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Abstract

Controlled Perturbation (CP, for short) is an approach to obtaining efficient and robust im-
plementations of a large class of geometric algorithms using the computational speed of multiple
precision floating point arithmetic (compared to exact arithmetic), while bypassing the precision
problems by perturbation. It also allows algorithms to be written without consideration of de-
generate cases. CP replaces the input objects by a set of randomly perturbed (moved, scaled,
stretched, etc.) objects and protects the evaluation of geometric predicates by guards. The execu-
tion is aborted if a guard indicates that the evaluation of a predicate with floating point arithmetic
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may return an incorrect result. If the execution is aborted,the algorithm is rerun on a new per-
turbation and maybe a higher precision of the floating point arithmetic. If the algorithm runs to
completion, it returns the correct output for the perturbedinput.

The analysis of CP algorithms relates various parameters: the perturbation amountδ, the
arithmetic precisionL, the range of input values[−M,M], and the number of input objectsn. We
present a general methodology for analyzing CP algorithms.It is powerful enough to analyze all
geometric predicates that are formulated as signs of polynomials.

1 Introduction

Most algorithms of computational geometry are designed under two simplifying assumptions: the
availability of a Real-RAM and non-degeneracy of the input.A Real-RAM computes with real num-
bers in the sense of mathematics. The notion of degeneracy depends on the problem; examples are
collinear or co-circular points or three lines with a commonintersection point. We call an algorithm
designed under the two simplifying assumptions anidealistic algorithm. An idealistic algorithmAI

on inputz halts with the correct result ifz is non-degenerate andAI is executed with exact real arith-
metic. However, implementations have to deal with the precision problem (caused by the Real-RAM
assumption) and the degeneracy problem (caused by the non-degeneracy assumption).

Theexact computation paradigm[KLN91, JRZ91, FvW93, Yap97, MN94, MN99] addresses the
precision problem. It proposes to implement a Real-RAM tuned to geometric computations. The
degeneracy problem is addressed by reformulating the algorithms so that they can handle all inputs.
This may require non-trivial changes. The approach is followed in systems such as LEDA [MN99]
and CGAL [CGA].

Symbolic perturbation[EM90, ECS97, Sei98, Yap90] addresses the degeneracy problem. Instead
of solving the problem on the given inputz, one solves it on an input that is perturbed by infinitesimal
amounts. The approach removes degeneracies; it requires exact arithmetic.

Halperin et al.[HS98, HR, HL04] proposedcontrolled perturbation(CP for short) as a solution for
both problems. The idea is to perturb the input numerically and to control the effect of the perturbation
(hence the name controlled perturbation). The hope is that the perturbed input is non-degenerate and
can be handled with approximate arithmetic (see Section 2 for details). CP algorithms compute ap-
proximate solutions in the following sense: they compute the exact output for a nearby input. Halperin
et. al. applied the idea to three problems (computing polyhedral arrangements, spherical arrangements,
and arrangements of circles) and showed that CP variants of the respective idealistic algorithms can
be made to work. Funke et al. [FKMS05, Kle04] extended their work and showed how to use CP for
Delaunay triangulations and convex hulls in arbitrary dimensions. In the conference version of this
paper [MOS06], we argued that CP is applicable to a wide classof geometric algorithms and outlined
a general approach to analyzing CP algorithms. The approachrequires nontrivial geometric reasoning
for each geometric predicate. Caroli [Car07] applied the approach to geometric predicates required
for the computation of circle arrangements and Voronoi diagrams of line segments. The analysis is
quite lengthy, involved, and does not cover all predicates.In this paper, we considerably simplify
the approach and turn the analysis of CP algorithms from an art to a craft. In particular, we give an
analysis of all predicates that can be realized by polynomial expressions. Moreover, we resolve an
issue that was left open by all previous papers: the analysisassumes that the perturbation is carried
out in the space of real numbers, but implementations only work with floating point perturbations.

Controlled perturbation is not a panacea. It only applies ifit is possible and permissible to perturb
the input. If the exact result for the unperturbed input is needed, perturbation is not permissible. If
the input consists of a numerical part and a combinatorial part and a consistency condition between
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the two, perturbing the numerical part and keeping it consistent with the combinatorial part might
be impossible. There are positive examples where consistency can be maintained, e.g., a polygonal
chain with vertex coordinates, and negative examples whereconsistency cannot be maintained, e.g.,
a polyhedron given by its incidence lattice and equations for the facets. Controlled perturbation is
always possible if the input consists only of numerical values, e.g., point coordinates. It should also
be noted that no perturbation scheme can remove a symbolic degeneracy, e.g., the three perpendicular
bisectors of the edges of a triangle always meet in a common point. Perturbation may however help
to discover redundant tests in a program.

This paper is structured as follows. In Section 2 we review the concept of controlled perturbation.
In Section 3 we present a general methodology for analyzing CP algorithms (Subsection 3.3), show
that it can handle all predicates defined as signs of polynomials (Subsection 3.4), discuss the issue that
the analysis is carried out in real space but an implementation perturbs in the space of floating point
numbers (Subsection 3.5), extend the analysis from predicates to algorithms (Subsection 3.6), and
analyze the complexity of CP (Subsection 3.7). In Section 4,we compare the general methodology to
an approach that uses more intensive geometric reasoning. We will see that the general methodology
leads to similar results, but with slightly weaker constantfactors. Section 5 suggests future work.
Finally, in the Appendix (Section 6), we review the basics offloating point arithmetic and provide an
error analysis for arithmetic expressions.

2 Controlled Perturbation

We review the concept of controlled perturbation; this section follows and also extends Funke et
al. [FKMS05]. Geometric algorithms branch on geometric predicates, e.g., on the position of a point
relative to a line or to a circle. Analytically, a geometric predicate is expressed as the sign of a
real valued functionf . Consider, for example, theorientation predicatefor d + 1 pointsp1, . . . , pd

and q = pd+1 in R
d: If p1, . . . , pd define a hyperplane inRd, the predicate decides which of the

associated halfspaces contains the query pointq; the answer is given by the sign of a(d+1)× (d+1)
determinant:

orient(p1, . . . , pd,q) := sign

∣∣∣∣∣∣∣∣∣

p1,1 . . . p1,d 1
... · · · ...

...
pd,1 . . . ud,d 1
q1 . . . qd 1

∣∣∣∣∣∣∣∣∣

. (1)

The predicate evaluates to zero if and only if thed+1 points lie in a common hyperplane. This is
considered a degeneracy. A perturbation of the points is likely to remove this degeneracy. Moreover,
it may allow to determine the correct sign of the determinantby means of approximate arithmetic.

The value of the determinant above is the signed volume of thesimplex spanned by thed + 1
points. The sign is positive if the simplex has positive orientation and is negative otherwise. If the
absolute value of the determinant is sufficiently large, approximate arithmetic determines the correct
sign. Thus, in order to show that approximate arithmetic is able to determine the correct sign for a
perturbed set of points, one only has to show that the volume of the simplex spanned by the perturbed
points is sufficiently large. We show in our main theorem thata similar kind of reasoning is possible
for all predicates that are formulated as signs of polynomials.

The evaluation of an arithmetic formulaf in floating point arithmetic incurs round-off errors
which may change the sign. If this stays undetected, the program may enter an illegal state and
produce incorrect output or crash or loop; see [KMP+08] for instructive examples. In order to protect
against undesirable consequences of round-off errors, we postulate the availability of aguard Gf with
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the following guard property: The guard Gf is a Boolean expression. If it evaluates to true when
evaluated with floating point arithmetic, the floating pointevaluation (fp-evaluation) of f yields the
correct sign.In this case, we also say that the evaluation off is fp-safe. If Gf evaluates to false, we
say that the guard failed.

Using guards we can transform an idealistic algorithmAI into a guarded algorithm Ag in the
following way: we protect every sign test by first testing thecorresponding guard. If the guard fails,
we abortAg and return the message “unsuccessful computation”. On the other hand, if the guarded
algorithmAg runs to completion, we return the message “successful computation”. In a successful
computation all branch decisions are made correctly and hence the combinatorial part of the output is
correct. However, numerical values are only approximate. Also, the asymptotic running time ofAg

on any inputz will be at most the asymptotic running time ofAI on z; this assumes that the cost of
evaluating a guard is of the same order as the cost of evaluating the corresponding expression.

We will use the 2d-orientation predicate for pointsa = (ax,ay), b = (bx,by), c = (cx,cy) in the
plane as our running example; it is given by1

orient(a,b,c) = sign( f ) where f = (bx−ax) · (cy−ay)− (by−ay) · (cx−ax).

By Theorem 10 in Section 6,

Gf ≡
(
| f̃ | > 28⊙M2⊙2−L

)

has the guard property. Herẽf is the value of the expressionf when evaluated with floating point
arithmetic,M ≥ 1 is a power of two2 that bounds the absolute value of all arguments,L is the precision
of the floating point system (see below), and⊕, ⊖, and⊙ are the floating point implementations of+,
−, and·. Theorem 10 also exhibits a guard that fails less often, but is harder to compute. Alternatively,
we can evaluate the defining expression with interval arithmetic and use the guard that zero is not
contained in the result interval. For now we assume the existence of guards. In Section 6, we will
show their existence and review the basics of floating point arithmetic. Floating point numbers are of
the form

sign·mantissa·2exponent.

where the mantissa is anL-bit number; we refer toL as the precision of the floating point system.
The error in a single floating point operation is proportional to 2−L. Hardware floating point systems
are available forL = 26 (IEEE single precision),L = 52 (IEEE double precision) andL = 112 (IEEE
quadruple precision). Software floating point systems allow the user to chooseL.

A δ-perturbation,δ ∈ R
+, of a real numberr is a random number in the interval[r − δ, r + δ]. A

δ-perturbation of a pointz∈ R
d is a point which results fromδ-perturbations ofz’s coordinates. Alter-

natively, it could be a random point in theδ-sphere centered atz. We callδ theperturbation amount
and the set of all possibleδ-perturbations of a pointz, denoted byUδ(z), theperturbation region. In
this paper we consider the entire input to an algorithm, which in fact is a set of geometric objects, as
a real-valued higher-dimensional point ¯z and assume that we may perturb all of its coordinates by up
to δ. We come back to this assumption in Section 5.

