

Eric Berberich, Michael Kerber

WS 2013

Excercises Computational Geometry

http://www.mpi-inf.mpg.de/departments/dl/teaching/ws13/ComputationalGeometry/

Sheet 3

Deadline: 05.11.2013, 10:00am

Rules: Until the end of the semester you have to reach 50% of the achievable points to be admitted to the exam. 40 points correspond to 100%; you can get up to 15 bonus points.

Exercise 1 (10 pts)

A triangulation of a point set S is a partition of the plane determined by a maximal set of noncrossing edges whose vertex set is S.

- a) Show that the union of these triangles is the convex hull of *S*.
- b) Design a sweep line algorithm for computing a triangulation of a point set *S*.

Exercise 2 (10+5 *pts*) Discuss in detail the basic insertion function of the DCEL. That is, given a subdivision *S* as DCEL and a new curve *c* to be inserted into the DCEL. Precondition: The interior of *c* lies completely in a face of the DCEL. Which update steps are needed to make the DCEL a valid one of $S \cup \{c\}$? Hint: You might first think about the case which steps are needed to insert a single point. Bonus: Discuss the case of removing an edge from a DCEL.

Exercise 3 (10 pts)

- a) Give examples of DCELs where for some edge *e*, the faces IncidentFace(*e*) and IncidentFace(Twin(*e*)) are the same.
- b) Give an example of a non-empty DCEL of a subdivision where Twin(*e*) = Next(*e*) holds for every halfedge of *e*. What is the maximal number of faces that the subdivision can have?

Exercise 4 (10 *pts*) Let *S* be a subdivision of complexity *n* and *P* be a set of *m* points. Give a plane sweep algorithm that computes for every point in which face of *S* it is contained. Show that your algorithm runs in $O((n + m) \log(n + m))$ time.

Exercise 5 (10 pts)

We are given a set of cars $C = \{C_1, \ldots, C_n\}$ that move in a plane desert with constant speed: $C_k = \langle p_k, \vec{v}_k \rangle$, where p_k is the initial position of a car at time t = 0 and \vec{v}_k is its velocity vector. Determine, for each time $t \ge 0$, the nearest car to the ranger's stations located at $b = (x_0, y_0)$.