
Lecture 8: Randomized Rounding of LP and SDP

1 Congestion Minimization

1.1 Chernoff Bound

Recall some basic bounds in probability theory.

Theorem 1.1. (Markov’s inequality) For any random variable X ≥ 0,

Pr [X > a] ≤ E [X]

a

Theorem 1.2. (Chebyshev’s bound) For any random variable X ≥ 0,

Pr [|X − E [X] | ≥ a] ≤ var(X)

a2

These two bounds hold for any random variable X. Now we consider a more restricted form of random
variable X. Suppose X =

∑n
i=1Xi such that Xi ∈ {0, 1} and E [Xi] = pi for all i ≤ n. Then notice that

µ = E [X] =
∑

i pi.

The following is a popular form of Chernoff bound that is probably easiest to use.

Theorem 1.3. (Chernoff bound, small δ) For any δ ∈ (0, 1),

Pr [X > (1 + δ)µ] ≤ e−δ2µ/3

And

Pr [X < (1− δ)µ] ≤ e−δ2µ/2

Theorem 1.4. (Chernoff bound, large δ) For all positive value δ,

Pr [X > (1 + δ)µ] ≤ e−δ2µ/(2+δ)

1.2 Discrepancy

We are given a set system (X,S) where X is a ground set, and we have S ⊆ X for each S ∈ S. Let χ : X →
{−1, 1} be a coloring of X by two colors. Discrepancy of function χ is disc(X,S, χ) = maxS∈S |

∑
x∈S χ(x)|.

Now, the discrepancy of the set system (X,S) is defined as

disc(X,S) = inf
χ
disc(X,S, χ)

We will use Chernoff bound to prove the following theorem.

Theorem 1.5. For any set system (X,S) with |X| = n and |S| = m, we have disc(X,S) = O(
√
n logm)

Proof. We show that a random coloring obtains this bound with high probability. For each x ∈ X, we pick
a random color χ(x) ∈ {−1, 1} uniformly.

1

Lemma 1.1. For any set S ∈ S,

Pr

[
|
∑
x∈S

χ(x)| > 10
√
n logm

]
≤ 1/2m

Proof. Let Yx = (1 + χ(x))/2 for each x ∈ X. Notice that Yx ∈ {0, 1} and that |
∑

x χ(x)| ≥ λ if and
only if|

∑
x Yx − E [

∑
x Yx] | ≥ λ/2. So we only need to bound the probability that |

∑
x∈S Yx − E [Y] | ≥

5
√
n logm. For any set S, the expectation E

[∑
x∈S Yx

]
= |S|/2. Now we can now apply Chernoff bound

to say that:

Pr

[
|
∑
x∈S

Yx − E

[∑
x∈S

Yx

]
| ≥ (10

√
n logm/|S|)E

[∑
x∈S

Yx

]]
≤ e

−100n logm|S|
6|S|2 ≤ 1/2m

From this lemma, we can apply union bound over all sets S ∈ S to get the desired result.

1.3 Congestion Minimization

We start from another extreme of Edge Disjoint Paths, called Congestion Minimization. In this problem,
we are given a graph G = (V,E) and k terminal pairs {(si, ti)}ki=1. For each i ∈ [k], we want to find a
path Pi connecting si to ti. Given a collection of paths P = {P1, . . . , Pk}, the congestion is defined as
maxi cong(e) where cong(e) = | {i : e ∈ Pi} |. Our goal is to route all paths while minimizing the maximum
congestion.

A natural approach to attack this problem is to start from LP relaxation. For each pair (si, ti), let Pi
denote the set of all paths connecting si to ti. For each path P ∈ Pi, we have variable xP which takes the
value of 1 if this path is chosen in the solution.

(LP)

min W

s.t.

k∑
i=1

∑
P∈Pi:e∈P

xP ≤W for all e ∈ E

∑
P∈Pi

xP = 1 for all i ∈ [k]

Notice that this LP has exponential number of variables. We cannot even represent it, but there is an
equivalent LP with polynomial number of variables. We will not discuss that point here. Let us assume
that we can solve this LP and see how this implies an approximation algorithm.

