
Lecture 9: Basic Metric Method in Approximation Algorithms

In this note, we show two O(log n) approximation algorithms for the undirected multicut problem based on
two different (but closely related) techniques. We will use these techniques to prove a partitioning lemma
about points in metric space. Such lemma can be used to round the feasible fractional solution given by
a natural LP relaxation of undirected multicut (the solution can naturally be viewed as points in metric
space).

Multicut problem: Suppose we are given a graph G = (V,E), cost function c : E → R, and k terminal
pairs {(si, ti)}ki=1. Our goal is to remove subset of edges in order to separate all terminal pairs, while
minimizing the cost of cut edges. Formally, we want to find a subset E′ ⊆ E such that there is no path
from si to ti in (V,E \ E′), while minimizing the cost c(E′) =

∑
e∈E′ ce.

1 Partitioning Lemma

Let G = (V,E) be a complete graph with weight function w(e) and metric distance function d(e) on edges.
Let α,∆ > 0 be two parameters. We say that a partition π = {V1, . . . , V`} of vertices is α-cheap ∆-small
partition if ∑

i,j:i<j

∑
uv:u∈Vi,v∈Vj

w(uv) ≤ α
∑
uv∈E

d(u, v)w(uv)

Moreover, the diameter of G[Vi] is at most ∆. In other words, if we fix some parameter ∆, we are interested
in partitioning the vertex set V into a number of low-diameter subsets such that the weight of edges across
the cut is as small as possible.

Observe that, for a fixed value of ∆, the best α we can hope for is α = 1/∆: Imagine a line metric with
vertices corrsponding to points on the line, and the points are equally spaced. So it is reasonable to aim at
computing ∆-small ( β∆)-cheap partition with as small β as possible. For a general metric space, the best
possible is β = O(log n), which will be shown below. More formally, we will prove the following.

Theorem 1.1. Let ∆ > 0 be a parameter. There is a polynomial time algorithm that computes O( logn
∆ )-

cheap ∆-small partition.

We first show how the partitioning lemma implies an O(log n) approximation algorithm for undirected
multicut1. The lemma will be proved in the next two sections.

First we can write down the LP relaxation for minimum multicut problem as follows:

(LP)

min
∑

(u,v)∈E

cexe

s.t.
∑
e∈P

xe ≥ 1 for all i ∈ [k], for all path P from si to ti

1Applying the partitioning procedure directly gives O(log k) approximation
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Separation Oracle: Even though this LP has exponential number of constraints, we can solve it in
polynomial time by providing a separation oracle. Given a solution x, we consider a metric d : V ×V → R
where d(u, v) is defined as the shortest path distance from u to v using x as a distance. We simply check,
for all i = 1, . . . , k, whether d(si, ti) ≥ 1. The constraints are satisfied if and only if for all i = 1, . . . , k, we
have d(si, ti) ≥ 1.

Algorithm: Now we describe an LP rounding algorithm. Given a feasible solution x to the above LP,
we will be working with the metric (V, d) where d is a shortest path metric in x. Also, we define the
weight w(e) = ce for all edges e ∈ E. Invoking the partition lemma with ∆ = 1/2, we obtain a partition
π = {V1, . . . , V`} such that diameter of each Vj is at most 1/2. Since d(si, ti) ≥ 1, the following claim is
immediate.

Claim 1.1. For each i = 1, . . . , k, the pair si, ti belong to different sets in the partition π.

This means that, if we cut edges across the different sets in the partition π, we get a feasible solution for
multicut. The partition lemma guarantees that the cost of edges across the cut is O(log n)

∑
uv∈E cuvxuv ≤

O(log n)OPTLP . In the next sections, we will discuss two proofs of the lemma.

2 First Proof: Random Cut

Denote the vertex set by V = {v1, . . . , vn}. We define a notion of balls as normally used in geometry, i.e.
Ball(v, r) = {u : d(u, v) ≤ r}. Notice that Ball(v, r) is simply the set of vertices that are within distance r
to vertex v.

The algorithm proceeds as follows:

• Pick a random permutation σ : {1, . . . , n} → {1, . . . , n} and a random number r ∈ (0,∆/2). Initially
X = V is the set of “unclaimed” vertices.

• We proceed in n iterations, where in iteration i, we construct a set of vertices Bi by Bi = Ball(vσ(i), r)∩
X. These vertices are claimed by vσ(i), and so we update X ← X \ Bi. Observe that any vertex
cannot be claimed twice and that Bi may not even include vσ(i) (if it was previously claimed by other
vertices).

Now we analyze the probability that each edge uv ∈ E is cut and show that this probability is at most
O(log n/∆)d(u, v). This immediately implies the lemma (well, after writing down the expectation and
applying Markov’s inequality).

What is the probability that an edge uv ∈ E is cut? We need to look at the probability that u and v
are claimed by different sets Bi. Consider the process by which these vertices are claimed. Let w1, . . . , wn
be the vertices, ordered such that d(w1, {u, v}) ≤ d(w2, {u, v}) ≤ . . . ≤ d(wn, {u, v}). We say that uv is
settled by the wj , if the ball growing from wj claims at least one vertex from {u, v} for the first time. By
definition, an edge can be settled only once.

