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Abstract

Controlled Perturbation (CP, for short) is an approach t@ioing efficient and robust im-
plementations of a large class of geometric algorithmsguie computational speed of multiple
precision floating point arithmetic (compared to exacthanietic), while bypassing the precision
problems by perturbation. It also allows algorithms to bétem without consideration of de-
generate cases. CP replaces the input objects by a set amangerturbed (moved, scaled,
stretched, etc.) objects and protects the evaluation ahgé&@ predicates by guards. The execu-
tion is aborted if a guard indicates that the evaluation afegligate with floating point arithmetic

*This work was partially supported German-Israeli Fouraa{GIF) Grant 969/07.
TMax-Planck-Institut fur Informatik, Campus E1.4, 66123agbriicken, Germany.



may return an incorrect result. If the execution is aborted,algorithm is rerun on a new per-
turbation and maybe a higher precision of the floating paiitlhimetic. If the algorithm runs to
completion, it returns the correct output for the perturimguait.

The analysis of CP algorithms relates various parametées:pérturbation amourd, the
arithmetic precisiom, the range of input valugs-M, M], and the number of input objeats We
present a general methodology for analyzing CP algorithis powerful enough to analyze all
geometric predicates that are formulated as signs of patyails.

1 Introduction

Most algorithms of computational geometry are designeceumdo simplifying assumptions: the
availability of a Real-RAM and non-degeneracy of the infAiReal-RAM computes with real num-
bers in the sense of mathematics. The notion of degenerg®nds on the problem; examples are
collinear or co-circular points or three lines with a comnigtersection point. We call an algorithm
designed under the two simplifying assumptionsidaalistic algorithm An idealistic algorithmA,

on inputz halts with the correct result is non-degenerate amy is executed with exact real arith-
metic. However, implementations have to deal with the gieniproblem (caused by the Real-RAM
assumption) and the degeneracy problem (caused by theagameracy assumption).

Theexact computation paradigfiKLN91, JRZ91, FYW93, Yap97, MN94, MN99] addresses the
precision problem. It proposes to implement a Real-RAM tutee geometric computations. The
degeneracy problem is addressed by reformulating theitidgws so that they can handle all inputs.
This may require non-trivial changes. The approach is el in systems such as LEDA [MN99]
and CGAL [CGA].

Symbolic perturbatiofEM90, ECS97, Sei98, Yap90] addresses the degeneracyepnolhstead
of solving the problem on the given inpgtone solves it on an input that is perturbed by infinitesimal
amounts. The approach removes degeneracies; it requmesaithmetic.

Halperin et al.[HS98, HR, HL04] proposedntrolled perturbatioCP for short) as a solution for
both problems. The idea is to perturb the input numericailyta control the effect of the perturbation
(hence the name controlled perturbation). The hope is tiegperturbed input is non-degenerate and
can be handled with approximate arithmetic (see Section @dtails). CP algorithms compute ap-
proximate solutions in the following sense: they compugeeitact output for a nearby inputialperin
et. al. applied the idea to three problems (computing pasdiexrrangements, spherical arrangements,
and arrangements of circles) and showed that CP varianteokspective idealistic algorithms can
be made to work. Funke et al. [FKMSO05, Kle04] extended thairkand showed how to use CP for
Delaunay triangulations and convex hulls in arbitrary disiens. In the conference version of this
paper [MOSO06], we argued that CP is applicable to a wide digsometric algorithms and outlined
a general approach to analyzing CP algorithms. The appeaglires nontrivial geometric reasoning
for each geometric predicate. Caroli [Car07] applied theregch to geometric predicates required
for the computation of circle arrangements and Voronoi idiats of line segments. The analysis is
quite lengthy, involved, and does not cover all predicatesthis paper, we considerably simplify
the approach and turn the analysis of CP algorithms from taio @ craft. In particular, we give an
analysis of all predicates that can be realized by polyndraigpressions Moreover, we resolve an
issue that was left open by all previous papers: the anahgsismes that the perturbation is carried
out in the space of real numbers, but implementations onhkwwith floating point perturbations.

Controlled perturbation is not a panacea. It only appliéssfpossible and permissible to perturb
the input. If the exact result for the unperturbed input isdel, perturbation is not permissible. If
the input consists of a numerical part and a combinatorigl goad a consistency condition between



the two, perturbing the numerical part and keeping it caestswith the combinatorial part might
be impossible. There are positive examples where consisean be maintained, e.g., a polygonal
chain with vertex coordinates, and negative examples wt@mnsistency cannot be maintained, e.g.,
a polyhedron given by its incidence lattice and equatiomgte facets. Controlled perturbation is
always possible if the input consists only of numerical ealue.g., point coordinates. It should also
be noted that no perturbation scheme can remove a symbgéndeacy, e.g., the three perpendicular
bisectors of the edges of a triangle always meet in a commaun. f@erturbation may however help
to discover redundant tests in a program.

This paper is structured as follows. In Section 2 we reviesvabncept of controlled perturbation.
In Section 3 we present a general methodology for analyzir@i@orithms (Subsection 3.3), show
that it can handle all predicates defined as signs of polyalsniSubsection 3.4), discuss the issue that
the analysis is carried out in real space but an implementgerturbs in the space of floating point
numbers (Subsection 3.5), extend the analysis from predida algorithms (Subsection 3.6), and
analyze the complexity of CP (Subsection 3.7). In Sectiomelcompare the general methodology to
an approach that uses more intensive geometric reasoniagviNsee that the general methodology
leads to similar results, but with slightly weaker consttautors. Section 5 suggests future work.
Finally, in the Appendix (Section 6), we review the basic$l@dting point arithmetic and provide an
error analysis for arithmetic expressions.

2 Controlled Perturbation

We review the concept of controlled perturbation; this isecfollows and also extends Funke et
al. [FKMSO05]. Geometric algorithms branch on geometridmates, e.g., on the position of a point
relative to a line or to a circle. Analytically, a geometricegicate is expressed as the sign of a
real valued functionf. Consider, for example, therientation predicatefor d + 1 pointsp,..., pd
andq = pg41 in RY: If py,...,pqg define a hyperplane kY, the predicate decides which of the
associated halfspaces contains the query mppitite answer is given by the sign ofd+1) x (d+1)
determinant:

Pr1 ... Prg 1

orient(py, ..., Pd,q) := sign : P @
Pda1 --- Udd 1
gt ... g 1

The predicate evaluates to zero if and only if the 1 points lie in a common hyperplane. This is
considered a degeneracy. A perturbation of the points éylito remove this degeneracy. Moreover,
it may allow to determine the correct sign of the determirianieans of approximate arithmetic.

The value of the determinant above is the signed volume ositinglex spanned by theé + 1
points. The sign is positive if the simplex has positive oi@ion and is negative otherwise. If the
absolute value of the determinant is sufficiently large, rapipnate arithmetic determines the correct
sign. Thus, in order to show that approximate arithmetichie & determine the correct sign for a
perturbed set of points, one only has to show that the volurtteesimplex spanned by the perturbed
points is sufficiently large. We show in our main theorem thatmilar kind of reasoning is possible
for all predicates that are formulated as signs of polyntsnia

The evaluation of an arithmetic formulain floating point arithmetic incurs round-off errors
which may change the sign. If this stays undetected, theranognay enter an illegal state and
produce incorrect output or crash or loop; see [KNIB] for instructive examples. In order to protect
against undesirable consequences of round-off errorspatailate the availability of guard G with
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the following guard property: The guard Gis a Boolean expression. If it evaluates to true when
evaluated with floating point arithmetic, the floating poavaluation (fp-evaluation) of f yields the
correct sign.In this case, we also say that the evaluatiorf @ fp-safe If G; evaluates to false, we
say that the guard failed.

Using guards we can transform an idealistic algoritAminto a guarded algorithm 4 in the
following way: we protect every sign test by first testing ttoeresponding guard. If the guard fails,
we abortAq and return the message “unsuccessful computation”. Onttieg band, if the guarded
algorithm Ay runs to completion, we return the message “successful ctatipo’. In a successful
computation all branch decisions are made correctly andehttre combinatorial part of the output is
correct. However, numerical values are only approximatkso Athe asymptotic running time &
on any inputz will be at most the asymptotic running time Af on z this assumes that the cost of
evaluating a guard is of the same order as the cost of evadutte corresponding expression.

We will use the 2d-orientation predicate for poirts= (ay,ay), b = (b, by), ¢ = (c,¢y) in the
plane as our running example; it is giventby

orient(a,b,c) =sign(f) where f=(bx—ax)-(cy—ay)—(by—ay) (cx—ax).

By Theorem 10 in Section 6,
Gt = <|ﬂ > 280 M2@2*L)

has the guard property. Hefeis the value of the expressiohwhen evaluated with floating point
arithmetic,M > 1 is a power of twé that bounds the absolute value of all argumelnis,the precision
of the floating point system (see below), aads, and® are the floating point implementations-ef
—, and-. Theorem 10 also exhibits a guard that fails less often dduider to compute. Alternatively,
we can evaluate the defining expression with interval amtficnand use the guard that zero is not
contained in the result interval. For now we assume the entst of guards. In Section 6, we will
show their existence and review the basics of floating paittiraetic. Floating point numbers are of
the form

sign- mantissa 28xPonent

where the mantissa is dnibit number; we refer td. as the precision of the floating point system.
The error in a single floating point operation is proportictes2—-. Hardware floating point systems
are available fot. = 26 (IEEE single precision), = 52 (IEEE double precision) arid= 112 (IEEE
quadruple precision). Software floating point systemsnattte user to choosk.

A d-perturbationd € R*, of a real number is a random number in the intervial— 8,r + 3]. A
d-perturbation of a poirt € RY is a point which results fromd-perturbations of's coordinates. Alter-
natively, it could be a random point in tlResphere centered at We calld the perturbation amount
and the set of all possibi&perturbations of a poirt, denoted byJs(z), the perturbation region In
this paper we consider the entire input to an algorithm, timicfact is a set of geometric objects, as
a real-valued higher-dimensional pom#&nd assume that we may perturb all of its coordinates by up
to . We come back to this assumption in Section 5.