Algorithm: Now we can treat {xP }P∈Pi
as a probability distribution. For each i ∈ Pi, we choose a

path Pi according to this probability (so each path P is chosen with probability exactly xP). Ntice that,
for each edge e, E [cong(e)] ≤ W . Now we can apply Chernoff bound with δ = 100 log n, so we have
Pr [cong(e) > 100 log nW] ≤ e−25W logn ≤ n−25. By applying union bound, the probability that there is an
edge e ∈ E with congestion more than 100 log nW is very low.

If we use another formulation of Chernoff bound, this approximation factor can be madeO(log n/ log logn).
This remains the best known bound.

2

1.4 Lovasz Local Lemma (LLL)

We have seen the use of union bounds many times, where we usually write some bad event E as E =
⋃
j∈[k] Ej ,

and then upper bound the bad event by union bound Pr [E] ≤ kPr [Ej]. If k is relatively low, the union
bound is generally enough, but what if k is large, i.e. much larger than 1/Pr [Ej]?

Theorem 1.6. (LLL, symmetric version) Let Ai, i = 1, . . . ,m be a collection of (bad) events such that
Pr [Ai] ≤ p for all i. Moreover, each event Ai only depends on d other events with ep(d + 1) ≤ 1. Then
Pr [
⋃n
i=1Ai] < 1.

Notice that, we only need p ≤ 1/e(d+ 1) in order to be able to say that all bad events are avoided.

2 Limits of LP based approach: Integrality Gap

We can look at LP as a model of computation in which algorithms try to compute a feasible solution by
rounding linear programs. Then we can study limits of computation in this restricted model. Given a
minimization problem Π and a linear programming relaxation (LP) for Π, we know that, for any instance
J ∈ Π, OPTLP (J) ≤ OPT(J). If an algorithm were to produce an α approximation by rounding this LP,
it will always produce a solution whose cost is at most αOPTLP (J) for any instance J . So this will end
up bounding OPT(J)/OPTLP (J) by a factor of α for any instance J of Π. By this reasoning, if there is
any instance J such that OPT(J)/OPTLP (J) > α, this would imply that obtaining α approximation by
rounding (LP) is not possible.

More formally, we define the integrality gap of problem Π with respect to (LP) as:

sup
J∈Π

OPT(J)

OPTLP (J)

To show a lower bound, it is enough to exhibit one example J ∈ Π such that OPT(J)/OPTLP (J) > α. To
show an upper bound, we need an approximation algorithm.

2.1 Set Cover

We show an example of instance where an LP solution only costs 2, while any integral solution must cost
at least Ω(log n). We start from sets S1, . . . , Sm. For each I ⊆ [m] : |I| = m/2, we have an element e(I)
such that e(I) ∈ Sj if and only if j ∈ I. The number of elements is n =

(
m
m/2

)
= O(2m). Recall that we

have the following LP relaxation:

(LP)

min
∑
i

xi

s.t.
∑
i:e∈Si

xi ≥ 1 for all e ∈ E

Fractional solution: Notice that each element e(I) is contained in m/2 sets, so a fractional solution can
assign 2/m to each set to ensure that each element is covered, i.e. xi = 2/m for all i ∈ [m].

Integral solution: Now we argue that any integral feasible solution must choose at least m/2 sets. Suppose
that J ⊆ [m] be indices of the sets such that |J | < m/2, so we must have J ′ ⊆ [m] \ J : |J ′| = m/2 such
that e(J ′) is not contained in any sets chosen.

3

2.2 Machine Minimization

Given a set of jobs J = {1, . . . , n} where each job is equiped with a collection Jj of intervals on the line.
The goal is to choose, for each job j ∈ J , an interval Ij ∈ Jj , such that the maximum congestion on the
line formed by intervals I1, . . . , In is minimized.

Now we can write an relaxation with variable x(j, I) for each job j ∈ [n] and interval I ∈ Jj . We have
a constraint

∑
I∈Jj x(j, I) = 1 for each job j, and a constraint

∑
j

∑
I:p∈I x(j, I) ≤ W for each point p

on the line. Using the same randomized rounding algorithm, we can get O(log n/ log logn) approximation
algorithm. Now we show that the integrality gap of this LP relaxation is also Ω(log n/ log log n).

