
Lecture 3: Greedy Algorithms

This is a very sketchy note that summarizes the material covered in class. Please do not expect any
perfection out of it. If you have any question regarding the note, do not hesitate to contact me.

1 k-Center (WS Chapter 2.2)

A metric consists of a point set X and distance function d : X×X → R satisfying the following properties:

• d(u, u) = 0 for all u ∈ X

• d(u, v) = d(v, u) for all u, v ∈ X

• d(u, v) + d(v, w) ≥ d(u,w) for any u, v, w ∈ X

For any subset X ′ ⊆ X, we write d(u,X ′) to denote minv∈X′ d(u, v). Now the statement of the k center
problem is as follows. Given a metric (X, d) and an integer k, our goal is to pick S : |S| = k such that the
maximum distance to S is minimized, i.e.

min
S⊆X:|S|=k

max
u∈X

d(u, S)

1.1 Algorithm

The greedy algorithm goes as follows. Starting from S = ∅, while |S| < k, we add the vertex in X whose
distance to S is maximized, i.e. in each iteration, we pick vertex u such that d(u, S) is maximized and add
u to S.

The following lemma implies that the greedy algorithm is optimal.

Lemma 1.1. Let R be the value of the optimal solution. When |S| = k, we have d(S, u) ≤ 2R for all
u ∈ X.

Proof. Let S∗ = {v1, . . . , vk} ⊆ X, |S∗| = k be the optimal solution for the k-center instance. Divide points
in X into k clusters C1, . . . , Ck ⊆ S∗ where Ci contain vertices in X that are closest to vi, so we have
that d(vi, u) ≤ R for all u ∈ Ci. Now consider our greedy solution S. Suppose that |S ∩ Ci| = 1 for all
i, then we would be done: For any point u ∈ Ci, we have d(u, S) ≤ d(u, vi) + d(vi, S) ≤ 2R (by triangle
inequality). Otherwise, if |S ∩Ci| > 1 for some cluster i, then at some point of the greedy algorithm, there
is no pair of vertices whose distance is more than 2R. So in any case we can conclude that d(S, u) ≤ 2R
for all u ∈ X.

2 Edge Disjoint Paths

We use the notation [k] to denote the set of numbers {1, . . . , k}. In the Edge Disjoint Path (EDP) problem,
we are given graph G = (V,E) and a collection of pairs {(si, ti)}ki=1. Our objective is to find a subset I ⊆ [k]
and paths Pi for all i ∈ I such that all paths {Pi}i∈I are edge disjoint.

We show that a simple greedy algorithm gives
√
|E| approximation algorithm for EDP. In some cases,

this algorithm gives the best known approximation ratio (e.g. planar graphs).

1

2.1 Algorithm

Define the notation, for each i ∈ [k] and graph G′, sp(i, G′) as a shortest path connecting si and ti in G′.
Initially, I = ∅ and G′ = G. While there is still a path connecting some i ∈ [k] \ I in G′, we choose i∗ as
the index i ∈ [k] \ I such that the length of sp(i, G′) is minimized; denote by Pi∗ = sp(i∗, G′). Then we
remove edges in Pi∗ from G′, add i∗ to set I, and proceed to the next iteration.

2.2 Analysis

Denote by m = |E(G)|. Consider the collection of paths P = {Pi}i∈I returned by the algorithm. Let I∗

and P∗ be the indices and the set of paths chosen by the optimal solution, where each index i ∈ I∗ is
associated with a path P ∗i ∈ P∗. We are going to compare the values of |I| and |I∗|.

Claim 2.1. For each i ∈ I, we either have i ∈ I∗, or there is some j 6= i in I∗ such that Pi ∩ P ∗j 6= ∅
(otherwise, the greedy algorithm would not finish or the solution P∗ would not be optimal). In such case,
we say that Pj “conflicts” with Pi.

1

We renumber the paths so that paths added into I are I = {1, . . . , |I|}, where Pi is added into the
solution in iteration i. Notice that the greedy algorithm guarantees that |Pi| ≤ |Pj | for i ≤ j. We partition
the execution of the algorithm into two phases. In the first phase, all paths added into I have length less
than

√
m (thus referred to as short), and in the second phases, all paths are at least

√
m in length. So we

know that P1, . . . , Ps are short for some integer s, while Ps+1, . . . are long. Let I∗1 be the indices j ∈ I∗

such that Pj conflicts with some paths in P1, . . . , Ps.

Claim 2.2. s ≥ |I∗1 |/
√
m.

2

Proof. This follows because each short path i ∈ I conflicts with at most
√
m paths in I∗1 .

Now define I∗2 = I∗ \ I∗1 . If I∗2 = ∅, we would be done, so we assume that I∗2 6= ∅. This would also
imply that |I| ≥ s + 1. Notice that all paths in I∗2 must be long, because otherwise, Ps+1 would have
been short, but this also implies that I∗2 cannot contain more than

√
m paths. All these imply that

|I| ≥ s + 1 ≥ |I∗|/
√
m.

3 Minimum Makespan Scheduling (WS, Chapter 2.3)

There are n jobs with processing times p1, . . . , pn respectively and m identical machines. Find an assignment
of jobs to the machines so that the completion time (a.k.a. makespan) is minimized.

The problem is NP-hard even when there are only two machines.

3.1 An Algorithm

The greedy algorithm proceeds in n iterations as follows. In iteration i, try to schedule job i by adding it
to the machine with least amount of work so far.

Let OPT denote the optimal makespan. We need the following lemma, whose proof is left as an exercise.

Lemma 3.1. OPT ≥ max
{∑

j pj
m ,maxj pj

}
1You should try to convince yourself that the claim is correct. I will not prove the claim formally.
2Again, you should try to fill in the detail of the proof by yourself.

2

Now we argue that the greedy algorithm is a 2 approximation algorithm. Consider machine i whose
completion time is maximized. It is enough to bound the completion time of this machine. Let pj be
the last job that finishes on this machine which is scheduled to start at time t. It must be the case that

t ≤
∑

j pj
m (because all machines must be full up to time t). Therefore we have that the makespan of this

solution is at most t + pj ≤ 2OPT. With a more careful analysis, one can show that this algorithm is in
fact a (2− 1/m) approximation algorithm.

4 Multiway Cut

Given a graph G = (V,E) with non-negative weights w and terminal set T , our goal is to compute a subset
F of edges such that (V,E \ F) disconnects every terminal pair, while minimizing the cost w(F).

When |T | = 2, this problem is simply minimum s-t cut, so it can be solved in polynomial time. When
|T | = 3, the problem already becomes NP-hard, so again we will design approximation algorithms for it.

4.1 An Algorithm

Denote by T = {t1, . . . , tk}. Our algorithm computes, for each i = 1, . . . , k, the minimum cut separating
ti and T \ {ti}; call the set of resulting edges Fi. The final solution is defined as F =

⋃k
i=1 Fi.

Lemma 4.1. w(F) ≤ 2OPT

Proof. Let F ∗ an optimal solution. Notice that the graph (V,E \ F ∗) can be thought of as k components
V1, . . . , Vk where Vi is a connected component containing ti. For each i, let F ∗i be the edges with exactly
one endpoint in Vi, so removing F ∗i disconnects ti from T \ ti.

From the fact that Fi is a minimum cut, we must have w(Fi) ≤ w(F ∗i), so
∑

iw(Fi) ≤
∑

iw(F ∗i). Now
consider the cost of the term on the RHS. Each edge in F ∗ only appears in exactly two terms in the sum,
so we have that

∑
iw(F ∗i) ≤ 2

∑
e∈F ∗ w(e) = 2OPT.

3