Thecontrolled perturbation version Acp of an idealistic algorithmAI works as follows: Let ¯z be
the input and letδ be a positive real. We first choose aδ-perturbationz∈ Uδ(z̄) of z̄ and then run

1An alternative formulation isorient(a,b,c) = bxcy − bxay − axcy − bycx + byax + aycx. For this formulationGf ≡(
| f̃ | > 30⊙M2 ⊙2−L

)
has the guard property; see Section 6. In order to distinguish the formulations, we call the formu-

lation of the footnote the “expanded” formulation and the formulation in the text, the “non-expanded” formulation.
2We restrictM to powers of two because this makes the computation of the bounds more efficient. We needM to be at

least one, because the proofs of Theorems 11, 12, and 13 require thatMd is a nondecreasing function ofd.
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the guarded algorithmAg on z. If Ag terminates successfully, we terminateAcp as well and return
the output ofAg together with the perturbed inputz. If Ag aborts, however, we rerunAg on a new
perturbationz of z̄. We may also adjust the CP parameters, i.e., increase the precision of the floating
point arithmetic and/or the perturbation amountδ.

A controlled perturbation algorithm can be used without anyanalysis. Suppose we want to use it
with a certain perturbation amountδ. We execute it with a certain precisionL. If it does not succeed,
we doubleL and repeat. It is easy to see that this strategy terminates for a wide class of geometric
algorithms (Theorem 1). We give a quantitative relation (Theorem 6) betweenδ, L and characteristic
quantities of the problem instance, e.g., the size of the instance and the largest coordinate, and analyse
the complexity of the approach (Theorem 9).

3 A General Scheme for Analyzing Predicate Functions

Guards must be safe and should be effective, i.e., if a guard lets the computation continue, the approx-
imate sign computation must be correct (safety), and guardsshould not stop the computation too often
unnecessarily (effectiveness). It is usually difficult to analyze the conditions under which the floating
point evaluation of a guardGf returns true. For the purpose of the analysis and only for thepurpose of
the analysis, we therefore postulate the existence of abound predicateBf with the following property:
If Bf holds, Gf evaluates to true when evaluated with floating point arithmetic. For a function f of
k arguments,Bf ⊆ R

k andGf is a Boolean expression withk arguments. Ifz= (z1, . . . ,zk) ∈ Bf , the
floating point evaluation ofGf onz returns true.

In Section 6 we show how to define valid guards and bound predicates. It follows from Theorem 13
in Section 6 that iff is a polynomial, there is always a bound predicateBf of the form

| f (z)| > Kf M
deg( f )2−L,

where deg( f ) is the degree of the polynomial,Kf is a constant depending on the coefficients and the
number of monomial terms, andM is the smallest power of two with

M ≥ max(1,max{(|x| : x is an argument off}).

We define
EBf (L) := Kf M

deg( f )2−L.

as the right hand side of the bound predicate and frequently write EBf instead ofEBf (L). For the
2d-orientation predicate in the plane (in its non-expandedform), Theorem 13 in Section 6 yields

Bf ≡
(
| f (z)| > 56M22−L)

as the the bound predicate corresponding to the guard given in the preceding section.3

We describe a methodology for analyzing predicate functions. We consider a geometric predicate
defined as the sign of a functionf of k variables defined on

A = [−M,M]k.

3For the expanded version, Section 6 yieldsBf ≡
(
| f (z)| > 60M22−L

)
as the bound predicate corresponding to the guard

given in footnote 1.
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Controlled perturbation replaces an input ¯z by a random point in the cubic neighborhoodUδ(z̄). For
simplicity4, we assume that the input domain is such thatUδ(z̄) ⊆ A. We want to guarantee that for
any z̄, the bound predicateBf holds for many arguments in the perturbation regionUδ(z̄). We use

Sδ(z̄) := Uδ(z̄)∩Bf =
{

z∈Uδ(z̄) : | f (z)| > EBf (L)
}

for the part of the perturbation region where the bound predicate guarantees safety. Observe that this
part depends on the choice ofL as this choice influencesEBf . Also observe thatEBf (L) can be made
arbitrarily small. For the sake of simplicity, we suppress this dependency onL and also omit ¯z most
of the time. Then for a random choice ofz∈Uδ, the probabilitypf of a successful evaluation off at
zsatisfies5

pf ≥
µ(Sδ)

µ(Uδ)
=

R

x∈Sδ
1dx

R

x∈Uδ
1dx

, (2)

whereµ denotes the Lebesgue measure. Our first theorem states that for any “reasonable” predicate
function f , this ratio gets arbitrary close to 1 for sufficiently largeL.

Theorem 1 If f is upper continuous almost everywhere and has a zero set Zf of measure zero, and if
limL→∞ EBf (L) = 0 then

lim
L→∞

pf = 1.

Proof: For any positiveε, let Aε := {z∈Uδ(z̄) : | f (z)| ≤ ε} be the set of arguments whose function
value is bounded byε. ThenAε1 ⊆ Aε2 wheneverε1 < ε2. If z∈ ∩ε>0Aε then f (z) ≤ ε for all positive
ε and hencef (z) = 0. ThusZf = ∩ε>0Aε and hence (Aε is measurable sincef is upper continuous
almost everywhere) limε→0 µ(Aε) = µ(Zf ) = 0 by upper continuity of the Lebesgue measure. Hence
µ(AEBf (L)) tends towards zero asL goes to infinity.

We remark, that the question, whetherµ(Zf ) = 0, may be non-trivial. For example, for three points
u, v, andw in the plane, let

f (u,v,w) := sol(ℓuv, ℓuw∩ ℓvw),

wheresol (side of line) is the 2d-orientation function andℓuv, ℓuw, andℓvw are the three perpendicular
bisectors. Since the three bisectors of a triangle intersect in a single point, f ≡ 0. Of course, no
perturbation of the points will remove this degeneracy. Degeneracies that cannot be removed by
perturbation are calledsymbolic degeneracies. Controlled perturbation may help to discover symbolic
degeneracies. If a degeneracy does not go away by repeated perturbation, one may take this as an
indication that the degeneracy is symbolic.

Theorem 1 establishes that CP works. However, it does not give a quantitative relation between
the perturbation valueδ, the precisionL, and the success probabilitypf of predicate evaluation. For
quantitative estimates, we have to estimate the ratio of thetwo integrals in Formula (2). In Section 3.3
we introduce a general methodology for deriving such an estimate. We need some more notation.

4Alternatively, one may say that controlled perturbation replaces ¯z by a random point in the neighborhoodUδ(z̄)∩A.
The volume of the neighborhood restricted toA is at least 2−k times the volume of the full neighborhood. We leave it to the
reader to check that all theorems in this paper stay true after a suitable change of constants. In some situations, one may
want to consider only inputs with nonnegative coordinates.Then one would defineA = [0,M].

5We assume that for anyδ ≥ 0 and anyε ≥ 0, the set{z∈Uδ(z̄) : | f (z)| ≤ ε} is Lebesgue measurable.
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3.1 Some Notation

Throughout the paper we deal with functionsf : R
k → R in k variablesz1,z2, . . . ,zk. The ‘coordinate’

projection π j : R
k → R with 1 ≤ j ≤ k maps ak-dimensional pointz = (z1,z2, . . . ,zk) to its j-th

coordinateπ j(z) := zj . For any setA⊆ R
k, let π j(A) := {π j(a) : a∈ A} be the projection ofA on its

j-th coordinate.
The ‘prefix’ projectionπ( j) : R

k →R
j with 1≤ j ≤ k maps ak-dimensional pointz= (z1,z2, . . . ,zk)

to the tuple(z1, . . . ,zj) of its first j coordinates, i.e.,

π( j)(z1,z2, . . . ,zk) = (z1, . . . ,zj).

For any setA⊆ R
k, let π( j)(A) := {π( j)(a) : a∈ A}.

In order to simplify notation, we use the following convention. Forz= (z1, . . . ,zk) ∈ R
k, we use

y = (y1, . . . ,yk−1) to denote the projection ofz on the firstk−1 coordinates andx for the projection
on the last coordinate. Theny∈ R

k−1, x∈ R, andz= (y1,y2, . . . ,yk−1,x).
Frequently, we fix the firstk− 1 arguments off and consider the function of the last argument

obtained in this way. Supposef : R
k → R andy = (y1, . . . ,yk−1) ∈ R

k−1. Then we definefy : R → R

by
fy(x) = f (y1, . . . ,yk−1,x).

A point y is adegenerizerif fy is identically zero (i.e.,fy(x) = 0 for all x∈ R). We useD f ⊆ R
k−1 to

denote the set of all degenerizers.
We useZf ⊆ R

k to denote thezero setof f (i.e.,Zf = {z∈ R
k : f (z) = 0}). A critical set for f is

any superset ofZf . We will use critical sets in the following context:Zf andCf are sets of measure
zero andCf has a “nicer structure” thanZf and is therefore easier to handle.

For any point setP⊂ R
k andδ > 0 we define its closedδ-neighborhood by

Uδ(P) := {z∈ R
k : ∃p∈ P with |pi −xi| ≤ δ for all i}.

3.2 A General Scheme: Intuition and Example

Let A = [−M,+M]k ⊆ R
k and f : A → R. How can we estimate the volume of the regionSδ? Or

equivalently, the volume of its complement. Let

Rδ = {z∈Uδ(z̄) : | f (z)| ≤ EBf}.
We callRδ theregion of uncertainty; see Figure 1(a) for an example. It is the region where the bound
predicate does not guarantee fp-safety. We need to show thatRδ is small. Intuition tells us thatf
is small only close to its zero set. Since the zero set may be a complicated set, we consider it one
variable at a time. This is akin to cylindrical algebraic decomposition [ACM84].

We postulate6 the existence of a setD ⊂ R
k−1 of measure zero that contains all degenerizers off .

Consider a fixedy∈ R
k−1 and assumey 6∈ D. Then fy is not the constant zero function. We postulate

the existence of a finite critical setCy for fy of cardinality at mostN; N is a constant not depending
ony. We also postulate the existence of a neighborhoodUy of Cy of volume 2Nγ, whereγ is a suitable
parameter, and a functiong such that

g(y) ≤ inf
x∈πk(A)\Uy

| f (y,x)|.

We postulate7 g(y) > 0 for y 6∈ D. Fory∈ D, we defineg(y) = 0. What have we achieved?

6The occurrences of the word “postulate” in this paragraph define the applicability of our methodology.
7For k = 1, we postulate thatg is a positive constant.
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Figure 1: In (a), the critical set off is indicated as a curve and the region of uncertainty is shown
shaded. The region of uncertainty is located around the critical set. The horizontal axis corresponds
to the last coordinate and the vertical axis corresponds to all other coordinates. In (b), a fixed value of
y is indicated as a grey horizontal line. Thex-axis shows the projection of the intersection of the line
with the region of uncertainty.