The controlled perturbation version 4 of an idealistic algorithmA; works as follows: Letz be
the input and led be a positive real. We first choosedegerturbationz € Us(z) of z and then run

1An alternative formulation iorient(a,b,c) = bxcy — byay — axcy — bycx + byax + aycx. For this formulationGs =
|ﬂ > 306 M? ®Z*L> has the guard property; see Section 6. In order to distihghis formulations, we call the formu-

lation of the footnote the “expanded” formulation and therfalation in the text, the “non-expanded” formulation.
2We restrictM to powers of two because this makes the computation of thedsomore efficient. We nedd to be at
least one, because the proofs of Theorems 11, 12, and 13e¢hatMd is a nondecreasing function of
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the guarded algorithrdy on z. If Ay terminates successfully, we terminaig, as well and return
the output ofAq together with the perturbed inpat If Ay aborts, however, we rerufyg on a new
perturbationz of z We may also adjust the CP parameters, i.e., increase thisipreof the floating
point arithmetic and/or the perturbation amoant

A controlled perturbation algorithm can be used without anglysis. Suppose we want to use it
with a certain perturbation amoudt We execute it with a certain precisian If it does not succeed,
we doubleL and repeat. It is easy to see that this strategy terminates iede class of geometric
algorithms (Theorem 1). We give a quantitative relationgdiem 6) betweed, L and characteristic
quantities of the problem instance, e.g., the size of thaire and the largest coordinate, and analyse
the complexity of the approach (Theorem 9).

3 A General Scheme for Analyzing Predicate Functions

Guards must be safe and should be effective, i.e., if a getsdHe computation continue, the approx-
imate sign computation must be correct (safety), and gusdrasld not stop the computation too often
unnecessarily (effectiveness). It is usually difficult tmbyze the conditions under which the floating
point evaluation of a guar@s returns true. For the purpose of the analysis and only foptinpose of
the analysis, we therefore postulate the existencebobiad predicateB; with the following property:
If B holds, G evaluates to true when evaluated with floating point arithond=or a functionf of
k argumentsB; C RK andG; is a Boolean expression witharguments. 1= (z,...,%) € B, the
floating point evaluation o6; on zreturns true.

In Section 6 we show how to define valid guards and bound pastic It follows from Theorem 13
in Section 6 that iff is a polynomial, there is always a bound predicatef the form

1f(2)| > Kimaed L

where degf) is the degree of the polynomid{; is a constant depending on the coefficients and the
number of monomial terms, aid is the smallest power of two with

M > max(1,max{(|x| : xis an argument of }).

We define
EB (L) := Kymded oL,

as the right hand side of the bound predicate and frequenite ®B; instead ofEB;(L). For the
2d-orientation predicate in the plane (in its non-exparfdeah), Theorem 13 in Section 6 yields

B = (|f(2)| > 56M227")

as the the bound predicate corresponding to the guard givée ipreceding sectioh.
We describe a methodology for analyzing predicate funstidde consider a geometric predicate
defined as the sign of a functidnof k variables defined on

A=[-M, M.

3For the expanded version, Section 6 yiekis= (|f(2)| > GOMZZ*L) as the bound predicate corresponding to the guard
given in footnote 1.



Controlled perturbation replaces an inauty a random point in the cubic neighborhodg(z). For
simplicity*, we assume that the input domain is such thg) C A. We want to guarantee that for
anyz, the bound predicat®: holds for many arguments in the perturbation redigfz). We use

$(2 = Us(2) N B = {2 Us(@ : |1(2)] > EBy(L)}

for the part of the perturbation region where the bound pegdiguarantees safety. Observe that this
part depends on the choicelofs this choice influencdsB;. Also observe thaEB; (L) can be made
arbitrarily small. For the sake of simplicity, we suppréesis tdependency oh and also omiz most

of the time. Then for a random choice D& U, the probabilityps of a successful evaluation dfat

z satisfies

H(Ss) _ fxeSs 1dx
H(Us) fxeua 1dx’

wherep denotes the Lebesgue measure. Our first theorem statesitlaatyf “reasonable” predicate
function f, this ratio gets arbitrary close to 1 for sufficiently laige

(@)

pr >

Theorem 1 If f is upper continuous almost everywhere and has a zerosef éheasure zero, and if
lim_ . EBf (L) = Othen
LIim pr = 1.

Proof: For any positiveg, let A .= {z€ Us(2) : |f(2)| < €} be the set of arguments whose function
value is bounded bg. ThenA¢, C A, whenevere; < €;. If z€ Ng=oA¢ then f(z) < € for all positive

€ and hencef (z) = 0. ThusZ; = Ng=0A¢ and henceAg is measurable sincé is upper continuous
almost everywhere) ligp,o W(Ae) = U(Z¢) = O by upper continuity of the Lebesgue measure. Hence
H(Agg, (L)) tends towards zero dsgoes to infinity. ]

We remark, that the question, whetpgZ ;) = 0, may be non-trivial. For example, for three points
u, v, andw in the plane, let
f(u7 V7 W) = SOI(EUV7 fuwﬂ ve)7

wheresol (side of line) is the 8-orientation function and,,, uw, andé,,, are the three perpendicular
bisectors. Since the three bisectors of a triangle inteligea single point,f = 0. Of course, no
perturbation of the points will remove this degeneracy. é&wgacies that cannot be removed by
perturbation are callesymbolic degeneracie€ontrolled perturbation may help to discover symbolic
degeneracies. If a degeneracy does not go away by repeatadopdon, one may take this as an
indication that the degeneracy is symbolic.

Theorem 1 establishes that CP works. However, it does netgijyuantitative relation between
the perturbation valud, the precisiorL, and the success probabilipy of predicate evaluation. For
guantitative estimates, we have to estimate the ratio ditbentegrals in Formula (2). In Section 3.3
we introduce a general methodology for deriving such amedé. We need some more notation.

4Alternatively, one may say that controlled perturbatioplaeesz by a random point in the neighborhotly(z) N A.
The volume of the neighborhood restrictedis at least ZX times the volume of the full neighborhood. We leave it to the
reader to check that all theorems in this paper stay true afselitable change of constants. In some situations, one may
want to consider only inputs with nonnegative coordinaldeen one would defind = [0, M].

SWe assume that for ay> 0 and anye > 0, the sef{zc Us(2) : |f(2)| < €} is Lebesgue measurable.



3.1 Some Notation

Throughout the paper we deal with functiohsRK — R in k variablesz;, z, . . ., z.. The ‘coordinate’
projection T : R — R with 1 < j < k maps ak-dimensional poinz = (2,2, ...,%) to its j-th
coordinatery (2) := z;. For any seA C R¥, let 1 (A) := {mj(a) : a € A} be the projection oA on its
j-th coordinate.

The ‘prefix’ projectionrtl) : R* — RI with 1 < j <k maps &-dimensional poinz= (21,2, ..., %)
to the tuple(z,...,z;) of its first j coordinates, i.e.,

W(z,2,....%) = (z,...,7).

For any seiA C RX, let 1) (A) := {rli)(a) :a € A.

In order to simplify notation, we use the following convemti Forz= (z,...,z) € R¥, we use
y = (y1,...,Yk—1) to denote the projection afon the firstk — 1 coordinates ang for the projection
on the last coordinate. Thgne R¥ 1, x € R, andz= (y1,Y2,. .., Yk_1,X).

Frequently, we fix the firsk — 1 arguments off and consider the function of the last argument
obtained in this way. Suppoge: R* — R andy = (yi,...,Yk-1) € R"1. Then we defindy, : R — R
by

fy(0) = F(Y1, - Ye1.%).
A pointy is adegenerizeif fy is identically zero (i.e.fy(x) = O for all x € R). We useD; C RK1to
denote the set of all degenerizers.

We useZ; C R¥ to denote theero sebf f (i.e.,Zs = {zc R¥: f(2) = 0}). A critical setfor f is
any superset aZs. We will use critical sets in the following contexfs andC; are sets of measure
zero andCs has a “nicer structure” thafs and is therefore easier to handle.

For any point seP ¢ R andd > 0 we define its closed-neighborhood by

Us(P) := {ze R¥: Ip € P with |p; — x| < 3 for all i}.

3.2 A General Scheme: Intuition and Example

LetA=[-M,+M]KC RXand f : A— R. How can we estimate the volume of the regig? Or
equivalently, the volume of its complement. Let

Rs = {z€ Us(2) 1| f(2)] < EB}.
We callRs theregion of uncertaintysee Figure 1(a) for an example. It is the region where thedou
predicate does not guarantee fp-safety. We need to shovir§hiatsmall. Intuition tells us that

is small only close to its zero set. Since the zero set may lmrgolicated set, we consider it one
variable at a time. This is akin to cylindrical algebraic dexposition [ACM84].

We postulaté the existence of a s& c R¥1 of measure zero that contains all degenerizerk of
Consider a fixe € R¥"! and assumg ¢ D. Then f, is not the constant zero function. We postulate
the existence of a finite critical s€, for fy of cardinality at mosiN; N is a constant not depending
ony. We also postulate the existence of a neighboridpdf C, of volume Ny, wherey is a suitable
parameter, and a functiapsuch that

< inf f(y,x)].
V< inf 1T

We postulaté g(y) > 0 fory ¢ D. Fory € D, we defineg(y) = 0. What have we achieved?

6The occurrences of the word “postulate” in this paragragtndehe applicability of our methodology.
"Fork = 1, we postulate thajis a positive constant.
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Figure 1: In (a), the critical set of is indicated as a curve and the region of uncertainty is shown
shaded. The region of uncertainty is located around thiea&lriset. The horizontal axis corresponds
to the last coordinate and the vertical axis correspond toheer coordinates. In (b), a fixed value of
yis indicated as a grey horizontal line. Tkexis shows the projection of the intersection of the line
with the region of uncertainty.

