
Homework 1: Solution

Problem 1

A standard counter example for Set Cover is a collection of R-bit strings X = {0, 1}R. Notice that |X| = 2R,
so R = log2 |X|. We define the sets Si = {x ∈ X : xi = 1} for all i = 1, . . . , R and S′R = {x ∈ X : xR = 0}.
The optimal solution picks 2 sets, S′R and SR to cover all elements in X. Greedy can be fooled to pick
S1, . . . , SR, which is log2 n sets. This shows that Greedy can be a factor of 1

2 log2 n worse than OPT.

The following lemma argues formally that Greedy can be fooled, i.e. after i steps, suppose S1, . . . , Si have
been chosen, the the size of Sj \ (

⋃
i′≤i Si′) is the same as S′R \ (

⋃
i′≤i Si′)

Lemma 0.1. For any i = 1, . . . , R− 1, define the collection of sets Si = {S1, . . . , Si}. Then |Sj \
⋃
Si| =

|S′R \
⋃
Si| for all j > i. In other words, Greedy may be fooled to pick Si+1.

Proof. This is a simple probabilistic argument. For j > i, notice that |Sj \
⋃
Si|/|X| is exactly the

probability that a randomly chosen string x ∈ X belongs to Sj \
⋃
Si. This is exactly the probability that

a randomly chosen string x satisfies “xh = 0 for all h ∈ {1, . . . , i} and xj = 1”. This probability term is
1/2i+1. Similarly |S′R \

⋃
Si|/|X| is equal to the probability that “xh = 0 for all h ∈ {1, . . . , i} and xR = 0”.

This is 1/2j+1 as well. This implies that |S′R \
⋃
Si| = |Sj \

⋃
Si| for all j > i.

Problem 2

There are two solutions that I will be presenting here. First, one can reduce the problem to set cover
and use the set cover’s O(log n) approximation algorithm to solve it. The second way is to do it by LP
rounding.

Solution 2.1

We show how to create an equivalent set cover instance from the facility location instance. For each facility
i ∈ F and for each subset D′ ⊆ D, we have a set S(i,D′) of cost w(i,D′) = fi +

∑
j∈D′ cij . This is the cost

of opening the facility i and assigning all clients in D′ to it. The set cover instance consists of elements D
and sets {S(i,D′)}i∈F,D′⊆D where each set S(i,D′) has weight w(i,D′) and covers elements in D′. Notice
that the number of sets is exponential, but we will deal with this later. The following lemma says that we
can equivalently solve the problem in this setting.

Lemma 0.2. Let OPTsc denote the optimal value of the set cover instance. Then OPTsc ≤ OPT. Moreover,
any solution to the set cover instance can be turned into a solution of the facility location instance of the
same or lower cost.

Proof. Let F ∗ be the set of facilities opened in the optimal solution. For each facility i ∈ F ∗, denote by
Di ⊆ D the clients served by i, so the total cost can be written as∑

i∈F ∗
(fi +

∑
j∈Di

cij) =
∑
i∈F ∗

w(i,Di)

1

This is the total weight of the sets S(i,Di) for all i ∈ F ∗, which is feasible for set cover instance because
the sets cover all the elements in D. This implies that OPTsc ≤ OPT.

Now to prove the converse, consider any feasible solution and first observe that for each i ∈ F , the solution
would not pick more than one set of the form S(i,D′); suppose not, and two sets S(i,D′) and S(i,D′′)
were chosen. We could modify the solution to choose S(i,D′ ∪D′′) instead.

So we can safely assume that the solution is of the form {S(i,Di)}i∈F ′ . The cost of this solution is∑
i∈F ′(fi +

∑
j∈Di

cij). We construct the facility location solution by openning F ′ ⊆ F and assign all Di

for each i ∈ F ′ to i. This will cost exactly the same.

Finally, we need to show how to greedily select the best set, i.e. the set with minimum ratio w(i,D′)

|D̃∩S(i,D′)|
where D̃ denotes the elements that have not yet been covered. Even though we have exponentially many
sets, only a small number of sets matters: For each set of the form S(i,D′) such that |D′∩ D̃| = k, the best
set D′ must be the one that takes k clients closest to i in D̃. More formally, if we consider |D̃∩S(i,D′)| = k,

the ratio w(i,D′)
k only depends on the numerator, which is fi+

∑
j∈D′ cij . If we order D̃ = {1, . . . , |D̃|} such

that ci1 ≤ ci2 ≤ . . . ≤ ci|D̃|, then the best D′ would be D′ = {1, . . . , k}. For each such k, there are only |F |
choices of best (i,D′) (i.e. one for each i), and there are only |D| possible values of k.