1. The degenerizers are contained in a setD of measure zero.

2. Fory 6∈ D, g(y) > EBf guaranteesf (y,x) > EBf for x outsideUy. In other words, for a fraction8

2δ−2Nγ
2δ

= 1− Nγ
δ

of thex∈Uδ(z̄k), the evaluation off (y,x) is fp-safe.

Let fk−1 = g, Nk = N, andγk = γ. We now apply the same reasoning tofk−1. This introducesNk−1

andγk−1 and reducesfk−1 to fk−2, a function ofk−2 arguments. Continuing in this way, we arrive
at a positive constantf0. We chooseL such thatf0 > EBf (L). For an randomz∈ Uδ(z̄) the bound
predicate will then hold with probability

∏
1≤i≤k

(
1− Niγi

δ

)
.

Why is this the case? Consider a randomz∈Uδ(z̄). If there is noj such thatπ( j)(z) belongs to the set
D for f j+1, we are always in case 2) and the probability bound holds. If some prefixπ( j)(z) is in the
setD for f j+1, the prefix belongs to a set of measure zero and hence the probability bound stays valid.
We next work through an example and then describe the generalmethodology in the next subsection.

We consider the 2d-orientation predicate and rename the point coordinatesax, ay, bx, by, cx, cy as
z1 to z6. The renaming helps to forget geometry. We obtain

f (z1, . . . ,z6) := z1z4 +z3z6 +z5z2−z1z6−z3z2−z5z4

= (z3−z1)z6 +z1z4 +z5z2−z3z2−z5z4.

8Recall that we assume that ¯z is such thatUδ(z̄) ⊆ A.
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For fixedy= (z1, . . . ,z5), fy is a polynomial of degree at most one inz6. A pointy∈R
5 is a degenerizer

if z1 = z3 andz1z4 + z5z2− z3z2− z5z4 = 0. We takeD = {(z1, . . . ,z5) : z1 = z3}. For y 6∈ D, fy is a
linear function inz6 that is zero for

z6 = −z1z4 +z5z4−z3z2−z5z4

z1−z3
.

LetCy be the singleton set consisting of this point and letUy be theγ6-neighborhood of this point. We
define

f5(z1, . . . ,z5) := |z3−z1|γ6 ≤ inf
x6∈Uy

| f6(z1, . . . ,z5,x)|.

The next two reductions are trivial; for both steps we takeD = /0 andC = /0 andN = 0 and set

f3(z1,z2,z3) = f4(z1, . . . ,z4) = f5(z1, . . . ,z5) = |z3−z1|γ6.

The functionz3 7→ f3(z1,z2,z3) is different from the constant zero for all choices of(z1,z2), i.e., f3 has
no degenerizers. We chooseD = /0 for the reduction step from three arguments to two arguments. For
fixed (z1,z2), f3(z1,z2,z3) is zero forz3 = z1. Let C(z1,z2) = {z1} andU(z1,z2) be theγ3-neighborhood
of this point. We can then define

f2(z1,z2) = γ3γ6.

The next two reduction steps are again trivial. We takeD = /0, C = /0 andN = 0 and setf0 = f1(z1) =
γ3γ6. We have now shown that

| f (z1, . . . ,z6)| ≥ γ3γ6

provided that ∣∣∣∣z6−
z1z4 +z5z4−z3z2−z5z4

z1−z3

∣∣∣∣≥ γ6 and |z3−z1| ≥ γ3.

For any fixed ¯z∈ R
6, the probability that a randomz∈Uδ(z̄) satisfies these conditions is at least

(
1− 2γ6

2δ

)
·
(

1− 2γ3

2δ

)
.

Next observe that(1− γ6/δ)(1− γ3/δ) ≥ 1− (γ3 + γ6)/δ. The right-hand side of the bound predicate
is EBf = 56M22−L. So in order to guarantee that the bound predicate holds withprobability at least
ρ, we only need to chooseγ6, γ3 andL such that

EBf (L) ≤ γ3γ6 and

(
1− γ3 + γ6

δ

)
≥ ρ.

Settingγ3 = γ6 = (1−ρ)δ/2 yields the constraint

56M22−L ≤
(

(1−ρ)δ
2

)2

or equivalently L ≥ 7.807. . .+2log
M
δ

+2log
1

1−ρ
.

3.3 A General Scheme

We formally define the reduction process introduced informally in the preceeding section and prove a
quantitative version of Theorem 1.

Definition 1 Let A⊆ R
k, B = π(k−1)(A), and f : A → R. We call ( f ,D,C,N), where N∈ N and

C = (Cy)y∈B is a family of subsets ofR, anadmissible representationof f if
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1. D⊆ B is a set of measure zero that contains all degenerizers of f .We call the points y∈ B\D
regular.

2. For each y∈ B, Cy is a subset ofR that contains the zero-set of fy. If y is regular, Cy contains at
most N elements.

Every multivariate polynomialf ∈ R[y1, . . . ,yk−1,x] of total degree deg( f ) = n admits an admis-
sible representation withN = n. We view f as a polynomial in the last variablex with coefficients
ai(y) ∈ R[y1, . . . ,yk−1]. Let n′ ≤ n be maximal such thatan′(y) 6≡ 0. The degenerizers off are thosey
where all coefficients vanish simultaneously. We setD to the set of ally, where the leading coefficient
an′(y) vanishes. ThenD contains all degenerizers and for ally /∈ D the polynomial fy has exactlyn′

complex roots. We can now defineCy either as the set of all real roots offy or as the set of projections
of all roots onto the real axis. In both cases,( f ,D,C,n′) constitutes an admissible representation off .
In Section 3.4 we will continue the investigation of polynomial predicate functions.

Definition 2 Let A⊆ R
k, B= π(k−1)(A), f : A→ R, N an integer, andγ ∈ R

+. A function g: B→ R
+

is an(N,γ)-reduction of f if there exists an admissible representation( f ,D,C,N) of f such that, for
each regular y, there exists a neighborhood U= Uy of Cy of measure at most2Nγ such that

x 6∈U =⇒ g(y) ≤ | f (y,x)|.

In the case k= 1, this amounts to the existence of a constant c> 0 with c≤ | f (x)| for all x 6∈U and
U a set of volume2Nγ.

Many functions are reducible. We only have to setD to the set of degenerizers off andCy to
the zero set offy for any y. If N = max{|Cy| : y 6∈ D} is finite andg(y) := infx6∈Uγ(Cy) | f (y,x)| > 0
then( f ,D,C,N) constitutes an admissible representation off andg is an(N,γ)−reduction of f . We
remark that our definition is more flexible. It allows us to defineD as a proper superset ofD f and it
allows us to defineUy andg in a more liberal way. We will put this added flexibility to good use in
Section 3.4.

We are particularly interested in the case that the functiong in Definition 2 is again reducible, say
to h, andh is again reducible, . . . , all the way down to a constant. This leads to the notion offully
reducible.

Definition 3 Let A⊆ R
k, Bj = π( j)(A) and f : A→ R. Then f isfully reducible to f0 ∈ R

+ if there
are Nk, . . . ,N1 ∈ N, positive realsγk, . . . , γ1, and functions fj : B j → R such that fk = f and fj−1 is
an (Nj ,γ j)-reduction of fj for all j, k ≥ j ≥ 1.

We are now ready for a quantitative version of Theorem 1.

Theorem 2 Let z̄∈ A = [−M,M]k ⊆ R
k, f : A→ R, and Uδ(z̄) ⊆ A. Assume that f is fully reducible

to f0 ∈ R
+ and let Nk to N1 and γk to γ1 be as in Definition 3. If EBf (L) ≤ f0 (this can always be

achieved by making L sufficiently large) then

µ(Sδ(z̄)) ≥ 2k ∏
1≤ j≤k

(δ− γ jNj) .

The probability pf of a successful predicate evaluation for a random point z∈Uδ(z̄) satisfies

pf ≥ ∏
1≤ j≤k

(
1− γ jNj

δ

)
.
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Proof: Let B j = [−M,+M] j. By Definition 3, there are functionsf j : B j → R with fk = f such that
f j−1 is an(Nj ,γ j)-reduction off j for all j, k≥ j ≥ 1.

We consider the first step of the reduction sequence. LetD andC be as in Definition 2. We will
boundµ(Sδ(z̄)) from below. Consider any(y,x) ∈Uδ(z̄), y∈ R

k−1, x∈ R, such thaty is regular. Then
the cardinality of the critical setCy is at mostNk and there is a neighborhoodUy of Cy of measure
at most 2Nkγk such that| fk−1(y)| ≤ | fk(y,x)| for all x∈ πk(Uδ(z̄))\Uy. Let Sδ = Sδ(z̄), Uδ = Uδ(z̄),
Yδ = π(k−1)(Uδ), andXδ = πk(Uδ). Thenµ(Xδ \Uy) ≥ 2δ−2Nkγk and hence

µ(Sδ) =

Z

z∈Sδ

1dz =

Z

z∈Uδ : | f (z)|>EBf

1dz

=

Z

y∈Yδ

(
Z

x∈Xδ : | f (y,x)|>EBf

1dx

)
dy

≥
Z

Yδ\D

(
Z

x∈Xδ\Uy : | f (y,x)|>EBf

1dx

)
dy

≥
Z

Yδ\D : | fk−1(y)|>EBf

(
Z

x∈Xδ\Uy : | f (y,x)|>EBf

1dy

)
dy

(∗)
=

Z

Yδ\D : | fk−1(y)|>EBf

(
Z

x∈Xδ\Uy

1dx

)
dy

=

Z

Yδ\D : | fk−1(y)|>EBf

µ(Xδ \Uy)dy

≥
Z

Yδ\D : | fk−1(y)|>EBf

(2δ−2γkNk) dy

(∗∗)
=

Z

Yδ : | fk−1(y)|>EBf

(2δ−2γkNk) dy

= 2(δ− γkNk)

Z

Yδ : | fk−1(y)|>EBf

1dy,

where equality (∗) holds because| f (y,x)| ≥ | fk−1 (y)| for all y /∈ D andx∈ Xδ \Uy, and equality(∗∗)
holds sinceD has measure 0. The integral

R

Yδ : | fk−1(y)|>EBf
1dy in the last formula has the same form

as the integral
R

Uδ : | f (z)|>EBf
1dz in the first line, but for one smaller dimension. We can therefore

continue in this way and establish the first claim.

For the second claim, we use Formula (2) and obtain

pf =
µ(Sδ)

µ(Uδ)
≥

2k ∏1≤ j≤k (δ− γ jNj)

(2δ)k = ∏
1≤ j≤k

(
1− γ jNj

δ

)
.

