
1 Roots of Geometry and Topology

Geometric questions have been pondered by people for
thousands of years. In contrast, the abstraction to topolog-
ical questions is only a few hundred years old. According
to Galileo Galilei (1623), philosophy is written in a grand
book – the Universe – which cannot be understood un-
less one first learns to comprehend its language, which is
mathematics, and its characters, which are triangles, cir-
cles, and other geometric figures. These characters will
figure prominently throughout this course.

Platonic solids. A convex polyhedron is the intersection
of finitely many closed half-spaces. As a practical exer-
cise, we can build one by slicing off pieces of an apple
with straight cuts of a knife. If we do this carefully, we
can arrange that all faces are regular polygons of the same
size and type, and that all vertices are endpoint of the same
number of edges. Examples of such polyhedra with non-
empty volume are the tetrahedron, the cube, the octahe-
dron, the dodecahedron, and the icosahedron; see Figure
1. There are only these five examples. They are referred
to as regular polytopes or as Platonic solids, named af-
ter then Greek philosopher Plato,1 who theorized that the
elements were constructed from them.
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Figure 1: Three of the five Platonic solids together with their
face vectors. From left to right: the tetrahedron, the cube, and
the octahedron.

Euclid gave a full description of the five Platonic solids
in Book XIII of the Elements2. It is interesting that the
face vector of the octahedron is the reverse of that of the
cube. This is a result of the duality between them: we can
map the vertices, edges, faces of the octahedron bijectively
to the faces, edges, vertices of the cube so that incidences
are preserved. Similarly, there is such a mapping from the

1Born in 428 BC, he was a student of Socrates, and became one of
the most influential thinkers of all times.

2EUCLID. The Thirteen Books of Euclid’s Elements. 2nd unabr. edi-
tion, ed. T. L. Heath, Dover, England, 1956.
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Figure 2: The ‘window-frame’ polyhedron has a hole through
the middle.

dodecahedron, with face vector (20, 30, 12), to the icosa-
hedron, with face vector (12, 30, 20). The vector of the
tetrahedron is a palindrome, and there is an incidence pre-
serving map that reverses dimensions to itself.

Euler formula. Another pattern we observe for the Pla-
tonic solids is that the alternating sum of the face numbers
is always the same:

#vertices − #edges + #faces = 2. (1)

This equation hold more generally for bounded convex
polyhedra. The relation is originally due to Leonhard Eu-
ler and is widely considered the starting point of topology:
it is a global statement and it does not depend on the pre-
cise geometric shape. Indeed, it does not depend on the
convexity of the polyhedron either, but it becomes false if
we generalize the class of objects too far. For example,
#vertices − #edges + #faces = 0 for the ‘window-frame’
in Figure 2. Indeed, it took more than a century to find
a satisfying framework that includes Euler’s original ob-
servation as a special case and elucidates why and when
the relation holds3. This generalization is due to Henri
Poincaré, which is the reason why the more general result
is referred to as the Euler-Poincaré formula. It relates the
alternating sums of face numbers and Betti numbers:

∑

i≥0

(−1)ifi =
∑

i≥0

(−1)iβi, (2)

where fi is the number of i-dimensional faces, and βi is
the i-th Betti number. It would be asking too much to ex-
plain the meaning of the Betti numbers now, but we will
find out in due course. The common value of the two alter-
nating sums is also known as the Euler or Euler-Poincaré
characteristic of the polyhedron.

3I. LAKATOS. Proofs and Refutations. Cambridge University Press,
England, 1976.
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Figure 3: Portion of a densest packing of disks in the plane.

Disk packings. Consider next the question of packing
as many disks in a given area as possible. We assume the
disks are all the same size, and they can touch each other
but not overlap. Arranging pennies on a flat table is a good
example. The question is generally difficult because the
answer depends on the shape of the area, but it becomes
easier when we pack disks in the infinite plane. It is in-
tuitively obvious that the best packing is the arrangement
in which the disk centers form the regular hexagonal grid;
see Figure 3, and this is also true.