Solution 2.2

Another solution is by LP rounding. This is, indeed, a bit more complicated, but it’s worth knowing this
solution. For each facility i, we use variable yi to indicate whether facility i is open. For each facility i ∈ F
and client j ∈ D, variable xij denotes whether j is connected to i.

(LP)

min
∑
i∈F

fiyi +
∑
i∈F

∑
j∈D

cijxij

s.t. xij ≤ yi for all i ∈ F, j ∈ D∑
i∈F

xij = 1 for all j ∈ D

yi, xij ∈ [0, 1]

For each client j, we can write the fractional connecting cost of j as costj =
∑

i∈F xijcij . So the total
connecting cost is rewritten as

∑
j∈D costj . Our goal is to ensure that, each client j ∈ D is connected to

some facility i which is not too “far” from j, compared to the cost costj . For a subset F ′ ⊆ F (tentative
opening facilities), we say that j is close to F if d(j, F) ≤ 2costj . The following lemma argues that we
can compute a cheap F ′ such that every client is close to F ′.

Lemma 0.3. We can compute, with high probability, a subset F ′ such that
∑

i∈F ′ fi ≤ O(log n)
∑

i∈F fiyi
and for each j ∈ D, client j is close to F ′.

Before formally proving the lemma, let us use the lemma to conclude an O(log n) approximation algorithm.
We can invoke the lemma to compute such set F ′ whose opening cost is O(log n)OPT. For each j ∈ D,
the connecting cost is d(j, F ′) ≤ 2costj , so in total we have

∑
j∈D 2costj ≤ 2OPT. Now it only remains to

show the lemma.

2

Proof. For each client j ∈ D, we define the set of facilities Fj = {i : d(i, j) ≤ 2costj}. This is the set of
facilities close to j. By Markov’s inequality,

∑
i∈Fj

yi ≥ 1/2, and it is enough to ensure that our set F ′

satisfies F ′ ∩ Fj 6= ∅ for all j ∈ D (because F ′ ∩ Fj 6= ∅ is the same as saying that j is close to F ′).

Consider the random experiment: For each i ∈ F , include i into F ′ with probability yi.

Claim 0.1. For each client j ∈ D, the probability that F ′ ∩ Fj = ∅ is at most e−1/2.

Proof. The event F ′ ∩Fj = ∅ happens with probability
∏
i∈Fj

(1− yi) (due to the fact that we sample each

i independently). This term is at most e
−

∑
i∈Fj

yi ≤ e−1/2, using the identity 1 + α ≤ eα for all α.

So we can repeat the experiment O(log n) times as follows. For ` = 1, . . . , 100 log n, the round ` of
experiment constructs a set F ′` by the above random process. The final solution is F ′ =

⋃
` F
′
`. Since these

experiments are independent, the probability that F ′ ∩ Fj = ∅ is at most

Pr
[
(∀`)F ′` ∩ Fj = ∅

]
= Pr

[
F ′` ∩ Fj = ∅

]100 logn ≤ e−50 logn ≤ 1/n10

for each j ∈ D. By union bounds, the probability of event “(∃j ∈ D)Fj ∩ F ′ = ∅” is at most 1/n9. This
concludes the proof of the lemma.

Problem 3

Let S1, . . . , Sk be the solution chosen by Greedy, and S∗1 , . . . , S
∗
k∗ be the solution chosen by optimal. When

Greedy chooses set Si in round i, we will charge the cost of this set to elements in E. The total charge
will be at least k, thus bounding the cost of our greedy solution.

Now we define the charging scheme that bounds the cost. Let S̃(i) be the uncovered elements before round
i. When Si is chosen, the cost (of 1) is distributed over elements in S̃(i) ∩ Si equally, and this ensures that
each element is only charged once.

Lemma 0.4. For each S∗j that is not chosen by greedy, the total charge to the elements in S∗j is at most
Hs.

Proof. Define ni = |S∗j ∩ S̃(i)|, so the total charge in round i is done to (ni − ni+1) elements. Since the set
S∗j is also considered by greedy, we know that greedy in round i must cover at least ni elements. In other
words, the charge per element in round i is at most 1/ni, and therefore the total charge to set S∗j in round

i is at most (ni − ni+1)/ni ≤
∑ni

i′=ni+1+1
1
i′ . Combining the contribution from all rounds, we get Hs.

3