We next specialize to an important subfamily of reducible functions for which the dependency
of the f j ’s on theγ j ’s is explicitly expressed in terms of a factorγα j

j . This subfamily includes all
multivariate polynomials, as we will show in the next subsection, and is particularly well suited to our
approach.

Definition 4 (separable function) Let A⊆ R
k and f : A→ R.

(i) f is separableif there exists a positive integer N, positive realsγ̃ andα, and a function h: B→
R, where B= π(k−1)(A), such thatγα ·h is an(N,γ)-reduction of f for allγ ≤ γ̃, i.e., there exists an

11



admissible representation( f ,D,C,N) of f such that, for each regular y, there exists a neighborhood
U = Uy of Cy of measure at most2Nγ such that

x 6∈U =⇒ γαh(y) ≤ | f (y,x)|.

In the case k= 1, this amounts to the existence of a constant c> 0 with cγα ≤ | f (x)| for all x 6∈U and
U a set of volume2Nγ.

(ii) f is fully separableif there exists a sequence of functions fj : B j → R, where Bj = π( j)(A),
fk = f , f0 ∈ R

+, and positive integers Nj and positive reals̃γ j andα j such that for all j,1≤ j ≤ k,
and all γ j ≤ γ̃ j , the functionγα j

j · f j−1 is an(Nj ,γ j)-reduction of fj .

Assume now thatf is fully separable with̃γ j ’s, α j ’s andNj ’s as in Definition 4. Also assume that
γ j ≤ γ̃ j for all j andz= (z1, ...,zk) ∈ A is such that for allj, y j−1 := π( j−1)(z) /∈ D j andzj /∈Uyj−1,
whereUyj−1 has measure 2γ jNj . HereD j andUyj−1 are as in Definition 2. Then

| f (z)| = | f (z1, ...,zk)| ≥ f0 · γα1
1 · ... · γαk

k .

Thus, we obtain the following specialized version of Theorem 2 for fully separable functions.

Corollary 3 Let A= [−M,+M]k, let z̄∈A be such that Uδ(z̄)⊆A, and let f: A→R be fully separable
as in Definition 4. Assume further that L andγ j ≤ γ̃ j are such that

EBf (L) < f0 · γα1
1 · . . . · γαk

k .

Then the probability pf of a successful predicate evaluation for a random point z∈Uδ(z̄) satisfies

pf ≥ ∏
1≤ j≤k

(
1− γ jNj

δ

)
.

In the following section we will specialize the above resultto multivariate polynomials. We will
see that multivariate polynomials are fully separable and that theαi ’s in Definition 4 can be chosen
such that their sum is bounded by the total degree of the polynomial.

3.4 Polynomial Predicate Functions

We show that any nonzero polynomial is fully separable. We give explicit definitions for all quantities
in Definition 4. We then show how to optimize the CP parameters. The reasoning is purely analytical
and requires no geometric insight.

Let f ∈R[z] := R [z1, ...,zk] be a nonzero multivariate polynomial ink variables and total degreeN.
The infinity-norm‖ f‖∞ of f is defined as the maximum of the absolute values of all its coefficients.
The degree off , considered as polynomial inzi , 1 ≤ i ≤ k, is denoted byNi = degzi

f . For the
monomial basis ofR [z1, ...,zk] we considerlexicographic ordering with reversed significance, denoted

by ≻. Given two monomialszα := zα1
1 · . . . ·zαk

k andzβ := zβ1
1 · . . . ·zβk

k , we define

zα ≻ zβ ⇔ αk0 > βk0 with k0 := max{k′ : αk′ 6= βk′}.

With respect to this ordering, lm( f ) denotes theleading monomial termof f and lcf( f ) its corre-
sponding coefficient. Given a vectorα := (α1, . . . ,αk) of exponents,f[α] denotes the reduction off to

12



the sum of all terms off that containxα as a factor andf ∗[α] := f[α]/xα. We remark thatf = ∑α fαzα

and lcf( f ) = f ∗[α∗] for lm( f ) = zα∗
.

Example.The monomial terms of the polynomialf (z1,z2,z3) := z2
1z2z4

3+2z1z2z3+z1z5
2−4z6

3+z7
1

are ordered in the following way:

z6
3 ≻ z2

1z2z4
3 ≻ z1z2z3 ≻ z1z5

2 ≻ z7
1

and lm( f ) = z6
3, and lcf( f ) = −4. For α := (1,1,1) we obtain f[α] = z2

1z2z4
3 + 2z1z2z3 and f ∗[α] =

z1z3
3 +2.

Let us considerf as a univariate polynomial inx = zk with coefficientsai ∈ R[y], wherey =
(z1, . . . ,zk−1), i.e.,

f (z) = aNk(y)x
Nk + . . .+a0(y) ∈ R[y][x].

From our considerations in Section 3.3 we already know that there exists an admissible representation
( f ,D,C,Nk) of f with

D = {y∈ R
k−1 : aNk(y) = 0}

the set of ally such that the leading coefficientaNk(y) vanishes and

Cy = ℜ{z∈ C : f (y,z) = 0} = {a∈ R : ∃b∈ R with f (y,a+ i ·b) = 0}

the projection of all complex roots offy onto the real axis.D is an algebraic hypersurface inR
k−1 and

thus has measure 0. For eachy /∈ D, fy is a univariate polynomial of degreeNk and henceCy consists
of at mostNk points. We next show thatf is separable.

Lemma 1 Let f(z) = f (y,x) := aNk(y)x
Nk + . . . + a0(y) ∈ R[y][x] be a multivariate polynomial and

( f ,D,C,Nk) an admissible representation of f as defined above. Then, forarbitrary γ ≥ 0,

g(y) := |aNk(y)| ·
(

Nkγ
2e

)Nk

is an(Nk,γ)-reduction of f . For Nk = γ = 0 we defineγNk := 1.

Proof: Let γ ≥ 0 be fixed. According to the definition of an(Nk,γ)−reduction (see Definition 2), we
have to exhibit for eachy with aNk(y) 6= 0, a neighborhoodUy of Cy of volume at most 2Nkγ such that
g(y) ≤ | f (y,x)| for all x /∈Uy.

We use the following result from [SY09]: Given a multisetR := {p1, . . . , pn} of not necessarily
distinct pointspi ∈ R, there exists a neighborhoodU(R) of R of volume 2nγ such that9 for any p 6∈
U(R) there is a reindexing of the points inP such that|p− pi | ≥ γ · ⌊(i +1)/2⌋ for all i; the reindexing
is by distance fromp.

Now, for fixedy /∈ D, let r1, . . . , rNk ∈ C denote the complex roots offy(x) andP := {p1, . . . , pNk}
be the corresponding multiset of their projections onto thereal axis. Then, by the preceding paragraph,
there exists a neighborhoodUy ⊆ R of Cy of volume 2Nkγ such that for anyx /∈Uy we have

|x− r i | ≥ |x−ℜ(r i)| = |x− pi | ≥ γ · ⌊(i +1)/2⌋ .

9For completeness, we sketch the construction. We constructa setUr of volumenγ such that for anyx 6∈Ur and anyi,
the cardinality of{ j : p j ∈ [x,x+ iγ]} is less thani. A symmetric construction gives a setUℓ such that for anyx 6∈Uℓ and
any i, the cardinality of{ j : p j ∈ [x− iγ,x]} is less thani. ThenUℓ ∪Ur is the desired set. Consider thex for which there
is ani such that the cardinality of{ j : p j ∈ [x,x+ iγ]} is i or more. Letx0 be the infimum of thesex and leti0 be such that
|{ j : p j ∈ [x,x+ i0γ]}| ≥ i0. Add (x0,x0 + i0γ) to Ur . Delete thep j in [x0,x0 + i0γ] and repeat the construction.
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Hence
| f (y,x)| = |aNk(y) · ∏

1≤i≤Nk

(z− r i)| ≥ |aNk(y)| · ∏
1≤i≤Nk

γ⌊(i +1)/2⌋! ≥ |g(y)|.

The last inequality requires justification. Letn = Nk. Then

∏
1≤i≤n

⌊(i +1)/2⌋! = ⌊n/2⌋! ⌈n/2⌉!.

We show that the latter quantity is at least(n/(2e))n. For evenn this follows immediately from
ℓ! ≥ (ℓ/e)ℓ for all integerℓ. For oddn we have to work harder. The claim holds forn = 1 and so
we may assumen≥ 3. We useℓ! ≥

√
2πℓ (ℓ/e)ℓ (see [Knu73, Section 1.2.11.2, Equation (19)]) and

estimate as follows:

⌊n/2⌋! ⌈n/2⌉!
(n/(2e))n =

((n−1)/2)!((n+1)/2)!(2e)n

nn

≥
√

π(n−1)((n−1)/(2e))(n−1)/2
√

π(n+1)((n+1)/(2e))(n+1)/2(2e)n

nn

=
π(n2−1)n/2(n+1)

nn = π(n+1)

(
1− 1

n2

)n/2

≥ π
e
(n+1) ≥ 1.

The functiong in the theorem above is a multivariate polynomial in one lessvariable. So we can
apply the same reasoning to it and obtain a functiong of one less variable. Continuing in this way, we
show thatf is fully separable.

Theorem 4 Any nonzero multivariate polynomial is fully separable. More precisely, if f∈R[z1, . . . ,zk]
has leading monomiallm( f ) = zα = zα1

1 · . . . ·zαk
k , we may take in Definition 4:

fk := f ,

fi :=

∣∣∣∣∣ f
∗
[(0,...,0,αi+1,...,αk)]

·
k

∏
j=i+1

(α jγ j

2e

)α j

∣∣∣∣∣ ,

γ̃i = ∞ and Ni = αi .

Proof: According to the definition of lm( f ) the polynomialgi := f ∗[(0,...,0,αi+1,...,αk)]
is an element

of R[z1, . . . ,zi ]. Consideringgi as a univariate polynomial inzi with coefficients inR[z1, . . . ,zi−1],
that is,gi ∈ R[z1, . . . ,zi−1][zi ], it has degreeαi and its leading coefficient is given byf ∗[(0,...,0,αi ,...,αk)]

∈
R[z1, . . . ,zi−1]. By Theorem 1,

f ∗[(0,...,0,αi ,...,αk)]

(αiγi

2e

)αi

is an(αi ,γi)−reduction ofgi . Thus, our claim follows by induction overi.

An application of Corollary 3 now gives the following bound on the probabilitypf of a successful
predicate evaluation.
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Theorem 5 Let f be a multivariate polynomial as in Theorem 4,z̄∈ A= [−M,+M]k, Uδ(z̄)⊆ A, and
L be such that

EBf (L) < lcf( f ) ·
k

∏
j=1

(α jγ j

2e

)α j

.

