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Exercise 1 (10 pts)[Lower bounds for coresets]
Show that, given ε > 0, there exists a set of points P such that any ε-coreset of P has size at
least

d1 +
2

2ε+ ε2
e ≈ 1

ε

(this shows that the coreset construction with 2
ε

points is almost tight). Proceed in the fol-
lowing way:

a) Consider the standard simplex in Rd+1, that is, the point set P spanned by the d + 1
unit vectors e1, . . . , ed+1. Argue that the center of the meb of P is given by (1/(d +
1), . . . , 1/(d+ 1)).

b) Next, consider the set Q := {e2, . . . , ed+1} = P \ {e1}. What is the meb center cQ of Q?
Compute the radius rQ of the meb of Q and the distance δQ of the meb center to e1.

c) Set d := b1 + 2
2ε+ε2
e, show that

δQ
rQ
≥ (1 + ε).

and argue why this implies the claimed lower bound.
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Exercise 2 (10 pts)[Improved algorithm for k-center]
Recall from the lecture that we can compute an approximate k-center clustering in time
2O(k log k)/ε and an approximate 1-center in O(nd

ε2
+ 1/ε5). Moreover, we have the following

generalization of Johnson-Lindenstrauss (the proof is a relatively straight-forward combi-
nation of the original JL lemma and coresets, but it is not required here)

Theorem: For 0 < ε < 1, a set P ⊂ Rd of n points, and m ≥ C log(n)/ε3 for a suitable
constant C > 36, there is a map f : Rd → Rm such that for any subset S ⊂ P ,

(1− ε)rad(S) ≤ rad(f(S)) ≤ (1 + ε)rad(S),

where rad(·) stands for the radius of the minimum enclosing ball. Moreover, a map f(p) =√
d/m ·π(p) where π is the projection to a m-dimensional subspace of Rd chosen uniformly

at random, has this property with probability of at least 1/2.

Use these facts to design an algorithm for approximate k-center which returns a correct
result with a probability of at least 99% and runs in

n log n2O(k log k)/ε +O(
dn log n

ε3
).

(Hint: It helps to assume first that you have an oracle available that tells you a map f as in
the theorem above, and to get rid of that oracle in a second step)

Exercise 3 (10 pts)[Kinetic alpha complexes]
We design a kinetic data structure for alpha complexes for a fixed value α > 0 and a point
set P in the plane. We use the following definitions: An edge ab is called short if ‖a−b‖ ≤ 2α.
An edge ab is called Gabriel if the disk with āb as diameter has no point of P in its interior.
Our definition from week 7 for alpha complexes is equivalent to the following property
(you can use that without proof): A triangle abc belong to the alpha complex if and only
if it belongs to the Delaunay triangulation and its circumradius is at most α. An edge ab
belongs to the alpha complex if and only if it is short and Gabriel, or it is on the boundary
of a triangle that belongs to the alpha complex.

a) Give an example of an alpha complex that contains an edge that is not Gabriel. Can
you also given an example that contains a non-short edge?

b) Design certificates to monitor whether a triangle has circumradius at most α, and
whether an edge has length at most 2α. What are the degrees of these certificates if
the points move on linear trajectories?

c) We assume generic position, that is, no two events occur at the same time. Show that,
when a short edge switches its Gabriel status at time t, it belongs to the alpha complex
in the time interval [t− ε, t+ ε] for some sufficently small interval.

d) Describe a kinetic data structure for alpha complexes which maintains the Delaunay
triangulation for P and holds flag for each edge and triangle denoting whether the
object is currently in the alpha complex. Describe the type of events and how to up-
date the kinetic data structure accordingly. Discuss the solution with respect to the
quality measures introduced in the lecture.