1. The degenerizers are contained in a3ef measure zero.
2. Fory ¢ D, g(y) > EB guarantees (y,x) > EBy for x outsideUy. In other words, for a fractich

25—2Ny_1_5y
e 5

of thex € Us(z), the evaluation of (y, x) is fp-safe.

Let fx_1 =g, Nk = N, andyk = y. We now apply the same reasoningfio;. This introduces\y_1
andyk_1 and reducedy_; to fx_», a function ofk — 2 arguments. Continuing in this way, we arrive
at a positive constanfy. We choosd. such thatfo > EB;(L). For an randonz € Us(z) the bound
predicate will then hold with probability

@—NM>.
1<i<k 0

Why is this the case? Consider a randpmUg(Z). If there is noj such thatrt))(z) belongs to the set
D for fj,1, we are always in case 2) and the probability bound holdsorifesprefixril)(z) is in the
setD for fj, 1, the prefix belongs to a set of measure zero and hence theblityblaound stays valid.
We next work through an example and then describe the gemethlbdology in the next subsection.

We consider the @orientation predicate and rename the point coordinatea, by, by, ¢y, ¢, as
2 to z5. The renaming helps to forget geometry. We obtain

f(z1,...,26) = 2124+ 2326 + 752 — 2126 — 2320 — 7524
= (B— )z + 12U+ 2522 — 2322 — Z524.

8Recall that we assume thais such that)s(z) C A.



For fixedy = (z,...,7s), fyis a polynomial of degree at most onezi A pointy € R® is a degenerizer
if z2 =2z3 andz1z4 + 252> — 7320 — 7524 = 0. We takeD = {(z1,...,25) 1 z1 = z3}. Fory ¢ D, fyis a
linear function inzg that is zero for

_ A4+ 7574 — 237y — 52y
U —23 '

LetC, be the singleton set consisting of this point andUgbe theys-neighborhood of this point. We
define

f5(zl7 s 725) = ‘23 - Zl‘y6 < inf ‘ f6(217 s 7257)()"
xgUy
The next two reductions are trivial; for both steps we tBke 0 andC = 0 andN = 0 and set
f3(z1,22,23) = fa(za,..., 24) = f5(21,..., 2Z5) = |23 — 2] Ve.

The functionz; — f3(z1,2,z3) is different from the constant zero for all choiceq af, z), i.e., f3 has
no degenerizers. We chooBe= 0 for the reduction step from three arguments to two arguméius
fixed (z1,2), f3(z1,2,23) is zero forzs = z;. LetC,, 5,) = {z1} andUy,, ,,) be theys-neighborhood
of this point. We can then define

f2(z1,22) = Ya¥e.

The next two reduction steps are again trivial. We tBke 0, C =0 andN = 0 and seffp = f1(z1) =
VaYs. We have now shown that

’f(zlv' - 726)‘ > Y3Ye
provided that

‘26_ N+ 52U — 32 — 52

> and |zz—2z1| > vs.
77 ‘_% |Zs—z1| > v

For any fixedz € RS, the probability that a randome U;(2) satisfies these conditions is at least

F2) (D)

Next observe thafl — ys/0)(1—y3/0) > 1— (Y3 +Ves)/0. The right-hand side of the bound predicate
is EBf = 56M22-L. So in order to guarantee that the bound predicate holdspsithability at least
p, we only need to choosg, y; andL such that

EBr(L) <ysys and (l—&é\m)zp-

Settingys = ys = (1— p)8/2 yields the constraint

2
56M22 L < (@) or equivalently L >7.807...+ 2Iog% +2Iogrlp.

3.3 A General Scheme

We formally define the reduction process introduced infdlyria the preceeding section and prove a
quantitative version of Theorem 1.

Definition 1 Let AC R¥, B=mk"Y(A), and f: A— R. We call(f,D,C,N), where Ne N and
C = (Cy)yea is a family of subsets @&, anadmissible representatiaf f if
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1. DC B is a set of measure zero that contains all degenerizers Wef call the points ¥ B\ D
regular

2. For each yc B, G, is a subset oR that contains the zero-set of. fif y is regular, G contains at
most N elements.

Every multivariate polynomiaf € Rlys, ..., Y« 1,x of total degree dgd ) = n admits an admis-
sible representation witN = n. We view f as a polynomial in the last variablewith coefficients
ai(y) € Rly1,...,Yk-1). Letn’ < nbe maximal such thaty(y) # 0. The degenerizers dfare thosey
where all coefficients vanish simultaneously. WeB&b the set of ally, where the leading coefficient
ay (y) vanishes. Thed contains all degenerizers and for gl D the polynomialfy has exactly’
complex roots. We can now defi@g either as the set of all real roots §for as the set of projections
of all roots onto the real axis. In both casek,D,C, ) constitutes an admissible representatiorf .of
In Section 3.4 we will continue the investigation of polyniahpredicate functions.

Definition 2 Let AC R, B=mtk"U(A), f: A— R, N an integer, ang € R*. A function g B — R*
is an(N,y)-reduction off if there exists an admissible representatidnD,C,N) of f such that, for
each regular y, there exists a neighborhood<lJy of G, of measure at moNy such that

xgZU = g(y) < [f(y,x)].

In the case k= 1, this amounts to the existence of a constamt@with ¢ < |f(x)| for all x ¢ U and
U a set of volum@Ny.

Many functions are reducible. We only have to Beto the set of degenerizers éfandC, to
the zero set offy for anyy. If N =max{|Cy| :y ¢ D} is finite andg(y) := infxau,(c,) |f(¥:X)| >0
then(f,D,C,N) constitutes an admissible representatiorf ahdg is an(N,y)—reduction off. We
remark that our definition is more flexible. It allows us to defD as a proper superset bBfi and it
allows us to defin&y andg in a more liberal way. We will put this added flexibility to gbase in
Section 3.4.

We are particularly interested in the case that the fungionDefinition 2 is again reducible, say
to h, andh is again reducible, ..., all the way down to a constant. Téésl$ to the notion dllly
reducible

Definition 3 Let AC RX, B = {))(A) and f: A— R. Then f isfully reducibleto fo € R* if there
are N,,...,N; € N, positive realsy, ..., Y1, and functions jf: Bj — R such that f= f and fj_1 is
an (Nj,y;)-reduction of fforall j k> j>1.

We are now ready for a quantitative version of Theorem 1.

Theorem 2 Letze A= [-M,MKC Rk, f:A— R, and Us(z) C A. Assume that f is fully reducible
to fo € R* and let N. to Ny and yi to y; be as in Definition 3. If EBL) < fy (this can always be
achieved by making L sufficiently large) then

WS(EZ) > 2] G-viNy).

1<j<k

The probability p of a successful predicate evaluation for a random poiats(z) satisfies

YiNj
e 1 (110).
SIS
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Proof: LetBj = [~M,+M]l. By Definition 3, there are function§ : B; — R with f, = f such that
fi_1is an(N;,y;)-reduction off; for all j, k> j > 1.

We consider the first step of the reduction sequence DLandC be as in Definition 2. We will
boundu(Ss(2)) from below. Consider angy,x) € Us(Z), y € R¥%, x € R, such thay is regular. Then
the cardinality of the critical sef, is at mostN, and there is a neighborhoddl, of C, of measure
at most Nyyk such that fy_1(y)| < [fk(y,x)| for all x € T(Us(2)) \ Uy. Let S5 = S5(z), Us = Us(2),
Y5 = 1tk~Y (Up), andXs = T (Us). Thenp(Xs \ Uy) > 28 — 2Nyyk and hence

WS) = / ldz:/ 1dz
€S zeUs : | f(2)|>EBs
= / </ 1dx> dy
yeYs \/xEXs 1 [T (y.X)|>EB
/ (/ ldx> dy
Ys\D \/xeXs\Uy : [ (y,x)|>EBx

v
B
©

/ 1dy> dy
ke (y)|[>EBx xeXs\Uy : | f(y,x)|>EBs

</ ldx) dy
‘fk 1 ‘>EB[ X€X5\Uy

(X5 \ Uy) dy

k-1 (y)|>EBy

> /YS\D (25— 2yN) d

[fi1(y)|>EBy

Il 1%
T F
— —

o o

(25— 2ykNy) dy
5 f-a(y)|>EB

85— ViNk) / 1dy,
Yo [fc 1(y)[>EBy

163
/-'\\) \

where equality £) holds becausgf (y,x)| > |fx_1 (y)| for all y ¢ D andx € X5\ Uy, and equality(s)
holds sinceD has measure 0. The integrl .1, , ) -eg 1dyin the last formula has the same form
as the integralfy, .|;(, g 1dz in the first line, but for one smaller dimension. We can thenef
continue in this way and establish the first claim.

For the second claim, we use Formula (2) and obtain

O WS) Mgk (B-YiNy) (_VJ_NJ>
TS e | S A

We next specialize to an important subfamily of reduciblections for which the dependency
of the f;’s on they;’s is explicitly expressed in terms of a factw(j?‘. This subfamily includes all
multivariate polynomials, as we will show in the next suliset; and is particularly well suited to our
approach.

Definition 4 (separable function) Let AC R¥and f: A— R.
(i) f is separabléf there exists a positive integer N, positive regsnda, and a function hB —
R, where B= 1t*-Y(A), such that® - h is an(N,y)-reduction of f for ally <, i.e., there exists an

11



admissible representatioff,D,C,N) of f such that, for each regular y, there exists a neighbodchoo
U = Uy of G, of measure at mogNy such that

xgU = y'h(y) <[f(y,x)|.

In the case k=1, this amounts to the existence of a constant@with cy® <|f(x)| for all x ¢ U and
U a set of volume@Ny.