The probability pf of a successful predicate evaluation for a random point z∈Uδ(z̄) satisfies

pf ≥ ∏
1≤ j≤k

(
1− γ jα j

δ

)
.

Example.We reconsider the orientation predicate from the beginningof the section. It is given by
the polynomial

f (z1, . . . ,z6) := z1z4 +z3z6 +z5z2−z1z6−z3z2−z5z4. (3)

Its leading term is lm( f ) = z6z3 and its leading coefficient is lcf( f ) = 1. Now, for arbitraryγ1, . . . ,γ6 ≥
0, it follows that the probabilitypf of a successful evaluation satisfies

pf ≥
(

1− γ6

δ

)
·
(

1− γ3

δ

)
.

provided thatEBf (L) < γ6γ3/(4e2). Except for the factor 4e2, this bound is the same as the one
obtained at the beginning of Section 3.3; the difference is that the bound now follows from a general
result.

We next show how to minimizeL subject to a constraint onpf , for instancepf ≥ ρ. By The-
orem 12, we can useEBf (L) = Kf MN2−L in the bound predicate, whereKf = cf (mf + 2N), cf =

∑α max(1, | fα|), andmf = |{α : fα 6= 0}| is the number of monomial terms inf = ∑α fαzα. The
leading monomial off is zα∗

. Then, for arbitraryγ1, . . . ,γk ≥ 0, Theorem 4 tells us that

pf ≥ ∏
1≤ j≤k

(
1−

γ jα∗
j

δ

)
≥ 1− ∑

1≤ j≤k

γ jα∗
j

δ

providedL is such that

Kf M
N2−L ≤ | lcf( f )| ·

k

∏
j=1

(α∗
j γ j

2e

)α∗
j

. (4)

For a fixedρ < 1 we want to minimizeL subject to the condition

h1(γ1, . . . ,γk) := 1− ∑
1≤ j≤k

γ jα∗
j

δ
−ρ ≥ 0.

In an optimum solution, we haveh1 = 0; otherwise, we could increase aγ j with α∗
j 6= 0, which in turn

would increase the right hand side of (4). We now use the method of Lagrange multipliers. Define

h2(γ1, . . . ,γk) := log
k

∏
j=1

(α∗
j γ j

2e

)α∗
j

= ∑
j:α∗

j 6=0

α∗
j log

α∗
j γ j

2e

We want to maximizeh2 subject to the constrainth1 = 0. At a maximum, the gradients ofh1 andh2

must be parallel and hence there must exist a Lagrange multiplier µ∈ R such that

µ·
α∗

j

δ
=

α∗
j

γ j
and hence γ j =

δ
µ
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for all j = 1, . . . ,k with α∗
j 6= 0. Replacingγ j by δ

µ in the conditionh1(γ) = 0, we obtain

µ−1 = (1−ρ) ·
(

∑
1≤ j≤k

α∗
j

)−1

.

Substituting the resulting value for theγ j ’s into the right hand side of (4) and writingSfor ∑1≤ j≤k α∗
j =

deglmf , we obtain

| lcf( f )| ·
k

∏
j=1

(α∗
j γ j

2e

)α∗
j

= | lcf( f )| ·
k

∏
j=1

(α∗
j δ(1−ρ)

2eS

)α∗
j

≥ | lcf( f )|
(

δ(1−ρ
2ek∗

)S

,

wherek∗ = |{ j : a∗j 6= 0}| is the number of variables in the leading monomial term. The last inequality

uses the fact that∏1≤ j≤k(α∗
j /S)α∗

j is minimized ifα∗
j = S/k∗ for all j with a∗j 6= 0. The minimum is

(1/k∗)S. Thus (4) holds ifL is such that

L ≥ log
(
Kf M

N)− log|λα∗ |+deglm( f ) · log
2ek∗

δ(1−ρ)

or equivalently

L ≥ log(cf (mf +2N))+N logM− log| lcf( f )|+deglm( f ) · log
2ek∗

δ(1−ρ)
. (5)

We next simplify the right hand side at the expense of making it slightly larger. We usek∗ ≤ N and
deglm( f ) ≤ N and obtain the condition

L ≥ log(cf (mf +2N))− log| lcf( f )|+N

(
3+ logN+ log

M
δ

+ log
1

1−ρ

)
. (6)

Theorem 6 Let f = ∑α fαxα be a multivariate polynomial of total degree N, mf monomial terms,
cf = ∑α : fα 6=0max(1, | fα|), and k∗ variables appearing in the lead monomial. If the variables are
randomly perturbed by at mostδ and after perturbation are bounded by M, the precision of the
floating point system is L, and (6) or (5) holds, then the boundpredicate holds with probability at
leastρ.

We next apply the general analysis to two examples. The first example is the 2d-orientation
predicate and shows that the general analysis gives precision bounds comparable to those obtained
by special purpose considerations. The second examples shows that the methodology can analyze
fairly complex predicates; the underlying polynomial has 335 terms of degrees up to six; despite the
complexity of the defining polynomial, the analysis is straightforward.

Example One:We consider the polynomial

f (z1, . . . ,z6) := z1z4 +z3z6 +z5z2−z1z6−z3z2−z5z4

underlying the 2d-orientation predicate and apply equation (5). The leading monomial term is lm( f ) =
z3z6 with leading coefficient lcf( f ) = 1. Furthermore,cf = mf = 6, N = 2, k = 6, deg lm( f ) = 2, and
k∗ = 2. Thus, if

L ≥ log(cf (mf +2N))− log| lcf( f )|+N

(
log(4e)+ log

M
δ

+ log
1

1−ρ

)

= 12.79. . .+2

(
log

M
δ

+ log
1

1−ρ

)
,
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Figure 2: Given two circlesCi , i = 1,2, with midpoints(ai ,bi) and radii r i =
√

ci , there are two
degenerate situations of tangential intersection.

the probability of a successful predicate evaluation is at leastρ. Except for the constant additive factor
this is the same bound as derived in the introductory discussion at the beginning of this section. The
difference in the constant comes from two sources. First, the general theorem uses the bound predicate
for the orientation predicate in expanded form. Second, thetermN log(4e) comes from the estimate
of the factorial in Lemma 1.

Example Two:The second example demonstrates the strength of the generalapproach. We study
predicates that arise in the arrangement computation of circles in the plane. For the predicate to
determine whether three circles have a common intersectionpoint, the underlying polynomial is a
multivariate polynomial in 9 variables with 335 monomials terms and total degree 6. Consider the
following predicates:

1. Do circles
Ci := {(x,y) ∈ R

2 : qi(x,y) := (x−ai)
2 +(y−bi)

2−ci = 0},
i = 1,2 andai ,bi ∈ R, ci ∈ R

+
0 , intersect in exactly one, two or no points?

2. Do three circlesC1, C2 and

C3 := {(x,y) ∈ R
2 : q3(x,y) := (x−a3)

2 +(y−b3)
2−c3 = 0},

a3,b3 ∈ R, c3 ∈ R
+
0 , intersect in a common point and in which order doC2 andC3 intersect the

circleC1?

For two circles, there are two degenerate situations of tangential intersection; see Figure 2. W.l.o.g. as-
sumec1 ≥ c2. The distanceD :=

√
(a1−a2)2 +(b1−b2)2 of the centers is either

√
c1 +

√
c2 or√

c1−
√

c2. Hence, the following predicate function detects these situations:

f (a1,a2,b1,b2,c1,c2) := (D−√
c1−

√
c2) · (D−√

c1 +
√

c2)

= (D−√
c1)

2−c2

= D2 +c1−c2−2
√

c1(a1−a2)2 +c1(b1−b2)2)

We remark that the circles intersect in exactly one point ifff = 0, do not intersect ifff > 0, and
intersect in two distinct points ifff < 0. SinceD2+c1−c2 ≥ 0 it follows that f (a1,a2,b1,b2,c1,c2) =
0 is equivalent to

g(a1,a2,b1,b2,c1,c2) := ((a1−a2)
2 +(b1−b2)

2 +c1−c2)
2−4c1((a1−a2)

2 +(b1−b2)
2) = 0.
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Figure 3: The location of the intersection pointS= L2∩L3 with respect toC1 determines whether the
two pairs of points{pi,1, pi,2}, i = 2,3 are interleaving or not.

Furthermore, we haveg > 0 iff C1 andC2 do not intersect andg < 0 iff the circles intersect in two
distinct points. In terms of coordinates(z1, . . . ,z6) := (a1,a2,b1,b2,c1,c2) we obtain a multivariate
polynomial of total degreeN = 4 consisting ofmg = 34 monomial terms:

g(z1, . . . ,z6) =−4z1z2z2
3−4z1z2z2

4 +8z1z2z3z4 +4z3z4z6 +4z1z2z5 +4z3z4z5

+4z1z2z6−4z3z3
4−4z3

1z2 +6z2
1z2

2 +2z2
1z2

3 +2z2
1z2

4−2z2
1z5−2z2

1z6

−4z1z3
2 +2z2

2z2
3 +2z2

2z2
4−2z2

2z5−2z2
2z6−4z3

3z4 +6z2
3z2

4−2z2
3z5−2z2

3z6

−4z2
2z3z4−4z2

1z3z4 +z2
6−2z5z6 +z2

5−2z2
4z6−2z2

4z5 +z4
1 +z4

2+z4
3 +z4

4.

We have lm(g) = z2
6, lcf(g) = 1, cg = 100, andk∗ = 2. Hence it suffices to work with a precision

L ≥ 22.06. . .+4

(
log

M
δ

+ log
1

1−ρ

)

to guarantee that the probability of a successful perturbation is larger thanρ.

Now let us find a predicate to answer the second question. If one of the circlesC2 or C3 does not
intersectC1, there is nothing to do. Thus, we assume that each of them intersectsC1 in two points
{pi,1, pi,2} := Ci ∩C1, i = 2,3; the points may coincide. The difference

l i(x,y) := (q1−qi)(x,y) = 2(ai −a1)x+2(bi −b1)y+a2
1−a2

i +b2
1−b2

i +ci −c1

of the two defining equations ofC1 andCi is a linear equation inx andy and its vanishing set is the
unique lineLi passing through the pointspi,1 and pi,2. In the degenerate casepi,1 = pi,2 the lineLi

intersectsC1 tangentially atpi,1. Then (see also Figure 3):

• L1 = L2 if and only if {p2,1, p2,2} = {p3,1, p3,2}.

• If L1 6= L2 andS:= L2∩L3 lies onC1, then there exists exactly one common intersection point
of C1, C2 andC3, namelyS.