To justify this assertion, we compute the packing den-
sity, which is the percentage of the plane covered by disks.
Since the pattern is the same everywhere, we can just com-
pute the covered fraction of an equilateral triangle spanned
by the centers of three mutually touching disks. Assuming
the distance between any two of the three points is 2, the
area of the triangle is

√
3. There are three disks, each cov-

ering a portion of the triangle with one sixth of its area. It
follows the packing density of the hexagonal grid is

"2 =
π

2
√
3

= 90.68...%. (3)

Every other packing of disks in the plane covers at most
that fraction of the plane.

Sphere packings. The physically more relevant ques-
tion is how well spheres can be packed in three dimen-
sional space, which is significantly more difficulty than
for disks in the plane. The answer has been known since
Johannes Kepler, who worked on the problem and stated
the conjecture in 1611, but a proof has been completed
only recently4. The densest packing is perhaps obvious:
arrange a layer of spheres in a hexagonal grid, as in Fig-
ure 3, and put on top another such layer, resting in the
crevices of the first layer. A third layer is added on top of

4T. HALES. A proof of the Kepler conjecture. Ann. Math. 162
(2005), 1065–1185.

the second layer, and so on. Drawing the layers as diago-
nal planes of the cube, we notice that one such configura-
tion is obtained by placing the centers of the sphere at the
corners and the face centers of a cube tiling; see Figure 4.
This gives us a short-cut to computing the packing den-

Figure 4: We have a sphere centered at each vertex and at the
center of each face of the cube.

sity of the arrangement, which is the fraction of the cube
covered by the spheres (or rather, balls). Assuming the
spheres have unit radius, the edges of the cube have length
2
√
2. The cube overlaps with one eight of each corner

sphere and one half of each face center sphere. The total
volume of these pieces is four times the volume of a unit
sphere, which is 16π/3. The cube itself has volume 16

√
2.

The packing density is therefore

"3 =
π

3
√
2

= 74.04...%. (4)

Space filling. To illustrate the difficulty of the sphere
packing question, we note a false belief that goes back
to Aristotle,5 namely that copies of the regular tetrahedron
can be used to tile the 3-dimensional Euclidean space. If
this were true, then we could compute the best packing
density that can be achieved in R3 by calculating the per-
centage of the tetrahedron covered by the spheres centered
at its four vertices. Take the tetrahedron with vertices
a = (

√
2, 0, 0, 0), b = (0,

√
2, 0, 0), c = (0, 0,

√
2, 0),

d = (0, 0, 0,
√
2) in R4, and notice that its six edges all

have length 2. The height of each triangular face is the
distance between a and 1

2 (b + c), which is
√
3, and the

height of the tetrahedron is the distance between a and
1
3 (b + c + d), which is

√

8/3; see Figure 5. To com-
pute the volume, we take the area of a triangle, which is√
3, times the height over 3, which gives

√
8/3 = 0.94....

The dihedral angle between any two faces of the tetrahe-
dron is 2α = 2 arctan(1/

√
2), which is about 70.52 de-

grees. From this, we get the solid angle at any vertex as
5He was born in 384 BC, studied under Plato, and was the tutor of

Alexander the Great.
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Figure 5: A regular tetrahedron with edges of length 2 has height
√

8/3. Its four triangles have height
√

3 each.

6α− π = 0.55...; this is the surface area of the portion of
the sphere inside the tetrahedron. The total volume of the
four spheres inside the tetrahedron is 4/3 times as much.
The fraction of the tetrahedron covered by the four spheres
is therefore

4(6 arctan 1√
2
− π)

√
8

= 77.96...%. (5)

We see that this percentage is higher than "3 given in (4).
It follows that the packing in layers is locally not optimal.
This is the deeper reason why proving its global optimality
has been so difficult.
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