(ii) f is fully separablef there exists a sequence of functions B; — R, where B = 1)) (A),
fk=f, fo € RT, and positive integers \Nand positive realy; anda; such that for all j,1 < j <k,
and ally; <Yj, the functiony?j - fj_1is an(Nj,y;)-reduction of f.

Assume now thaf is fully separable witfy;'s, a;'s andN;’s as in Definition 4. Also assume that
yj <Yj for all j andz= (z,...,z) € Ais such that for allj, yj_1 := 1)~V (2) ¢ Dj andz; ¢ Uy,_,,
whereUy, , has measurey?N;. HereDj andUy, , are as in Definition 2. Then

1f(2)| = f(z,.0z)| > for Vit VRS
Thus, we obtain the following specialized version of Theofor fully separable functions.

Corollary 3 Let A=[—M,+M]¥, letze A be such that§(Z) C A, and let f: A— R be fully separable
as in Definition 4. Assume further that L apd<'y; are such that

EBr(L) < fo-yit-...-Y“.

Then the probability pof a successful predicate evaluation for a random poiats(z) satisfies

VJNJ>
or > ( _WiNGY
SIS

In the following section we will specialize the above regalmultivariate polynomials. We will
see that multivariate polynomials are fully separable dvad thea;’s in Definition 4 can be chosen
such that their sum is bounded by the total degree of the paoiya.

3.4 Polynomial Predicate Functions

We show that any nonzero polynomial is fully separable. We giplicit definitions for all quantities
in Definition 4. We then show how to optimize the CP paramefEng reasoning is purely analytical
and requires no geometric insight.

Let f e R[Z :=R[z,...,z] be a nonzero multivariate polynomiallirvariables and total degréé
The infinity-norm|| ||, of f is defined as the maximum of the absolute values of all itsficoeits.
The degree off, considered as polynomial i, 1 <i <k, is denoted byN; = degz f. For the
monomial basis oR [z, ..., z] we considetexicographic ordering with reversed significancenoted

by . Given two monomialg® == £*.....Z% and® .= 2" . ... 2%, we define
A - P < ay, > By, With ko := max{k : ay # Br }.
With respect to this ordering, Iff) denotes thdéeading monomial ternof f and Icf(f) its corre-

sponding coefficient. Given a vector= (ay, ..., ax) of exponentsf|y denotes the reduction dfto

12



the sum of all terms of that containx® as a factor and g, := fiq/X*. We remark thaff =3 ; fa*
and lcf(f) = f* , for Im(f) =2,

o]
Example.The monomial terms of the polynomiél(z;, 2, 23) := 22,24 + 221,23+ 213 — 45+ Z]
are ordered in the following way:

B> 2ol - 11273~ 18 - 7,

and In(f) = 2, and Ic{f) = —4. Fora := (1,1,1) we obtain fiq) = 2,7 + 222,23 and fj,; =
Z]_Z%—F 2.
Let us considerf as a univariate polynomial iR = z with coefficientsa € R[y|, wherey =
(z1,...,2Z-1), i.e.,
f(2) = an (VX" + ... +a0(y) € R]Y|[X.

From our considerations in Section 3.3 we already know ti&etexists an admissible representation
(f,D,C,Nk) of f with
D={yeR"":ay(y)=0}

the set of ally such that the leading coefficieat, (y) vanishes and
Cy=0{zeC:f(y,2 =0} ={acR:dbec Rwith f(y,a+i-b) =0}

the projection of all complex roots df, onto the real axisD is an algebraic hypersurfacelitf 1 and
thus has measure 0. For eacld D, fy is a univariate polynomial of degréé and henc&, consists
of at mostNy points. We next show thdt is separable.

Lemma 1 Let f(z) = f(y,x) := an (Y)X +... +ag(y) € R]y][x] be a multivariate polynomial and
(f,D,C,Nx) an admissible representation of f as defined above. Theaylatrary y > 0,

9y) = [an (Y[ - <N2—2/> :

is an (N, y)-reduction of f. For N =y = 0 we defing/ := 1.

Proof: Lety> 0 be fixed. According to the definition of &, y)—reduction (see Definition 2), we
have to exhibit for eack with ay, (y) # 0, a neighborhootly of C, of volume at most Ry such that
a(y) < |f(y.%)| for all x ¢ Uy.

We use the following result from [SY09]: Given a multiget= {ps,...,pn} of not necessarily
distinct pointsp; € R, there exists a neighborhoatlR) of R of volume 2w such that for any p ¢
U (R) there is a reindexing of the pointsihsuch thatp— pi| > y- | (i+1)/2] for all i; the reindexing
is by distance fronp.

Now, for fixedy ¢ D, letry,...,ry, € C denote the complex roots &f(x) andP := {p1,..., PN }
be the corresponding multiset of their projections onta#a¢axis. Then, by the preceding paragraph,
there exists a neighborhodd} C R of C, of volume 2Ny such that for any ¢ Uy we have

X=ri| > [x=0(ri)| = x=p| = y- [(i+1)/2].

9For completeness, we sketch the construction. We consirsetU, of volumeny such that for any ¢ U; and anyi,
the cardinality of{j : p; € [x,x+1y]} is less than. A symmetric construction gives a dét such that for anx ¢ U, and
anyi, the cardinality of{j : pj € [x—1iy,x|} is less than. ThenU,UU; is the desired set. Consider théor which there
is ani such that the cardinality dfj : pj € [x,x+iy]} isi or more. Letxy be the infimum of thesg and letig be such that
I{i:pj €[xx+igyl}| >io. Add (Xo,Xo+Iigy) to Ur. Delete thep; in [xg,Xo +igy] and repeat the construction.

13



Hence
X = lan () [T =Tl = [lany)l- YL(I+1)/2]t > |g(y)l-

1<i<Ng 1<i<Ng

The last inequality requires justification. Liet= Nx. Then

[1 Li+1)/2)t = [n/2]t[n/2]L.

1<i<n

We show that the latter quantity is at legst/(2e))". For evenn this follows immediately from

¢ > (¢/e) for all integer¢. For oddn we have to work harder. The claim holds for= 1 and so
we may assuma > 3. We use/! > /21¢ (¢/e)’ (see [Knu73, Section 1.2.11.2, Equation (19)]) and
estimate as follows:

/21 /2] _ ((n—1)/2)!((n+1)/2)}(28)"
(n/(29))" "
= D)((n— 1)/(26) ™ Y72\ /AN T)((n+ 1)/(2€)) " /2(28)"
> gl

_ m(n® —1)"2(n+1) = 1(n+1) <1_ n_12>n/2 > g(m— 1)>1

nn
|

The functiong in the theorem above is a multivariate polynomial in one iestable. So we can
apply the same reasoning to it and obtain a functjarfione less variable. Continuing in this way, we
show thatf is fully separable.

Theorem 4 Any nonzero multivariate polynomial is fully separable.rdiprecisely, if fe R[z, ..., %]
has leading monomidin(f) =2 =Z*-...-z*, we may take in Definition 4:

fk = f,

. k o y aj
Fl(0 001, t)] j:li_-||-l (Zj—ej>

fi =

)

Vi = and N = q;.

Proof:  According to the definition of Irf) the polynomialg; := fi, o, . is an element
of R[z,...,z]. Consideringg; as a univariate polynomial ig with coefficients inR|z,...,z_1],
that is,gi € R[z,...,z_1][z], it has degree; and its leading coefficient is given HY(O....O‘ui ) €

R[z,...,z_1]. By Theorem 1,
« aiyi)
f[(O,...,O7ai,...7ak)] (E)
is an(aj, y;)—reduction ofg;. Thus, our claim follows by induction over ]

An application of Corollary 3 now gives the following bound the probabilityp; of a successful
predicate evaluation.

14



Theorem 5 Let f be a multivariate polynomial as in Theorenz4, A = [—M,+M]", Us(z) C A, and

L be such that )
oy
EBr (L) < Icf(f)- [ (=2
Jljl( 2e )

The probability p of a successful predicate evaluation for a random poiatis(z) satisfies
Yid|
pr > 1-—).
105
Example We reconsider the orientation predicate from the beginnirtge section. It is given by
the polynomial
f(z1,...,2) ‘= 224+ 232 + 252, — 2126 — 2322 — Z524. 3)

Its leading term is Iif ) = zsz3 and its leading coefficient is I€f) = 1. Now, for arbitraryyi,...,ys >
0, it follows that the probabilityp; of a successful evaluation satisfies

o (-4). (%)

provided thatEB (L) < Yeys/(4€?). Except for the factor &, this bound is the same as the one
obtained at the beginning of Section 3.3; the differencéas the bound now follows from a general
result.

We next show how to minimizé& subject to a constraint ops, for instancep; > p. By The-
orem 12, we can usEBs (L) = KfMN27L in the bound predicate, whetg = c¢(m¢ +2N), ¢t =
Soamax(l,|fq]), andms = |{0( fa # O} is the number of monomial terms ih= Y, foz". The
leading monomial of is 2. Then, for arbitraryy, ...,V > 0, Theorem 4 tells us that

o (1) 3
1<j<k 5 1<j<k 5

providedL is such that

KiMN2-L < |Icf(f yrl<lw> . 4)

For a fixedp < 1 we want to minimize. subject to the condition

yja
ho(ye, ... V) i=1— Z viaj

1<)<k

—-p=>0.