• The pairs{pi,1, pi,2}, i = 2,3, of crossings withC1 are interleaving if and only ifS lies in the
interior ofC1.
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Hence, in order to get information about the order of the intersection points onC1 we have to compute
the linesLi and their intersectionS= (x0,y0). Finally, we have to check the sign ofq1(x0,y0). The
coordinatesx0 andy0 are obtained by solving the systeml1 = l2 = 0 of linear equations; thus

x0 =
−a2

1b3 +a2
1b2 + . . .−b2

1b3 +c3b2

2(−a2b1−b2a3 +a2b3−a1b3 +b1a3 +b2a1)

and

y0 = − a2a2
1−a2b2

3 + . . .−c2a3−b2
2a1

2(−a2b1−b2a3 +a2b3−a1b3 +b1a3 +b2a1)
,

where we omitted some of the terms in the numerators to preserve readability.10 Plugging(x0,y0) into
q1 = 0, the defining equation ofC1, we obtain

q1(x0,y0) =
−2a1a3

3c2 +2c1b3
3b1 + . . .+4a3

1a2b3b2−6a2
2a2

1a2
3

4(−a2b1−b2a3 +a2b3−a1b3 +b1a3 +b2a1)2

with a numeratorh∈Z[ai,bi ,ci ] consisting ofmh = 335 monomial terms in the 9 variablesai ,bi andci ,
i = 1,2,3. The sign ofq1(x0,y0) is identical to the sign ofh, as the denominator ofq1(x0,y0) is always
nonnegative. Rewritingh in terms of the variables(z1, . . . ,z9) := (a1,a2,a3,b1,b2,b3,c1,c2,c3) and
considering our monomial ordering≻ the leading monomial term ofh is given byz2

5z2
9 and the leading

coefficient equals 1. Furthermore, its total degree equals 6and‖h‖∞ = 8. Thuscf ≤ 8mf . Now
Theorem 6 implies that

L ≥ log(8mf (mf +2N))+6logM +4

(
log(8e)+ log

1
δ

+ log
1

1−ρ
)

)

= 36.12. . .+6logM +4

(
log

1
δ

+ log
1

1−ρ

)

guarantees that the sign ofq1(x0,y0) can be evaluated successfully with probability larger thanρ.

3.5 Floating Point Perturbations

We address the issue that the analysis is carried out in real space but an actual implementation will
choose perturbations in the set of floating point numbers. Weperformed the theoretical analysis in the
real spaceRk; the perturbation of a point is a random point in the rectangular δ-neighborhood of the
point. However, in an actual implementation the perturbed points have to belong to the discrete setFL

of floating point numbers of precisionL. Previous papers remarked about this issue that for simplicity
the analysis is carried out in the real space.

We have taken a different route here. Observe that our error analysis explicitly takes into account
that real arguments are rounded to the nearest floating pointnumber (Lines 1 and 3 in Table 1 and
Theorem 12). Theorem 12 states that for any polynomialf of total degreeN in k variables and any
(z1, . . . ,zk) ∈ [−M,M]k

| f (z1, . . . ,zk)− f̃ (fl(z1), . . . ,fl(zk))| ≤ Kf M
N2−L.

where f̃ is the floating point version off , i.e., all operations inf are replaced by their floating point
counterpart,Kf is a suitable constant, and for anyx∈ R, fl(x) is a nearest (it is not important how ties
are broken) floating point number (with mantissa lengthL).

10This and the following computations are performed with the Computer Algebra System Maple 12.
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Theorem 7 Let z̄∈ [−M,+M]k be such that U:= Uδ(z̄) ⊆ A and letFL be the set of floating point
numbers with mantissa length L. For any u∈ F

k
L, let pu be the probability that u= fl(z) for a random

z∈U (rounding is componentwise). Then Theorem 6 stays true if instead of choosing z∈U uniformly
at random, we choose z∈ F

k
L according to the distribution(pu)u∈F

k
L
.

Proof: The floating point evaluation off (z) is tantamount to computing̃f (u) since the first step in
the evaluation is roundingz to fl(z).

How can we generate floating point numbers with the desired probabilities? Since coordinates
are perturbed independently, we may restrict to a single coordinate. Let ¯z∈ [−M,M] be such that
Uδ(z̄) ⊆ A. In order to reduce boundary effects, we select aU ⊆Uδ(z̄) of width at leastδ such that
generating a randomz∈U is particularly simple; this will also give us a simple process for generating
fl(z). Reducing the size of the perturbation region by a factor of two does not change the character of
our bounds; it only affects constant factors.

Let e∈ Z be such that 2e−1 < δ ≤ 2e. Then there is an integerW such thatz− δ ≤ W · 2e <
(W + 1) · 2e ≤ z+ δ. Let α be the longest common prefix of the binary representations ofW and
W+1, respectively. Thenα01ℓ andα10ℓ, whereα ∈ {0,1}∗ andℓ ≥ 0, are the binary representations
of W andW+1, respectively. We can choose the binary representation ofa random real in the interval
U := [W,W+1] ·2e by first selecting eitherα01ℓ or α10ℓ with probability 1/2 each and then continuing
random bit by random bit (or continuing in blocks of random bits). Continuing forever, we obtain the
binary representation of a random realz∈ [W,W +1] ·2e. In order to determinefl(z), we do not have
to continue forever, we can stop as soon asfl(z) is determined. When is this the case? The binary
representation ofz is α(0|1)(1|0)ℓ . . . ·2e. When the number of bits following the leading one in this
bitstring exceedsL, fl(z) is known. Thus no more thanL additional bits are needed except in one
situation: There is no 1 inα(0|1)(1|0)ℓ, i.e.,α is empty andℓ = 0. Then we need to generateL+1+ r
bits, wherer is the number of leading zeros that we generate. The probability of generatingr leading
zeros is 2−r and hence the expected number of bits to be generated inL + O(1) in all situations. We
summarize the discussion.

Lemma 2 Let z̄∈ [−M,M] be such that Uδ(z̄) ⊆ A. Then we can find a U⊆Uδ(z̄) of width at leastδ
such that fl(z) for a random z∈U can be generated in expected time O(L).

3.6 Analysis of a Complete Algorithm

We show how to extend the analysis of a single predicate to theanalysis of a complete algorithm.
Consider, for concreteness, an algorithm with input ¯z∈ R

n that uses two geometric predicates. The
predicates are implemented as the signs of polynomialsf1 and f2, respectively. Our goal is to guaran-
tee that the algorithm succeeds on a perturbationz∈Uδ(z̄) with probability at least 1/2.

Let fi be a polynomial of total degreeNi in ki variables. Then there are no more thannki argument
tuples ofki distinct arguments. If we guarantee thatfi fails on any specificki-tuple of arguments with
probability at most 1/(4nki ), the probability thatfi fails on someki-tuple of arguments is at most
1/4 and hence the probability that eitherf1 or f2 fails on some argument is at most 1/2. Thus the
algorithm succeeds with probability at least 1/2.

Each of the two bounds on the error probability yields a lowerbound onL. The larger of the
bounds determines the value ofL. Of course, the argument above extends to any number of predi-
cates. Many algorithms in computational geometry use a small number of primitives of bounded arity
and hence are covered by this argument, e.g., convex hulls, Delaunay triangulations, and Voronoi

20



diagrams. We give a concrete example. The incremental Delaunay diagram algorithm uses the 2d-
orientation and the 2d-side-of-circle predicate. There are at mostn3 invocations of the former predi-
cate and at mostn4 invocations of the latter. Thus it suffices to guarantee thatan orientation predicate
fails with probability at most 1/(4n3) and that a side-of-circle predicate fails with probabilityat most
1/(4n4).

Theorem 8 Let f1 to fr be multivariate polynomials such that each fi is a nonzero polynomial of total
degree at most N, has at most m monomial terms, cfi ≤ c, andlcf( fi) ≥ 1. If an idealistic algorithm
branches only on the signs of f1 to fr and the n inputs are randomly perturbed by at mostδ and
are bounded by M after perturbation (where M is an integral power of two), then the corresponding
guarded algorithm fails with probability at mostε provided the precision L of the floating point system
satisfies

L ≥ log(c(m+2N))+N

(
3+ logN+ log

M
δ

+ logr +N logn+ log
1
ε

)
(7)

= Ω(1)+N

(
log

M
δ

+N logn+ log
1
ε

)
(8)

Proof: There are at mostnN distinct invocations for each of thefi . Since eachfi is a nonzero
polynomial we can apply Thm 6; we apply it with

ρ = 1− ε
rnN .

Then the probability that a fixedfi fails on any specificki-tuple of inputs (ki is the arity of fi) is at
mostε/(rnN) and hence the probability that somefi fails on someki-tuple of distinct inputs is at most
ε. We conclude that the guarded algorithm fails with probability at mostε.

Substituting the expression forρ into equation (6) leads to condition (7).

Some algorithms apply predicates to derived values, e.g., the plane-sweep algorithm for line seg-
ment intersection locates intersection points of input segments with respect to input segments. Usually,
such predicates can be reformulated in terms of inputs11 and then the analysis applies.

3.7 Efficiency of CP Algorithms

Controlled perturbation can be used without analysis. One starts with an idealistic algorithm, turns it
into a guarded algorithm by guarding the evaluations of all predicates, and puts the guarded algorithm
into a controlled perturbation loop as shown in Figure 4.

A predicate evaluation may be guarded in different ways. Suppose we branch on the sign of some
expressionE. We either perform an error analysis forE as described in Section 6 and use one of
the guards derived there or we evaluateE with interval arithmetic and abort whenever the resulting
interval contains zero.

The maximum allowable perturbation is usually dictated by the application. For example, if we
design an object that is to be fabricated with a machine that has a tolerance ofδ, we may allow a
perturbation of up toδ. Or if the inputs are determined by physical measurements with error margin
δ, we may allow perturbation of up toδ.

11Assuming that line segments are specified by their endpoints, the predicate would become a function of six input points.

21



execution aborted guard

data
input perturbation

options

perturbation
of the input

increase
perturbation

and/or precision

data
output perturbed

input data

terminated
successfully

idealistic algorithm

CP wrapper

Figure 4: The control flow of the general CP template.

What is a suitable rule for increasing the precision? Let us assume that the cost of arithmetic
with floating point numbers of precisionL is O(Lα), where 1≤ α ≤ 2; α = 2 corresponds to classical
arithmetic andα = 1 corresponds to fast arithmetic (ignoring logarithmic factors). Let us also assume
that we have an algorithm that performs at mostT(n) steps on an input of sizen. Then the cost of
the algorithm on input sizen and with precisionL is T(n)Lα. We also assume that for each fixed
precision we do up toh iterations, and that afterh unsuccessful iterations with the same precision,
we increase the precision by a factort. Let L0 be the smallest value ofL such that the probability of
a successful execution is at least 1/2. In order to bound the cost of the execution, we consider the
executions with precision at mostL0 and the executions with precision more thanL0. The cost of the
former executions is at most

T(n) ·∑
i≥0

h(L0/t i)α = O(T(n)Lα
0).

