
1 Max-flow Min-cut Theorem (LP version)

In this section, we give a proof of max-flow min-cut theorem using LP rouding. We first write down the
LP relaxation for the problem of finding minimum s-t cut, and show how to round the LP to get a cut of
value OPTLP . This implies that there is a cut of the same value as that of maximum flow (since max-flow
is the dual of min-cut).

Let G = (V,E) be any graph with capacity function c : V × V → R. We are interested in computing a cut
S ⊆ V such that | {s, t} ∩ S| = 1 while minimizing c(S) =

∑
(u,v)∈E:u∈S,v 6∈S c(u, v). Let us first write down

the LP relaxation for the problem of single source single sink cut. We have a variable x(u, v) for each edge
(u, v) in the graph G. The intended meaning of this variable is to indicate whether an edge (u, v) is cut.

(LP)

min
∑

(u,v)∈E

c(u, v)x(u, v)

s.t.
∑

(u,v)∈P

x(u, v) ≥ 1 for all path P from s to t

x(u, v) ∈ [0, 1]

The set of constraints enforces that, for each path P connecting s and t, at least one edge must belong to
the cut. Notice that this is a relaxation of the problem, because for each cut S separating s and t, any
path P starting from s must cross from S to V \ S at some point.

1.1 Solving this LP in polynomial time

Even though this LP has exponential number of constraints (i.e. the number of paths from s to t can be
exponential), one can show a separation oracle for this LP as follows. Given a tentative solution x, we can
compute shortest s-t path from s to t using the distance function x. That is, define the set Pv as the set
of paths starting from s and ending at v. We can define dx(v) = minP∈Pv

∑
(u,w)∈P x(u,w).

Claim 1.1. Solution x violates some constraint in (LP) if and only if dx(t) < 1.

The value of dx(t) can be computed using any shortest path algorithm, so we have shown a separation
oracle for (LP).

1.2 LP Rounding

Define a mapping of vertices onto the real line R as follows: Let φ(s) = 0, and for each vertex v ∈ V \ {s},
we define φ(v) as the shortest path length (using metric x(·, ·)) from s to v. It is clear from this definition
that φ(t) = 1. Now we are ready to describe the algorithm:

• Pick a random value ∆ ∈ (0, 1)

• Create a cut (A,B) where A contains all vertices v with φ(v) ≤ ∆, and B = Ā.

The following claim follows immediately from the fact that φ(s) < ∆ < φ(t).

1

Claim 1.2. The cut (A,B) is feasible, i.e. s ∈ A and t ∈ B.

Now the next claim argues that the cost of the resulting cut is low in expectation.

Claim 1.3. The expected cost of the cut (A,B) is OPT.

Proof. Let Y be a random variable that denotes the size of the cut
∑

(u,v)∈(A,B) c(u, v). We can write this
term as

∑
(u,v)∈E:φ(u)<φ(v) c(u, v)Yuv where Yuv is an indicator random variable denoting whether (u, v)

crosses the cut (A,B).

By linearity of expectation, we have E [Y] =
∑

(u,v)∈E c(u, v)E [Yuv]. Since Yuv is an indicator rv, we
have E [Yuv] = Pr [(u, v) is cut]. Since φ(u) ≤ φ(v), the probability that (u, v) is cut is the same as the
probability that “u ∈ A and v ∈ B” which is again the same as “φ(u) ≤ ∆ ≤ φ(v)”. This probability is at
most φ(v)− φ(u) ≤ x(u, v) due to the fact that φ(·) is a shortest path function.

All these imply that E [Y] ≤
∑

(u,v)∈E c(u, v)x(u, v) = OPT.

Derandomization: Now we have an algorithm whose cost is OPT in expectation. What if we want a
deterministic algorithm? Notice that this analysis implies that, there is a value ∆ ∈ (0, 1) such that
A∆ = {v : φ(v) ≤ ∆} and B∆ = {v : φ(v) > ∆} is a cut of cost at most OPT. If we reorder the vertices in
V such that V = {v1, . . . , vn} where φ(v1) ≤ φ(v2) ≤ . . . ≤ φ(vn), then for any ∆ ∈ (φ(vi), φ(vi+1), the cut
(A∆, B∆) is the same. Therefore, there can be at most n different cuts, and one such cut must have its
value at most OPT. Our algorithm can simply try all possible cuts.

2