In an optimum solution, we havg = 0; otherwise, we could increase/jawith 0(]-‘ = 0, which in turn
would increase the right hand side of (4). We now use the ndetfibagrange multipliers. Define

h —| ’W - “log ]
2(Y1, -5 k) - og|‘| mz ajlog— -

We want to maximizén, subject to the constrairi; = 0. At a maximum, the gradients bf andh,
must be parallel and hence there must exist a Lagrange irargips R such that

GT = GT and hence y; =

15



forall j=1,... ,kwith aj # 0. Replacingy; by ﬁ in the conditionh; (y) = 0, we obtain

-1
u1=%1—p%< > ﬂ) :

147k

Substituting the resulting value for tgs into the right hand side of (4) and writir§for ;- j<, a7} =
degImf, we obtain

et (¢ ||1< JV’> ik (1 'ﬁ( aB(1— p> >||cf(f)|<5(zle;p>s,

wherek” = |{] : aj # 0} is the number of variables in the leading monomial term. Eseihequality
uses the fact that);j<(a /S) i is minimized ifa = S/k* for all j with aj # 0. The minimum is
(1/k*)S. Thus (4) holds |1L is such that

2ek
LZ|Og(KfM ) —log|Ag-| + deglm(f)- Iogé(le ~

or equivalently

2ek’
3(1-p)
We next simplify the right hand side at the expense of makirstjghtly larger. We us&* < N and
degIm(f) < N and obtain the condition

L >log(ct(ms +2N)) + NlogM —log|lcf(f)| +degln(f) - log (5)

L > log(cs(ms +2N)) —log|lcf(f)|+N <3+IogN+Iog%+logrlp> . (6)

Theorem 6 Let f =5, fax® be a multivariate polynomial of total degree N monomial terms,

Ct = Ya: f,20max1,[fy|), and K variables appearing in the lead monomial. If the variables a
randomly perturbed by at mos$t and after perturbation are bounded by M, the precision of the
floating point system is L, and (6) or (5) holds, then the bopratlicate holds with probability at
leastp.

We next apply the general analysis to two examples. The fkamele is the 2d-orientation
predicate and shows that the general analysis gives medikiunds comparable to those obtained
by special purpose considerations. The second examplesdhat the methodology can analyze
fairly complex predicates; the underlying polynomial h&8 3erms of degrees up to six; despite the
complexity of the defining polynomial, the analysis is sjraforward.

Example OneWe consider the polynomial

f(z1,...,2%) ‘= 224+ 2% + 2522 — 21%6 — 2322 — Z52
underlying the 2d-orientation predicate and apply equg8d. The leading monomial term is [rh) =
2375 with leading coefficient Igff ) = 1. Furthermorecs = m; =6,N =2,k=6, degIn(f) = 2, and
k* = 2. Thus, if
M 1
L > log(ct(ms +2N)) —log|lcf(f)|+ N (Iog(4e) +log 5T log 1—p>

M 1
=1279...42 <|Og3 + Iongp> ,
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Figure 2: Given two circle€;, i = 1,2, with midpoints(a;,bj) and radiir; = ,/C;, there are two
degenerate situations of tangential intersection.

the probability of a successful predicate evaluation isas$tp. Except for the constant additive factor
this is the same bound as derived in the introductory disonsd the beginning of this section. The
difference in the constant comes from two sources. Firstgéneral theorem uses the bound predicate
for the orientation predicate in expanded form. Secondtefma Nlog(4e) comes from the estimate
of the factorial in Lemma 1.

Example TwoThe second example demonstrates the strength of the gapgralach. We study
predicates that arise in the arrangement computation ofesirin the plane. For the predicate to
determine whether three circles have a common interseptiimt, the underlying polynomial is a
multivariate polynomial in 9 variables with 335 monomiatsms and total degree 6. Consider the
following predicates:

1. Do circles
Cii={(xy) eR?:qi(xy) = (x—a&)*+ (y—b)* —ci =0},
i =1,2anda,b €R, ¢ € R, intersect in exactly one, two or no points?

2. Do three circle€,, C; and
Cs:={(xy) € R?: gz(x,y) := (x—ag)®+ (y—bg)* — c3 = 0},

az,bzeR,c3e Rg, intersect in a common point and in which order@oandCs; intersect the
circleCy?

For two circles, there are two degenerate situations oftatng intersection; see Figure 2. W.l.0.g. as-
sumec; > ¢p. The distanceD = \/(al—a2)2+ (b1 — by)? of the centers is eithey/c; + /Cz or
/C1—+/C2. Hence, the following predicate function detects theseasibns:

f(a1,a2,b1,02,¢1,¢2) '= (D — /€1 —/C2) - (D — /€1 +1/C2)
=(D- &)’ —c

= D2 +Cc1—C—2 Cl(a]_ — a2)2 + Cl(b]_ — bz)z)

We remark that the circles intersect in exactly one pointfift 0, do not intersect ifff > 0, and
intersect in two distinct points iff < 0. SinceD?+c¢; — ¢, > 0 it follows thatf (a1, ap,b1,bp,c1,02) =
0 is equivalent to

g(ag,az,by, by, c1,C0) i= (a1 — a2) + (by — b2)? 4+ ¢1 — ©2)? — 4cy (a1 — a2)? + (by — bp)?) = 0.
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Figure 3: The location of the intersection po8i= L, N L3 with respect t&C; determines whether the
two pairs of points{p; 1, pi 2}, i = 2,3 are interleaving or not.

Furthermore, we havg > 0 iff C; andC, do not intersect and < O iff the circles intersect in two
distinct points. In terms of coordinatés,,...,z) := (a1, az, b1, by, €1,C2) we obtain a multivariate
polynomial of total degredl = 4 consisting ofng = 34 monomial terms:

(21, ....26) = — 4212:B — 8212572 + 821207374 + A232475 + 421 2075 + 4232475
+ 4212575 — 42373 — AT 7o + 6L 2+ 285 + 2227, — 2275 — 2275
— 41T+ 27+ 22575 — 22575 — 22576 — AZ3zu + 637, — 22575 — 2257
— AB7374 — AL 7870 + 7 — 22576 + B — 25476 — 2475+ L+ B+ B+ 4.

We have Infg) = Z3, Icf(g) = 1, ¢g = 100, andk* = 2. Hence it suffices to work with a precision
M 1
L>2206...+4(log—=+log——
>2206...+ (og 5 + ogl_p>
to guarantee that the probability of a successful pertioghas larger tharp.

Now let us find a predicate to answer the second question.elbbthe circlesC, or C3 does not
intersectCy, there is nothing to do. Thus, we assume that each of themsausC, in two points
{pi1,pi2} :=CiNCy,i=23;the points may coincide. The difference

li(x,Y) := (G —G)(%,Y) = 2(& —ag)x+2(b — by )y+af — a2 +bf —b?+¢ — ¢

of the two defining equations &, andC; is a linear equation ixx andy and its vanishing set is the
unique lineL; passing through the points ; and p;». In the degenerate cagg; = pi 2 the lineL;
intersect<C, tangentially afp; 1. Then (see also Figure 3):

o Lyi=Lifandonlyif {p21, P22} = {P31, P32}

e If L1 #LyandS:=LyNLjlies onCy, then there exists exactly one common intersection point

of C1, C, andCgz, namelyS.

e The pairs{pi1,pi2}, | = 2,3, of crossings wittC; are interleaving if and only i lies in the
interior of C;.
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Hence, in order to get information about the order of therg@etion points o2, we have to compute
the linesL; and their intersectio® = (xo,Yo). Finally, we have to check the sign of(xo,Yo). The
coordinatesg andyg are obtained by solving the systéin= I, = 0 of linear equations; thus

—a%bg + a%bz +...— b%bg + cghy
—aphy — braz + apbz — aybz + braz + bzal)

Xo = 2(
and
a2 —aph3+... — cra3 — bday
2(—aphy — bpag + apbs — ajhs + biag + boag ) ’

where we omitted some of the terms in the numerators to preseadability:° Plugging(Xo, Yo) into
a1 = 0, the defining equation @7, we obtain

Yo =

—2383C; + 2¢1b3by + . .. + 4adapbgb, — 6a3a3a3
4(—aghy — boag + aphs — agbs + brag + b2a1)2

(X0, Yo) =

with a numeratoh € Z[a;, by, ¢;] consisting oin, = 335 monomial terms in the 9 variablasbh; andc;,

i =1,2,3. The sign ofy1 (X0, Yo) is identical to the sign df, as the denominator of (xo, Yo) is always
nonnegative. Rewriting in terms of the variable§z, ..., z) := (a1, a, a3, b1, b2, bs, C1, ¢, C3) and

considering our monomial ordering the leading monomial term dfis given byz§z§ and the leading
coefficient equals 1. Furthermore, its total degree equaladi|h||, = 8. Thuscs < 8m;. Now

Theorem 6 implies that

L > log(8m¢ (m¢ 4 2N)) + 6logM + 4 <Iog(8e) + Iog% +log —lf p)>

=36.12... +6logM +4 (Iog% +log r1p>

guarantees that the sign @f(Xo, o) can be evaluated successfully with probability larger than

3.5 Floating Point Perturbations

We address the issue that the analysis is carried out in paaksbut an actual implementation will
choose perturbations in the set of floating point numbersp&rmed the theoretical analysis in the
real spaceR¥; the perturbation of a point is a random point in the rectéamgdneighborhood of the
point. However, in an actual implementation the perturbaidts have to belong to the discrete Bet
of floating point numbers of precisidn Previous papers remarked about this issue that for siityplic
the analysis is carried out in the real space.

We have taken a different route here. Observe that our enalysis explicitly takes into account
that real arguments are rounded to the nearest floating pomber (Lines 1 and 3 in Table 1 and
Theorem 12). Theorem 12 states that for any polynorhiaf total degreeN in k variables and any
(z1,. .., %) € [-M,M]¥

1f(z1,...,2) — F(fl(z0), ..., fl(z))| < KeMN27L,

wheref is the floating point version of, i.e., all operations irf are replaced by their floating point
counterpartKs is a suitable constant, and for axy R, fl(x) is a nearest (it is not important how ties
are broken) floating point number (with mantissa lerigth

10Thijs and the following computations are performed with therPuter Algebra System Maple 12.
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Theorem 7 LetzZ< [-M, +M]K be such that U= Us(Z) C A and letF,_ be the set of floating point
numbers with mantissa length L. For an;@ﬂF'ﬁ, let p, be the probability that u-= fl(z) for a random
ze U (rounding is componentwise). Then Theorem 6 stays trustiéad of choosingzU uniformly

at random, we choosegFf according to the distributiorpy) -

Proof: The floating point evaluation of(z) is tantamount to computin@(u) since the first step in
the evaluation is roundingto fl(z). 1

How can we generate floating point numbers with the desiretdalnilities? Since coordinates
are perturbed independently, we may restrict to a singledioate. Letz € [-M,M] be such that
Us(z) € A. In order to reduce boundary effects, we seletk & Us(z) of width at leastd such that
generating a randome U is particularly simple; this will also give us a simple presdor generating
fl(z). Reducing the size of the perturbation region by a factomofdoes not change the character of
our bounds; it only affects constant factors.