The expected cost of the latter executions is at most

T(n) ·∑
i≥0

∑
1≤ j≤h

j(tL0t
i)α2−hi−( j−1) = T(n)tαLα

0 ·∑
i≥0

(tα2−h)i ∑
1≤ j≤c

j2−( j−1) = O(T(n)Lα
0)

since the first such execution uses precision at mosttL0 and we proceed to precisiontL0t i only if all
preceding executions have failed. The last equality holds if tα < 2h.

Theorem 9 If at any fixed precision, up to h iterations are performed, and precision is increased by
a factor of t after h unsuccessful iterations at a fixed precision, L0 is the smallest value of L such that
the probability of a successful execution on input size n is at least 1/2, the cost of arithmetic is O(Lα)
with 1≤ α ≤ 2, and tα < 2h, then the expected cost of the CP algorithm is

O(T(n)Lα
0).
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4 Geometric Insight versus General Methodology

The analysis of the preceding section is basically analytical. It uses geometry only in a weak way,
namely when the proof of Theorem 1 argues about the roots of a polynomial. However, the analysis
does not exploit any specific geometric properties of the predicate. In particular, it does not give a
geometric interpretation of the value of a predicate function. For the orientation function ofd + 1
points inR

d such an interpretation is available. The value of the predicate functions is 1/d! times
the volume of the simplex spanned by thed + 1 points. In this section, we give further examples
of predicate functions whose value has a geometric interpretation. The geometric interpretation also
yields a slightly improved analysis. The improvements are only in the constant factors. Constant
factors are important in our context, because a few additional bits of precision may force a switch
from native floating point arithmetic to software arithmetic. Note however, that the usage of CP
discussed in the preceding section will automatically choose a large precision only if necessary.

Distinctness of Points: This example is a warm-up for the other examples. Our input isn points
in the plane and we want to verify that they are distinct. We implement distinctness via the squared
distance function, i.e.,

distinct(p,q) = sign
(
dist(p,q)2)= sign

(
(px−qx)

2 +(py−qy)
2) .

This is a round-about way of implementing distinctness; simply comparing coordinates would be
better as it incurs no round-off error.

The error bound of the polynomialf = (px − qx)
2 + (py − qy)

2 is Kf M22−L for some constant
Kf . The total degree and the degree of the lead monomial is two. So the general theorem yields the
constraint.

L ≥ Ω(1)+2logM/δ+2log
1

1−ρ
.

There aren2 possible tests and hence we setρ = 1/(2n2) as discussed in Section 3.6. So our constraint
becomes

L ≥ Ω(1)+2logM/δ+4logn.

A more geometric reasoning is as follows. We want that any twopoints have a minimum distance
of at leastγ, whereγ2 = Kf M22−L. We imagine that the points are perturbed one after the other.
When the last point is perturbed, the previous points exclude a region of volumenπγ2 of the region of
perturbation, i.e., the probability that the perturbationdoes not guarantee distanceγ from all preceding
points is at mostnπγ2/(4δ2) and hence the probability that the perturbation of some point does not
guarantee this distance is at mostn2πγ2/(4δ2). Again, we require that the latter probability is at most
1/2. The constraint onL becomes

L ≥ Ω(1)+2logM/δ+2logn

and so the dependency onn is slightly less. Why is the dependency onn different?
Assume that the pointp is fixed andq is still to be perturbed. Then an area ofπγ2/(2δ)2 is

excluded from the perturbation region forq and hence the probability of failure isΘ(γ2/δ2). In the
general analysis, we consider one coordinate ofq at a time. For each choice of the, sayx-coordinate
of q, we exclude an interval of length 2γ for they-coordinate ofq. Thus the probability of failure is
Θ(γ/δ). We need that the probability of failure is less 1/n2 and therefore the geometric reasoning of
the previous paragraph leads to a better dependency on logn.
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Orientation Test in d-space The orientation test ford+ 1 points inR
d is realized as the sign of a

determinant, see Section 2. The value of the determinant isd! times the signed volume of the simplex
spanned by thed+1 points. This volume may be considered as a distance to degeneracy. The volume
of a simplex spanned by pointsp1 to pd+1 is 1 overd times the(d− 1)-dimensional volume of the
base spanned by the pointsp1 to pd times the distance ofpd+1 from the hyperplane spanned byp1 to
pd. Continuing in this way, we obtain:

Lemma 3 The determinant of (1) is equal to

dist(p1, p2) ·dist(p3,h(p1, p2)) ·dist(p4,h(p1, p2, p3)) · . . . ·dist(pd+1,h(p1, . . . , pd)),

where h(p1, . . . , pk) is the affine space spanned by p1 to pk.

Consider now an algorithm that uses the 2d-orientation testand takesn points in the plane as its
input. The error bound is again of the formKM22−L. The general methodology yields the constraint

L ≥ Ω(1)+2logM/δ+6logn,

where 2 is the degree of the underlying polynomial and 6= 2·3; here 2 is the degree and the 3 reflects
the fact that there areΘ(n3) possible orientation test.

A more geometric reasoning is as follows. We want that any twopoints have a distance of at least
γ1 and that any point has a distanceγ2 from the line defined any other two points. If this holds, the
orientation determinant has value at leastγ1γ2. The condition onL is

γ1γ2 > KM22−L.

Again consider the perturbation of a single point. Then−1 other points exclude an area of at most
nπγ2

1 and theΘ(n2) lines defined by the other points exclude an area of at mostn22
√

2δ2γ2; the
intersection of the line with the perturbation region has length at most 2

√
2δ and there must be a

margin ofγ2 on both sides of the line. Thus the probability that the perturbation of a point is bad is
bounded by

C · nγ2
1 +n2δγ2

δ2

for some constantC. Again we need to require thatn times this probability is at most 1/2. With
γ1 = δ/(2n) andγ2 = γ2

1/(nδ) the probability constraint is satisfied and the condition onL becomes

L ≥ Ω(1)+2logM/δ+4logn

and so the dependency onn is slightly less.

2d Side-of-Circle Test: We consider the side-of-circle test of four points in the plane. It tells the
side of a query point with respect to an oriented circle defined by three points. We have three points
pi = (zi ,yi), 1≤ i ≤ 3, and a query pointp = (x,y). Let us assume first that the three points are not
collinear. LetRbe the radius of the circleC defined by the first three points. The standard realization
of the 2d side-of-circle test is via lifting the points to the paraboloid of revolutionz= x2 +y2, i.e.,

soc(p1, p2, p3, p) = signfsoc(p1, p2, p3, p) where fsoc(p1, p2, p3, p) =

∣∣∣∣∣∣∣∣

1 z1 y1 z2
1 +y2

1
1 z2 y2 z2

2 +y2
2

1 z3 y3 z2
3 +y2

3
1 x y x2 +y2

∣∣∣∣∣∣∣∣
.
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We next show how to interpret this formula in terms of the geometry in the plane. Letc = (cx,cy) be
an arbitrary point in the plane. Subtractingcx from all entries in the second column,cy from all entries
in the third column, and adding−2cx ·second column−2cy · third column+(c2

x +c2
y) ·first column to

the last column does not change the value of the determinant.The entries in the last column become
the squared distances of the points fromc. We have thus shown that the value of the determinant is
invariant under translations. We now specializec to the center of the circle defined byp1 to p3. In this
situation, we have

| fsoc(p1, p2, p3, p)| =

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

1 z1 y1 R2

1 z2 y2 R2

1 z3 y3 R2

1 x y x2 +y2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

1 z1 y1 0
1 z2 y2 0
1 z3 y3 0
1 x y x2 +y2−R2

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣

= |(x2 +y2−R2)

∣∣∣∣∣∣

1 z1 y1

1 z2 y2

1 z3 y3

∣∣∣∣∣∣
|

= |2∆(x2 +y2−R2)|
= |2∆| · |

√
x2 +y2−R| · (

√
x2 +y2+R)

≥ |2∆| ·R·dist(p,C),

where∆ is the signed area of the triangle with verticesp1 to p3, C is the circle defined by these
points, anddist(p,C) is the distance ofp from this circle. Leta = dist(p1, p2), b = dist(p1, p3),
c = dist(p2, p3), and letα be the angle atp3 in the triangle(p1, p2, p3). Then 2R = a/sinα and
|∆| = (1/2)bcsinα and hence 2R|∆| = 1/2·abc. We obtain:

Lemma 4 Let p1, p2, p3 and p be four points in the plane. Then

| fsoc(p1, p2, p3, p)| ≥ 1
2

dist(p1, p2)dist(p1, p3)dist(p2, p3)dist(C, p).

Proof: We have already argued the formula for non-collinear pointsp1, p2, andp3. Continuity of
the left and right side of the inequality extends the inequality to all situations. For collinear pointsp1,
p2, andp3, C is the line passing through these points.

Consider now an algorithm that uses the 2d-side-of-circle test and takesn points in the plane as
its input. The error bound is of the formKM42−L. The general methodology yields the constraint

L ≥ Ω(1)+4logM/δ+16logn,

where 4 is the degree of the underlying polynomial and 16= 4 ·4; here one 4 is the degree and the
other 4 reflects the fact that there areΘ(n4) possible orientation test.

A more geometric reasoning is as follows. We want that any twopoints have a distance of at least
γ1 and that any point has a distanceγ2 from the circle defined by any other three points. If this holds,
the side-of-circle determinant has value at leastγ3

1γ2/2. The condition onL is

γ3
1γ2/2 > Kf M

22−L.

Again consider the perturbation of a single point. Then−1 other points exclude an area of at most
nπγ2

1 and theΘ(n3) circles defined by the other points exclude an area ofn3Cδγ2. Thus the probability
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that the perturbation of a point is bad is bounded by

C · nγ2
1 +n3δγ2

δ2

for some constantC. Again we need to require thatn times this probability is at most 1/2. With
γ1 = Θ(δ/n) andγ2 = γ2

1/(n
2δ), the probability constraint is satisfied and the condition on L becomes

L ≥ Ω(1)+4logM/δ+6logn

and so the dependency onn is slightly less.