Claim 2.1. If uv is settled by wi, then all other vertices in the set {w1, . . . , wi−1} cannot come before wi
in the permutation.

Proof. Suppose not, and wj comes before wi in the permutation such that j < i. Then Ball(wj , r) must
include at least one of {u, v}, settling the edge uv prior to wi, a contradiction.
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Lemma 2.1. The probability that uv is cut is at most O( logn
∆ )d(u, v).

Proof. We first write Pr [uv is cut ] =
∑n

i=1 Pr [uv is cut by wi]. In order for wi to cut the edge, it must
be the case that wi settles uv and therefore comes before other vertices in {w1, . . . , wi−1} according to
random permutation σ.

Prσ,r [uv is cut by wi] = Prσ,r [wi is the first among {w1, . . . , wi} and wi cuts uv ]

= Prσ [wi is the first]Prr [wi cuts uv | wi is the first]

=
1

i
Prr [r ∈ [d(wi, u), d(wi, v)]]

The last line follows because if r is out of such range, it would be impossible for wi to cuts uv. More
formally, let E is the event that wi is the first among {w1, . . . , wi}, so we can write the term

Pr [wi cuts uv | E ] ≤ Pr [r ∈ [d(wi, u), d(wi, v)] | E ] + Pr [wi cuts uv ∧ r 6∈ [d(wi, u), d(wi, v)] | E ]

The second term becomes zero (once r is outside of the range, it is impossible for wi to cut uv), and the

first term is at most d(wi,v)−d(wi,u)
∆/2 ≤ 2d(u, v)/∆. Summing over all i, we get the term

∑
i

1
i 2d(u, v)/∆ ≤

O(log n)d(u,v)
∆ .

3 Second Proof: Region Growing

The second proof will give a deterministic algorithm for computing the partitioning procedure. We define
the notion of volume, which captures the weighted distance inside a particular subset of vertices. For
technicality reasons, the volume of each ball consists of the node volume and the edge volume.

Let W =
∑

uv∈E d(u, v)w(uv). The node volume of each vertex is W/n. The edge volume inside the ball
B = Ball(s, r) is

∑
uv∈B w(u, v)d(u, v)+

∑
uv∈δ(B)w(u, v)(r−d(s, {u, v})). In other words, the edge volume

sums over all weighted distance of the edges inside the ball, and “partial” cost of the edges that cross from
inside to outside of the ball.

Even if we do not talk about the ball Ball(si, r), the notion of volume is still well-defined: vol(B) =∑
uv∈G[B]∪δ(B)w(u, v)d(u, v) + |B|W/n. The following lemma gives the upper bound on the total volume

of disjoint balls.

Claim 3.1. Let B1, . . . , Bl be a collection of disjoint subsets of vertices. Then∑
j

vol(Bj) ≤ O(W )

Proof. Notice that for each edge e inside some ball Bj , we have the term cexe that appears once, and for
each edge crossing Bj , the term appears at most twice. So the contribution from edge volume is at most
2W , and the contribution from node volume is at most W as well. The total volume is at most 3W .

Our goal is to partition the graph G into V (G) =
⋃`
i=1Bi such that each set Bi has radius less than ∆/2,

i.e. it is a ball of radius at most ∆/2. The cost of edges leaving each set Bi in the partition will be charged
to the volume vol(Bi).

Lemma 3.1. Let V ′ ⊆ V be any subset of vertices, and vertex v ∈ V ′ is a designated vertex in the
graph. Then there is a ball B = BallG[V ′](v, r) for some r < ∆/2 such that w(δ(B)) =

∑
ab∈δ(B)w(a, b) ≤

O( logn
∆ )vol(B). Moreover, such ball can be computed deterministically in polynomial time.
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Proof. Imagine the process of growing the ball of radius r continuously from r = 0 at vertex v, and consider
how the total volume of the ball changes in terms of r. Notice that, when r = 0, we have the volume of
vol(B(v, 0)) = W/n, and this volume is at most 2W for any value of r.

For convenience, we abbreviate the term Ball(v, r) by Br. Notice that the rate of change of volume is at

least dV ≥ w(Ball(v, r))dr. Dividing both sides of the inequality by V = vol(Br), we get
∫
dV
V ≥

∫ w(Br)
V dr.

The LHS is equal to lnV . By taking the limiting value of r ∈ (0,∆/2), we get

| ln(3W )− ln(W/n)| ≥
∫ ∆/2

0

w(Br)

V
dr

By averaging, there is a value r ∈ (0,∆/2) such that w(Br)
vol(Br) ≤ O( logn

∆ ).

We show how this lemma implies an algorithm for computing low-diameter low-cost partitioning. Starting
from X = V , we proceed in iterations. In iteration i, as long as diam(G[X]) > ∆, we pick arbitrary vi ∈ X
and compute the ball Bi by invoking the lemma. Then we update X ← X \ Bi. In the end, we have
obtained B1, . . . , Bn′ for some n′ ≤ n such that the diameter of each component G[Bj ] is at most ∆. The
total cost of edges across the cut can be bounded easily: Each edge uv in the cut must cross the ball at
some iteration, so the total cost is at most O( logn

∆ )
∑n′

i=1 vol(Bi) which is at most O( logn
∆ )W , as desired.
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