Let e € Z be such that 21 < 8 < 2°. Then there is an integ& such thatz— & < W - 2° <
(W+1)-2°<z+40d. Leta be the longest common prefix of the binary representations’ @ind
W + 1, respectively. Then01! andal1(’, wherea € {0,1}* and/ > 0, are the binary representations
of W andW + 1, respectively. We can choose the binary representatiamaridom real in the interval
U := [W,W +1]- 22 by first selecting eithem01’ or a 10’ with probability 1/2 each and then continuing
random bit by random bit (or continuing in blocks of randortshi Continuing forever, we obtain the
binary representation of a random real [W,W + 1] - 2°. In order to determiné(z), we do not have
to continue forever, we can stop as soorflég is determined. When is this the case? The binary
representation af is a(0|1)(1|0)" ... - 28, When the number of bits following the leading one in this
bitstring exceed4., fl(z) is known. Thus no more thal additional bits are needed except in one
situation: There is no 1ia(0[1)(1/0)", i.e.,a is empty and = 0. Then we need to generdte- 1+ r
bits, wherer is the number of leading zeros that we generate. The pratyadiilgenerating leading
zeros is 2" and hence the expected number of bits to be generated-i®(1) in all situations. We
summarize the discussion.

Lemma 2 Letze [-M,M] be such that §(z) C A. Then we can find a & Us(z) of width at leas®
such that f{z) for a random z= U can be generated in expected timd-Q

3.6 Analysis of a Complete Algorithm

We show how to extend the analysis of a single predicate t@tladysis of a complete algorithm.
Consider, for concreteness, an algorithm with inpgtR" that uses two geometric predicates. The
predicates are implemented as the signs of polynonfiedsd f,, respectively. Our goal is to guaran-
tee that the algorithm succeeds on a perturbatiets(z) with probability at least 12.

Let f; be a polynomial of total degred in k; variables. Then there are no more tmérargument
tuples ofk; distinct arguments. If we guarantee tHatails on any specifig;-tuple of arguments with
probability at most 1(4n'), the probability thatf; fails on somek;-tuple of arguments is at most
1/4 and hence the probability that eithror f, fails on some argument is at most2lL Thus the
algorithm succeeds with probability at least 1/2.

Each of the two bounds on the error probability yields a lobveund onL. The larger of the
bounds determines the value lof Of course, the argument above extends to any number of-predi
cates. Many algorithms in computational geometry use alsmaaiber of primitives of bounded arity
and hence are covered by this argument, e.g., convex hudlguBay triangulations, and Voronoi
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diagrams. We give a concrete example. The incremental Bajadiagram algorithm uses the 2d-
orientation and the 2d-side-of-circle predicate. Thegeamosn?® invocations of the former predi-
cate and at most* invocations of the latter. Thus it suffices to guarantee @ahatrientation predicate
fails with probability at most 1(4n%) and that a side-of-circle predicate fails with probabititymost
1/(4n%).

Theorem 8 Let f; to f, be multivariate polynomials such that eaglisfa nonzero polynomial of total
degree at most N, has at most m monomial termss €, andlcf(f;) > 1. If an idealistic algorithm
branches only on the signs of fo f, and the n inputs are randomly perturbed by at mdésind
are bounded by M after perturbation (where M is an integraiveo of two), then the corresponding
guarded algorithm fails with probability at mosfrovided the precision L of the floating point system
satisfies

L >log(c(m+2N))+N <3+ logN + Iog% +logr + Nlogn+log%> (7)
M 1
=Q(1)+N (Iog€+NIogn+Iogg> (8)

Proof: There are at mostN distinct invocations for each of thg. Since eachf; is a nonzero
polynomial we can apply Thm 6; we apply it with

€

=1-—.
P rnN

Then the probability that a fixef| fails on any specifid;-tuple of inputs k; is the arity of f;) is at
moste/(rnN) and hence the probability that sorfidails on somek;-tuple of distinct inputs is at most
€. We conclude that the guarded algorithm fails with probgbét moste.

Substituting the expression fprinto equation (6) leads to condition (7). ]

Some algorithms apply predicates to derived values, &g pliane-sweep algorithm for line seg-
ment intersection locates intersection points of inputresnts with respect to input segments. Usually,
such predicates can be reformulated in terms of ifpatsd then the analysis applies.

3.7 Efficiency of CP Algorithms

Controlled perturbation can be used without analysis. @argsswith an idealistic algorithm, turns it
into a guarded algorithm by guarding the evaluations ofr@tiizates, and puts the guarded algorithm
into a controlled perturbation loop as shown in Figure 4.

A predicate evaluation may be guarded in different ways p8se we branch on the sign of some
expressiorE. We either perform an error analysis faras described in Section 6 and use one of
the guards derived there or we evaluktevith interval arithmetic and abort whenever the resulting
interval contains zero.

The maximum allowable perturbation is usually dictated iy application. For example, if we
design an object that is to be fabricated with a machine thatehtolerance ob, we may allow a
perturbation of up t®. Or if the inputs are determined by physical measuremertts @vior margin
0, we may allow perturbation of up t

1 Assuming that line segments are specified by their endpahesgpredicate would become a function of six input points.
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Figure 4: The control flow of the general CP template.

CP wrapper

What is a suitable rule for increasing the precision? Letssume that the cost of arithmetic
with floating point numbers of precisidnis O(L?), where 1< a < 2; a = 2 corresponds to classical
arithmetic andx = 1 corresponds to fast arithmetic (ignoring logarithmiadas). Let us also assume
that we have an algorithm that performs at mbénh) steps on an input of size Then the cost of
the algorithm on input size and with precisiorL is T(n)L®. We also assume that for each fixed
precision we do up td iterations, and that aftdr unsuccessful iterations with the same precision,
we increase the precision by a factoiLet Lg be the smallest value a&f such that the probability of
a successful execution is at leag1 In order to bound the cost of the execution, we consider the
executions with precision at masg and the executions with precision more than The cost of the
former executions is at most

T(n)- Z)h(Lo/ti)“ =O(T(n)Lg)-
i>
The expected cost of the latter executions is at most
T3 3 ity 2O =TopeLg- 5 02 5 27070 =0T(mLy)
i>01<j<h i> 1<]<c
since the first such execution uses precision at riigsand we proceed to precisidhot' only if all

preceding executions have failed. The last equality hdltfs & 2".

Theorem 9 If at any fixed precision, up to h iterations are performedd @mecision is increased by
a factor of t after h unsuccessful iterations at a fixed pliecisLg is the smallest value of L such that
the probability of a successful execution on input size i isast 1/2, the cost of arithmetic is(C?)
with1 < a < 2, and © < 2", then the expected cost of the CP algorithm is

O(T(n)Lg)-
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4 Geometric Insight versus General Methodology

The analysis of the preceding section is basically analititt uses geometry only in a weak way,
namely when the proof of Theorem 1 argues about the roots ofym@mial. However, the analysis
does not exploit any specific geometric properties of thelipate. In particular, it does not give a
geometric interpretation of the value of a predicate functi For the orientation function af + 1
points inRY such an interpretation is available. The value of the pegdifunctions is 1d! times
the volume of the simplex spanned by ttie- 1 points. In this section, we give further examples
of predicate functions whose value has a geometric intexfioa. The geometric interpretation also
yields a slightly improved analysis. The improvements amy n the constant factors. Constant
factors are important in our context, because a few additibiis of precision may force a switch
from native floating point arithmetic to software arithneetiNote however, that the usage of CP
discussed in the preceding section will automatically cleomlarge precision only if necessary.

Distinctness of Points: This example is a warm-up for the other examples. Our inpuatpsints
in the plane and we want to verify that they are distinct. Wplement distinctness via the squared
distance function, i.e.,

distinct(p,q) = sign(dist(p,a)?) = sign((px— k) + (py — Gy)?) -

This is a round-about way of implementing distinctness; pdjntcomparing coordinates would be
better as it incurs no round-off error.

The error bound of the polynomidl = (px — k)2 + (py — ay)? is KyM?2~L for some constant
Ks. The total degree and the degree of the lead monomial is twdhé&general theorem yields the
constraint.

LZQ(1)+2|ogM/6+2|ogrlp.

There are"? possible tests and hence weget 1/(2n?) as discussed in Section 3.6. So our constraint
becomes
L>Q(1)+2logM/d+ 4logn.

A more geometric reasoning is as follows. We want that anypwiats have a minimum distance
of at leasty, wherey? = KiM22-L. We imagine that the points are perturbed one after the .other
When the last point is perturbed, the previous points exchutegion of volumerny? of the region of
perturbation, i.e., the probability that the perturbatimes not guarantee distanciom all preceding
points is at moshmy?/(48?) and hence the probability that the perturbation of sometmies not
guarantee this distance is at mosty?/(45%). Again, we require that the latter probability is at most
1/2. The constraint oh becomes

L>Q(1)+2logM/d+ 2logn

and so the dependency aris slightly less. Why is the dependency wdifferent?

