

Eric Berberich, Michael Kerber

WS 2013

Excercises Computational Geometry

http://www.mpi-inf.mpg.de/departments/dl/teaching/ws13/ComputationalGeometry/

Sheet 5

Deadline: 19.11.2013, 10:00am

Rules: Until the end of the semester you have to reach 50% of the achievable points to be admitted to the exam. 40 points correspond to 100%; you can get up to 10 bonus points.

Exercise 1 (10 pts)

- a) Show that the medial axis of a convex polygon with n vertices could have a vertex of degree n.
- b) What is the maximum and minimum number of edges the medial axis tree M(P) can have for a convex polygon with n vertices?
- c) Is there a nonconvex polygon whose medial axis is composed entirely of straight segments?

Exercise 2 (10 pts)

We compute the medial axis as in the lecture.

- a) Prove that the first two bisectors of a convex polygon *P* to meet are adjacent.
- b) Show how to implement the algorithm to run in $O(n \log n)$ time.

Exercise 3 (10 pts)

- a) Show that the maximum number of edges of the S(P) tree is 2n 3 for a polygon with n vertices.
- b) Design an algorithm to construct the straight skeleton in $O(n^3)$ time.

Exercise 4 (10 *pts*) Let P and Q be convex polygons in the plane with m an n vertices respectively. Let \hat{P} denote $\mathbb{R}^2 \setminus P$, namely the entire plane with P carved out. What is the shape of the Minkowski sum $M = \hat{P} \oplus Q$? What is the maximum combinatorial complexity of M? Describe an efficient algorithm to compute it, and analyze its time and storage requirements. [Exercise by Dan Halperin]

Exercise 5 (10 *pts*) We use the unit circle S^1 (the circle of radius 1 centered at the origin) to represent all the directions in the plane in the following way: A point u on S^1 represents the direction from the origin to u. For a polygonal object O in the plane, the farthest point in direction \vec{u} is the point $x \in O$ that maximizes the scalar product $\vec{x} \cdot \vec{u}$.

a) Given two convex interior-disjoint polygons in the plane P, Q, we assign each point $u \in S^1$ to the polygon that contains the farthest point of $P \cup Q$ in the direction \vec{u} . (A point may be assigned to both P and Q.) Show that the points of S^1 assigned to one polygon constitute a contiguous arc.

Let $\mathcal{P} = \{P_1, P_2, \dots, P_n\}$ be a set of pairwise interior-disjoint convex polygons in the plane. Let *R* be a convex polygon in the plane. Let $Q_i := P_i \oplus R$ for $i = 1, \dots, n$.

b) Prove that the set $Q = \{Q_1, Q_2, \dots, Q_n\}$ is a set of pseudo discs, namely, for every pair of distinct objects in the set, $\partial Q_i \cap \operatorname{interior}(Q_j)$ is connected and $\partial Q_j \cap \operatorname{interior}(Q_i)$ is connected.¹

[Exercise by Dan Halperin]

¹Such a set is referred to as a set of pseudo discs since in non-degenrate situations the condition is simply that the boundaries of every pair intersect in at most two points.