of the function f . Think (informally) about what happens if
we replace ONEMAX with a general linear function f : {0,1}n→ R;x 7→ ∑

n
i=1 aixi, where the

ai are arbitrary positive numbers. Can you still prove an O(n logn) upper bound?

Exercise 3 This is my favorite example of dependent randomization (well, maybe you only see
dependencies and no randomization, that’s OK).

Imagine that I organize the final exam as follows: I put a hat on each of your heads. This hat is either
blue or red. Each of you can see all hats except his/her own. The sole exam problem is to find out
your own hat color. As usual, this is a written exam and you can’t talk to your colleagues. Since
this exam is easy to mark, I do this immediately after the exam. Those who correctly found their hat
color will pass, those who don’t guess right will fail and are immediately sent to the secret dungeon
of unsuccessful students in the MPI basement. Faced with this situation, you should find a strategy
that ensures that at least one student gets the hat color correct, so that he/she can run to the dean and
complain about the unfair exam.

So the task in this problem is finding a strategy that ensures that one student guesses right, or proving
that no such strategy exists. The students may agree on a strategy before entering the exam room, but
from then on no communication of any kind is possible (not a single bit of information will flow from
any student to any other).

Note that guessing random colors indeed has a very high chance of getting at least one correct answer,
but this is not what this problem asks for. We (that is, you) want a guarantee that there is at least one
correct answer.