Assume that the poinp is fixed andq is still to be perturbed. Then an areamf/(25)? is
excluded from the perturbation region fgrand hence the probability of failure &(y?/&%). In the
general analysis, we consider one coordinatg af a time. For each choice of the, sagoordinate
of g, we exclude an interval of lengthy2or they-coordinate ofg. Thus the probability of failure is
O(y/3). We need that the probability of failure is lesént and therefore the geometric reasoning of
the previous paragraph leads to a better dependency on log
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Orientation Test in d-space The orientation test fod + 1 points inRY is realized as the sign of a
determinant, see Section 2. The value of the determinattiimes the signed volume of the simplex
spanned by thd + 1 points. This volume may be considered as a distance to deggn The volume
of a simplex spanned by pointg to pq.1 is 1 overd times the(d — 1)-dimensional volume of the
base spanned by the poirgsto pg times the distance gfy 1 from the hyperplane spanned pyto
pg. Continuing in this way, we obtain:

Lemma 3 The determinant of (1) is equal to

dist(py, p2) - dist(ps, h(pz, p2)) - dist(pa, h(pz, P2, P3)) - ... - dist(Pa+-1, h(Py, - .-, Pa)),
where Hpa,..., pk) is the affine space spanned bytp p«.

Consider now an algorithm that uses the 2d-orientationatedttakes points in the plane as its
input. The error bound is again of the fotiM22--. The general methodology yields the constraint

L>Q(1)+2logM/d+ 6logn,

where 2 is the degree of the underlying polynomial ard® 3; here 2 is the degree and the 3 reflects
the fact that there ar®(n®) possible orientation test.

A more geometric reasoning is as follows. We want that anygueiats have a distance of at least
y1 and that any point has a distangefrom the line defined any other two points. If this holds, the
orientation determinant has value at leagb. The condition orL is

yiye > KM227L,

Again consider the perturbation of a single point. The 1 other points exclude an area of at most
nry? and the®(n?) lines defined by the other points exclude an area of at mi&y252y,; the
intersection of the line with the perturbation region hasgté at most /25 and there must be a
margin ofy, on both sides of the line. Thus the probability that the pb#tion of a point is bad is
bounded by

c. nyz + n?dy,

52

for some constant. Again we need to require thattimes this probability is at most/2. With
y1 = 8/(2n) andy, = y2/(nd) the probability constraint is satisfied and the conditiorLdrecomes

L>Q(1)+2logM/d+4logn

and so the dependency aris slightly less.

2d Side-of-Circle Test: We consider the side-of-circle test of four points in thenglalt tells the
side of a query point with respect to an oriented circle deffioe three points. We have three points
pi = (z,Yi), 1<i <3, and a query poinp = (x,y). Let us assume first that the three points are not
collinear. LetR be the radius of the circle defined by the first three points. The standard realization
of the 21 side-of-circle test is via lifting the points to the paratidlof revolutionz= x* +y?, i.e.,

1z W Z+y
Yo B+Y
Z3 Y3 %+%
Xy X4y

e

sod Py, P2, P3, P) = Signfsod P1, P2, P3,P)  Where  fsoc(P1, P2, P3, P) =

=
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We next show how to interpret this formula in terms of the getgnin the plane. Let = (¢, cy) be

an arbitrary point in the plane. Subtractiggirom all entries in the second columg,from all entries

in the third column, and adding2c, - second column- 2¢y - third column+ (c§+c§) -first column to

the last column does not change the value of the determifiduat entries in the last column become
the squared distances of the points fromWe have thus shown that the value of the determinant is
invariant under translations. We now speciakze the center of the circle defined lpy to ps. In this
situation, we have

12z vy, R 1z v 0
1y, R 11z 0
| fsoc(P1, P2, P3, P)| = 12 ys R R YA 0
1 x y R4y 1 x y R+y-R
1z vy
=|(C+Y¥-R)| 1 2 v ||
1 z3 y3
= |20 +y* - R?)|

=28 [V X +y? = R[- (/¥ +y*+R)
whereA is the signed area of the triangle with vertigesto ps, C is the circle defined by these
points, anddist(p,C) is the distance op from this circle. Leta = dist(p1, p2), b = dist(p1, ps),

c = dist(pz, p3), and leta be the angle aps in the triangle(ps, p2, p3). Then R = a/sina and
|A| = (1/2)bcsina and hence R|A| = 1/2-abc We obtain:

Lemma 4 Let p, P2, pz and p be four points in the plane. Then

1. . . .
| fsod P, P2, P3, P)| > lest( P1, P2)dist(p1, ps)dist(pz, p3)dist(C, p).

Proof: We have already argued the formula for non-collinear pomtsp,, andps. Continuity of
the left and right side of the inequality extends the ineiypé&d all situations. For collinear pointg,
p2, andps, C is the line passing through these points. ]

Consider now an algorithm that uses the 2d-side-of-ciret and takes points in the plane as
its input. The error bound is of the forkiM*2~L. The general methodology yields the constraint

L>Q(1)+4logM/d+ 16logn,

where 4 is the degree of the underlying polynomial and=14- 4; here one 4 is the degree and the
other 4 reflects the fact that there @én*) possible orientation test.

A more geometric reasoning is as follows. We want that anygueiats have a distance of at least
y1 and that any point has a distangefrom the circle defined by any other three points. If this sold
the side-of-circle determinant has value at lgdgi/2. The condition or. is

Vay2/2 > KeMZ27h,

Again consider the perturbation of a single point. The 1 other points exclude an area of at most
nry2 and the@(n?) circles defined by the other points exclude an are&@by,. Thus the probability
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that the perturbation of a point is bad is bounded by

c nyz + N8y,
Ak

for some constanC. Again we need to require thattimes this probability is at most/2. With
y1 = ©(8/n) andy, = y2/(n?3), the probability constraint is satisfied and the conditiardecomes

L>Q(1)+4logM/d+ 6logn

and so the dependency airis slightly less.

Improvements Coming from the Algorithm: Many algorithms in computational geometry are
incremental. They obtain the solution fopoints from a solution fon— 1 points by making suitable
additions and changes. An example is the incremental eartistn of Delaunay triangulations. Let
D be the Delaunay triangulation for— 1 points and lep be an additional point. One first finds the
triangle of the triangulation (we assume, for simplicityat the new point is contained in the convex
hull of the existing points) containing, then splits this triangle into three triangles by conmerp
to the corners of the triangle, and finally restores the Dedsiproperty. The point location step uses
orientation tests and locateswith respect to edges &. The update step uses side-of-circle tests and
locatesp with respect to the circumcircles of trianglesin Thus in each update step at m@xn)
orientation- and side-of-circle tests are performed.

In this situation, the analysis of the side-of-circle poadé of the preceding section can be sharp-
ened as follows. The perturbation of theh point has to avoid circular regions of vqumelyf each
andO(n) annuli of areaCdy, each. Then the constraint fgy andy, becomes

nys+ndy, 1
e - -
c ¥ T 2n

and hence the constraint forbecomes
L>Q(1)+4logM/d+ 5logn;

this is slightly better than above. The paper [FKMS05] crstanore examples of this kind.

5 Future Work

We have introduced a general methodology for analyzing @Briéhms and have shown that it is
strong enough to handle all geometric predicates that caxjpeessed as the sign of a multivariate
polynomial. A first challenge is to extend the analysis froatypomials to rational functions or
expressions involving square roots. One can eliminatesiong and square roots by reformulation of
the predicates as done in the concluding examples of SekHdorit would, however, be nice to handle
them directly.

We view the input as a point iR" and assume that all coordinates can be perturbed indepggnden
Frequently, the input also has combinatorial structuigg,tbe input points are the vertices of a simple
polygon. Then the perturbation must preserve the combiiahtstructure. In some applications, it
may suffice to perturb the polygon as a whole, e.g, by applgingid transformation to it. The second
challenge is to make controlled applicable to problems whiggut has combinatorial structure.
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The error analysis given in the appendix (Section 6) assuhstsexpressions are evaluated by
straight-line programs. However, more complex equatioiite evaluated with a program involving
branching and CP needs to be generalized to this situatiaistour third challenge. For example,
we might compute the sign of the determinant dfad matrix A by computing arbU -decomposition
L'U’ of the matrix and then determining the signs of the determ@aflL’ andU’. In [FKMSO05] the
bound predicate

By = (ydetAy > By = 1.012-100d22d|v|ds)

was derived for Gaussian elimination with partial pivotiagd all entries ofA bounded byM in
absolute value.

So far, CP was only applied to fairly simple geometric prafge It would be interesting to apply is
also to complex geometric objects, e.g., arrangementgebedic curves; this is our fourth challenge.

6 Appendix: Floating Point Arithmetic and Error Analysis

This appendix is an abbreviated version of the notes fordhtute on floating point numbers and
error analysi¥ within a course on Computational Geometry and Geometric itimg held by Eric
Berberich, Kurt Mehlhorn, and Michael Sagraloff. All preatan be found there. The lecture notes
are based on the papers [MN94, Fun97, BFS01]; the treatnfisguare roots is novel.

Hardware floating point arithmetic is standardized in thEEHloating point standard [IEE87]. A
floating point number is specified by a sigra mantissan, and an exponerg The sign is+1 or —1.
The mantissa consists bfbits my, ..., m, andeis an integer in the rangemin, émay. The range of
possible exponents contains zero apgh < —L — 2. The number represented by the trifdem, e) is
as follows:

o If emin < &< enax the numberis- (1+ 51« m2“) -2%. This is called anormalizednumber.

o If e = emin then the number is- ¥ m2-12emnt1  This is called asubnormalnumber.
Observe that the exponent és,in + 1. This is to guarantee that the distance of the largest
subnormal numbefl — 2-1)2%in*1 and the smallest normalized numbe2%in*1 is smalll.

¢ In addition, there are the special number® and 4+ and a symbol NaN which stands for
not-a-number. It is used as an error indicator, e.g., forglsalt of a division by zero.