Let M be a parameter. Our construction is recursive and will produce collections of jobs J1 ∪ . . . ,∪JM
where Ji is a collection of jobs at level i. Job at level 1 is simply j(1) with interval set Jj(1) = [0, 1]. Assume
that jobs in Ji have been defined such that intervals of these jobs are disjoint, and we will define Ji+1.
Let I be an interval at level i. We will have a job j(i+ 1, I) at level i+ 1 where interval I is divided into
M equal-length intervals I1, . . . , IM and Jj(i+1,I) = {I1, . . . , IM}. This construction guarantees that the
intervals at level i+ 1 would also be disjoint and that |Ji+1| = M i. The LP solution assigns x(j, I) = 1/M
to every interval in the instance. Since intervals in Ji are disjoint, there can be at most M intervals sharing
a point, and this implies that the maximum congestion is at most 1 for the LP solution.

Lemma 2.1. Any integral solution must have congestion at least M .

This creates the integrality gap of at least M , while the size of the instance is MO(M). In other words,
M = Ω(log n/ log logn).

3 Semidefinite Program

A natural LP relaxation for Maximum Cut cannot has integrality gap lower bound of 2, so one cannot
expect better algorithms from it. Here, we show a stronger relaxation, called Semidefinite Programming
(SDP) which can be applied to Maximum Cut to get an improved approximation ratio.

3.1 Basic

We first recall some basic of linear algebra. A matrix (X)n×n is positive semidefinite (PSD) if and only if
for all vectors v ∈ Rn, we have vTXv ≥ 0.

Proposition 1. The following are equivalent:

• X is psd.

• X has non-negative eigenvalues

• X = V TV for some matrix V ∈ Rm×n where m ≤ n

• X =
∑n

i=1 λiwiw
T
i for some λ ≥ 0 and vectors wi ∈ Rn such that wi are othogonal.

Notice that the third statement implies that we have a collection of vectors v1, . . . , vn such that vi · vj =
Xij . In semidefinite program, we have variables xij for i, j = 1, . . . , n, and any linear constraints on them
such that xij = xji. Finally, we have the constraint X � 0. Equivalently, we may replace Xij by vi · vj ,
and this is called vector program.

4

3.2 SDP Relaxation

We are given a graph G = (V,E) where each edge ij ∈ E has weight wij ≥ 0. Consider the following
formulation of the problem.

max
1

2

∑
ij∈E

wij(1− yiyj)

s.t. yi ∈ {−1, 1}

We first argue that this is the correct formulation. For any solution S ⊆ V , define yi = −1 for all i ∈ S
and yi = 1 otherwise. If ij ∈ E crosses the cut, the term 1− yiyj evaluates to 2, so we get the contribution
of wij in the objective; otherwise, the contribution is zero for all ij that is not cut. The converse can be
argued similarly.

Now we can relax the constraints yi ∈ {−1, 1} to vi ∈ Rn instead. This is a relaxation because the
solution y of the previous program can be turned into vi = (yi, 0, . . . , 0) without changing the result. Also,
we can add the constraint vi · vi = 1.

3.3 Randomized Rounding

Think of each vector vi ∈ Rn as a vector on unit sphere. Notice that the temr 1−vi ·vj = 1− cos θij where
θij is the angle between vi and vj . This term has large value when the angle is large, so we can think of
the SDP as trying to “embed” the vertices onto the sphere, trying to ensure that two endpoints of edges
are separated.

Algorithm: We pick a random vector r ∈ Rn and define S = {i : r · vi > 0}. Now the probability that
each edge ij ∈ E is cut is exactly θij/π = arccos(vi · vj)/π. This implies that the expected value of the
solution is

∑
ij∈E wij

1
π arccos(vi ·vj). In the SDP, the contribution of ij ∈ E is 1

2(1−vi ·vj), so it is enough
to show the following.

Lemma 3.1. For any unit vectors vi, vj,

1
π arccos(vi · vj)

1
2(1− vi · vj)

=
1
πθij

1
2(1− cos θij)

≥ 0.878

This can be verified by computers :)

5