LetF = F (L, emin, @max) be the set of real numbers (includirgo and—w) that can be represented
as aboveé? A real number irF is calledrepresentablea number irR \ F is callednon-representable
The largest positive representable number (excepbfos max = (2—271) - 2%, the smallest pos-
itive representable numberiiging = 271 . 28mint1 — 2~L+eémint1 and the smallest positive normalized
representable numberrisnorng = 1. 28mint1 — 28min+1,

F is a discrete subset &. For any reak, letfl(x) be a floating point number closébto x. By
convention, ifx > max, fl(X) = o, and ifx < —max, fl(x) = —co. Arithmetic on floating point num-
bers is only approximate; it incurs roundoff error. It is ionfant to distinguish between mathematical

12The full version can be found dittp://www.mpi-inf.mpg.de/departments/d1/teaching/w s09_
10/CGGC/Notes/Numbers.pdf

13pouble precision floating point numbers are represented init8. One bit is used for the sign, 52 bits for the mantissa
(L =52) and 11 bits for the exponent. These 11 bits are intempeet@n integef € [0...21 — 1] = [0...2047. The exponent
eequalsf —1023;f =2047 is used for the special values and hesge= —1023 andemax= 1023. The rules fof = 2047
are: If allmy are zero and = 2047 then the number isc or —eo depending ors. If f = 2047 and somay is nonzero, the
triple represents NaN (= not a number).

14The IEEE-standard also specifies how to break ties. Thisi® aoncern here.
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E ‘ condition ‘ E ‘ me ‘ indg ‘ ce ‘ degE

a constant inR \ IF fl(a) max(mnornt, [fl(a)]) 1 max(1, [fl(a)|) 0

a constant inf a max(mnorng, |a|) 0 max(1,|al) 0

X var. ranging oveR | fl(x) max(mnorng, |fl(x)|) 1 1 1

X var. ranging ovef X max(mnorng, |x|) 0 1 1
A+B A®B ma & Mg 14 max(inda, indg) ca+Cg max(degA, degB)
A-B AcB Ma @ Mg 14 max(inda, indg) Ca+Cs max(degA, degB)
A-B AGB max(mnormg, ma ® mg) 1+inda+indg CACB degA-+ degB
AL/2 A< uma 0 20/2 /ma 2+inda not defined
AL/2 A>uma VA max( VA, ma > VA) 2+inda not defined

Table 1: The recursive definitions ofz, indg, cg and dede. The first two columns specify the case
distinction according to the syntactic structuretthe third column contains the rule for computing
E, and the fourth to seventh columns contain the rules for ecgimgpmg, indg, cg and dede; @, ©,
and® denote the floating point implementations of addition, saditon, and multiplication, angf
denotes the floating point implementation of the squaré-operation. Observe thate = « if either
Mp = 00 O Mg = 00,

operations and their floating point implementations. Wedisey, and®, for the floating point im-
plementations of addition, subtraction, and multiplioatirespectively. Only in this appendix, we use
/2 for the square-root operation a@d for its floating point implementation. Generally, we usfor
the floating point implementation ef The floating point implementations of the operatigns—, -,
and %/2 yield the best possible resulThis is an axiom of floating point arithmetic. ¥y € F and
o€ {+,—, -} then

xoy = fl(xoy)

and
VX = fl(x/?).

We need bounds on the error in the floating point evaluatiosirople arithmetic expressions.
Any real constant or variable is an arithmetic expressiath il and B are arithmetic expression,
then so aréd+ B, A— B, A-B, andAY2. The latter assumes that the valueAds nonnegative. For an
arithmetic expressioR, let E be the result of evaluating with floating point arithmetic. The quantity
u = 2"""1is calledunit of roundoff Table 1 gives recursive definitions of quantitias, indg, cg and
degE; we bound|E — E| in terms of them. Intuitivelyme is an upper bound on the absolute value
of E, indg measures the complexity of the syntactic structur& pflege is the degree oE when
interpreted as a polynomial, arg bounds the coefficient size whénis interpreted as a polynomial.

Theorem 10 Ifindg < 2:+1/2 _ 1 then
|E—E| < (indg+1)-u-me < (indg +2) ©maxmnorng, me ®u) < (indg +3) -max(mnormg, me - u),
where ing and ng are defined as in Table 1.
For the 2d-orientation predicate
orient(a, b, c) = sign((bx — a) - (¢y — ay) — (by —ay) - (cx — &)
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for pointsa = (ax, ay), b = (by, by), c = (cx,¢y) in the plane we obtaimdg = 6, and
me = max(mnormng, (by ® &) © (6, @ &,)) ® max(mnorng, (by @ &) © (& @ &)),

wherexX’= max(mnornt, [fl(x)|).

The error bound of Theorem 10 is only used for guards. For tiadyais we use a simpler, but
weaker bound. It applies to polynomial expressions, ix@ressions using only constants, variables,
additions, subtractions, and multiplications.

Theorem 11 For a polynomial expression we have-mt ceMY€% | where ng, ce and degE are
defined as in Table 1 and M is the smallest power of two with

M > max(1,max{|x| : x is a variable in B).
This assumes that %% s representable.

We next specialize the theorem above to polynomial expyasdhat are sums of products, i.e.,
that correspond to the standard representation of polysdemiVe consider polynomials kwariables
7z toz. Fora = (ay,...,0k) letZ = 2‘1"l . zﬁk Any polynomial f in Rz, .., %] can then be written
as

f(zla"‘>zk) :zfazqa
a

where fq is the coefficient of the monomial ter#i. For simplicity assume that the coefficients are
representable as floating point numbers. For a monomial @emf,Z*, we havec; = max(1, |fq|),
degZ =deg ") = J;q;, andindz = 2degZ. For the entire polynomial, we hage = 5, max(1,|fy|)

and ded equal to the total degree 6f The index depends on the order in which we add the monomial
terms. If we sum serially, as iff((ty +1t2) +1t3) +t4) +15)), the index is the number of monomial terms
minus one plus the largest index of any monomial term. If wa suthe form of a binary tree as in
((t1 +t2) + ((t3+ta) +t5)), the index is the logarithm of the number of monomial termsnoed
upwards plus the largest index of any monomial term.

Theorem 12 Let f(z,...,z) = 54 fax® be a polynomial of total degree N. Lete 3, max(1,|fq|)
and let m = |{a : fy # 0}| be the number of monomial terms in f. LetML be a power of two and
let z to 7 be real values withz | <M for all i. Then

1f(z1,...,2) — F(fl(z0), ..., fl(z))| < e (ms +2N)MN2 L1,

wheref is the floating point version of f, i.e., all operations in feaeplaced by their floating point
counterpart.

Proof: We use Theorems 10 and 11. The index is largest if the monaeniak are summed serially.
It is then equal tons + 2N — 1. Alsomg < cfMN, 1

We apply Theorems 11 and 12 to the 2d-orientation predicats.a = (ay,ay), b = (by,by),
¢ = (cx, cy) be three points in the plane. Then

orient(a,b,c) = sign((bx —ax) - (¢, —ay) — (by—ay) - (cx—a)).

We already determined the index of this expression as 6. cTlaad d-values are as follows. For
any argument, both values are one, ¥or= by — ax, we havecx = 2 and deX = 1, for X = (bx —
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ay) - (cy —ay), we havecx = 4 and deX = 2, and finally for the entire expression we haye= 8
and deX = 2. We conclude that the roundoff error in evaluatorient(a, b, c) with floating point
arithmetic is at most

7-u-8-M?=56-u-M?2=28u22°".

whereM is the smallest nonnegative power of two bounding all Catesoordinates. If we use the
alternative formulation

orient(a, b, c) = bycy — byay — axcy — bycy + byay, + aycx

we can apply Theorem 12 with = 2, ms = 6, andcs = 6. We obtain that the roundoff error is at
most
6(6+4)M?.u=60M?.u=30M%2".

We close this section with the definition of valid guards andrd predicates.

Theorem 13 Let E be a polynomial expression. Then

Ge = (lﬁl > (indg +2) @max(mnorm:,mEQZ*L*l)) . Be = (IE| > (indg + 2)ceMPE2 L)
9)

and
Ge = (yﬁ\ > (inde+1)-ce- MdegEsz*) . Be = (|E| > (indg + 1)ceMPE2h) (10)

define pairs of guard and bound predicate. Here\M is a power of two no smaller than the absolute
value of all arguments. This assumes that\€% and (indg + 1)ceM %% 2--1 are representable.

Proof: We first prove (9). LeK = ceM%%¥y and assuméE| > 2(indg + 2)K. By Theorem 10,
|E — E| < (indg + 2) @ maxmnormg, me @ 251, Thus, if |E| is larger than the latter quantit§
andE have the same sign. Next observe that (maxorm:,mgu) < K sincecg > 1,M > 1, degt >0
andemin < —L — 2, and hencegeM % u > mnorn and sincane < K by Theorem 11. Thus

|E| > |E| - |E—E| > (2(indg + 2) — (indg + 1))K = (indg + 3)K
> (indg 4+ 3) max(mnorng, me - u) > (indg + 2) © maxmnormg, mg © U),

where the last inequality is part of Theorem 10.

We turn to (10). LeK = ceM%%u and|E| > 2(indg + 1)K. By Theorem 11mg < ceMYe%E,
Thus|E — E| < (indg + 1)ce M9y, The latter is a floating point number by assumption an fiis
larger than this quantitye andE have the same sign. Finally,

|E| > |[E| - |E—E| > (2(indg + 1) — (indg + 1))K = (indg + 1)K.

For the orientation predicate (in expression formient(a,b,c) = sign((by — ax) - (cy —ay) —
(by —ay) - (cx—ay)), the second part of Theorem 13 yields the pair

Ge = (\Ey > 280 M2®2*'-) Be = (|E| > 56M22°). (11)

For the orientation predicate (in polynomial forrojient(a, b, c) = byc, — byay — axcy — bycx + byax +
ayCy, it yields the pair

Ge = <|E| > 300 M2©2‘L) Be = ([E| > 60M%2 ). (12)
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