Improvements Coming from the Algorithm: Many algorithms in computational geometry are
incremental. They obtain the solution forn points from a solution forn−1 points by making suitable
additions and changes. An example is the incremental construction of Delaunay triangulations. Let
D be the Delaunay triangulation forn−1 points and letp be an additional point. One first finds the
triangle of the triangulation (we assume, for simplicity, that the new point is contained in the convex
hull of the existing points) containingp, then splits this triangle into three triangles by connecting p
to the corners of the triangle, and finally restores the Delaunay property. The point location step uses
orientation tests and locatesp with respect to edges ofD. The update step uses side-of-circle tests and
locatesp with respect to the circumcircles of triangles inD. Thus in each update step at mostO(n)
orientation- and side-of-circle tests are performed.

In this situation, the analysis of the side-of-circle predicate of the preceding section can be sharp-
ened as follows. The perturbation of then-th point has to avoidn circular regions of volumeπγ2

1 each
andO(n) annuli of areaCδγ2 each. Then the constraint forγ1 andγ2 becomes

C
nγ2

1 +nδγ2

δ2 ≤ 1
2n

and hence the constraint forL becomes

L ≥ Ω(1)+4logM/δ+5logn;

this is slightly better than above. The paper [FKMS05] contains more examples of this kind.

5 Future Work

We have introduced a general methodology for analyzing CP algorithms and have shown that it is
strong enough to handle all geometric predicates that can beexpressed as the sign of a multivariate
polynomial. A first challenge is to extend the analysis from polynomials to rational functions or
expressions involving square roots. One can eliminate divisions and square roots by reformulation of
the predicates as done in the concluding examples of Section3.4. It would, however, be nice to handle
them directly.

We view the input as a point inRn and assume that all coordinates can be perturbed independently.
Frequently, the input also has combinatorial structure, e.g, the input points are the vertices of a simple
polygon. Then the perturbation must preserve the combinatorial structure. In some applications, it
may suffice to perturb the polygon as a whole, e.g, by applyinga rigid transformation to it. The second
challenge is to make controlled applicable to problems whose input has combinatorial structure.
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The error analysis given in the appendix (Section 6) assumesthat expressions are evaluated by
straight-line programs. However, more complex equations will be evaluated with a program involving
branching and CP needs to be generalized to this situation; this is our third challenge. For example,
we might compute the sign of the determinant of ad×d matrixA by computing anLU -decomposition
L′U ′ of the matrix and then determining the signs of the determinants ofL′ andU ′. In [FKMS05] the
bound predicate

Bd ≡
(
|detA| > Bd := 1.012 ·100d22dMdε

)

was derived for Gaussian elimination with partial pivotingand all entries ofA bounded byM in
absolute value.

So far, CP was only applied to fairly simple geometric problems. It would be interesting to apply is
also to complex geometric objects, e.g., arrangements of algebraic curves; this is our fourth challenge.

6 Appendix: Floating Point Arithmetic and Error Analysis

This appendix is an abbreviated version of the notes for the lecture on floating point numbers and
error analysis12 within a course on Computational Geometry and Geometric Computing held by Eric
Berberich, Kurt Mehlhorn, and Michael Sagraloff. All proofs can be found there. The lecture notes
are based on the papers [MN94, Fun97, BFS01]; the treatment of square roots is novel.

Hardware floating point arithmetic is standardized in the IEEE floating point standard [IEE87]. A
floating point number is specified by a signs, a mantissam, and an exponente. The sign is+1 or−1.
The mantissa consists ofL bits m1, . . . ,mL, ande is an integer in the range[emin,emax]. The range of
possible exponents contains zero andemin ≤−L−2. The number represented by the triple(s,m,e) is
as follows:

• If emin < e≤ emax, the number iss· (1+∑1≤i≤L mi2−i) ·2e. This is called anormalizednumber.

• If e = emin then the number iss· ∑1≤i≤L mi2−i2emin+1. This is called asubnormalnumber.
Observe that the exponent isemin + 1. This is to guarantee that the distance of the largest
subnormal number(1−2−L)2emin+1 and the smallest normalized number 1·2emin+1 is small.

• In addition, there are the special numbers−∞ and+∞ and a symbol NaN which stands for
not-a-number. It is used as an error indicator, e.g., for theresult of a division by zero.

Let F = F(L,emin,emax) be the set of real numbers (including+∞ and−∞) that can be represented
as above.13 A real number inF is calledrepresentable, a number inR\F is callednon-representable.
The largest positive representable number (except for∞) is maxF = (2−2−L) ·2emax, the smallest pos-
itive representable number isminF = 2−L ·2emin+1 = 2−L+emin+1, and the smallest positive normalized
representable number ismnormF = 1·2emin+1 = 2emin+1.

F is a discrete subset ofR. For any realx, let fl(x) be a floating point number closest14 to x. By
convention, ifx > maxF, fl(x) = ∞, and ifx < −maxF, fl(x) = −∞. Arithmetic on floating point num-
bers is only approximate; it incurs roundoff error. It is important to distinguish between mathematical

12The full version can be found athttp://www.mpi-inf.mpg.de/departments/d1/teaching/w s09_
10/CGGC/Notes/Numbers.pdf

13Double precision floating point numbers are represented in 64 bits. One bit is used for the sign, 52 bits for the mantissa
(L = 52) and 11 bits for the exponent. These 11 bits are interpreted as an integerf ∈ [0...211−1] = [0...2047]. The exponent
eequalsf −1023; f = 2047 is used for the special values and henceemin =−1023 andemax= 1023. The rules forf = 2047
are: If allmi are zero andf = 2047 then the number is+∞ or−∞ depending ons. If f = 2047 and somemi is nonzero, the
triple represents NaN ( = not a number).

14The IEEE-standard also specifies how to break ties. This is ofno concern here.
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E condition Ẽ mE indE cE degE

a constant inR\F fl(a) max(mnormF , |fl(a)|) 1 max(1, |fl(a)|) 0

a constant inF a max(mnormF , |a|) 0 max(1, |a|) 0

x var. ranging overR fl(x) max(mnormF , |fl(x)|) 1 1 1

x var. ranging overF x max(mnormF , |x|) 0 1 1

A+B Ã⊕ B̃ mA⊕mB 1+max(indA, indB) cA +cB max(degA,degB)

A−B Ã⊖ B̃ mA⊕mB 1+max(indA, indB) cA +cB max(degA,degB)

A·B Ã⊙ B̃ max(mnormF ,mA⊙mB) 1+ indA + indB cAcB degA+degB

A1/2 Ã < umA 0 2(t+1)/2√mA 2+ indA not defined

A1/2 Ã≥ umA

√
Ã max(

√
Ã,mA⊘

√
Ã) 2+ indA not defined

Table 1: The recursive definitions ofmE, indE, cE and degE. The first two columns specify the case
distinction according to the syntactic structure ofE, the third column contains the rule for computing
Ẽ, and the fourth to seventh columns contain the rules for computing mE, indE, cE and degE; ⊕, ⊖,
and⊙ denote the floating point implementations of addition, subtraction, and multiplication, and√
denotes the floating point implementation of the square-root operation. Observe thatmE = ∞ if either
mA = ∞ or mB = ∞.

operations and their floating point implementations. We use⊕, ⊖, and⊙, for the floating point im-
plementations of addition, subtraction, and multiplication, respectively. Only in this appendix, we use
1/2 for the square-root operation and√ for its floating point implementation. Generally, we use◦̃ for
the floating point implementation of◦. The floating point implementations of the operations+, −, ·,
and 1/2 yield the best possible result.This is an axiom of floating point arithmetic. Ifx,y ∈ F and
◦ ∈ {+,−, ·} then

x̃◦y = fl(x◦y)

and √
x = fl(x1/2).

We need bounds on the error in the floating point evaluation ofsimple arithmetic expressions.
Any real constant or variable is an arithmetic expression and if A andB are arithmetic expression,
then so areA+B, A−B, A·B, andA1/2. The latter assumes that the value ofA is nonnegative. For an
arithmetic expressionE, let Ẽ be the result of evaluatingE with floating point arithmetic. The quantity
u = 2−L−1 is calledunit of roundoff. Table 1 gives recursive definitions of quantitiesmE, indE, cE and
degE; we bound|E− Ẽ| in terms of them. Intuitively,mE is an upper bound on the absolute value
of E, indE measures the complexity of the syntactic structure ofE, degE is the degree ofE when
interpreted as a polynomial, andcE bounds the coefficient size whenE is interpreted as a polynomial.

Theorem 10 If indE ≤ 2(L+1)/2−1 then

|E−Ẽ| ≤ (indE +1) ·u ·mE ≤ (indE +2)⊙max(mnormF,mE⊙u)≤ (indE +3) ·max(mnormF,mE ·u),

where indE and mE are defined as in Table 1.

For the 2d-orientation predicate

orient(a,b,c) = sign((bx−ax) · (cy−ay)− (by−ay) · (cx−ax))
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for pointsa = (ax,ay), b = (bx,by), c = (cx,cy) in the plane we obtainindE = 6, and

mE = max(mnormF,(b̂x⊕ âx)⊙ (ĉy⊕ ây))⊕max(mnormF,(b̂y⊕ ây)⊙ (ĉx⊕ âx)),

wherex̂ = max(mnormF, |fl(x)|).
The error bound of Theorem 10 is only used for guards. For the analysis we use a simpler, but

weaker bound. It applies to polynomial expressions, i.e., expressions using only constants, variables,
additions, subtractions, and multiplications.

Theorem 11 For a polynomial expression we have mE ≤ cEMdegE, where mE, cE and degE are
defined as in Table 1 and M is the smallest power of two with

M ≥ max(1,max{|x| : x is a variable in E}).

This assumes that cEMdegE is representable.

We next specialize the theorem above to polynomial expressions that are sums of products, i.e.,
that correspond to the standard representation of polynomials. We consider polynomials ink variables
z1 to zk. Forα = (α1, . . . ,αk) let zα = zα1

1 · · ·zαk
k . Any polynomial f in R[z1, . . . ,zk] can then be written

as
f (z1, . . . ,zk) = ∑

α
fazα,

where fα is the coefficient of the monomial termzα. For simplicity assume that the coefficients are
representable as floating point numbers. For a monomial term, Z = fαzα, we havecZ = max(1, | fα|),
degZ = deg(zα) = ∑i αi , andindZ = 2degZ. For the entire polynomial, we havecf = ∑α max(1, | fα|)
and degf equal to the total degree off . The index depends on the order in which we add the monomial
terms. If we sum serially, as in((((t1+t2)+t3)+t4)+t5)), the index is the number of monomial terms
minus one plus the largest index of any monomial term. If we sum in the form of a binary tree as in
((t1 + t2) + ((t3 + t4) + t5)), the index is the logarithm of the number of monomial terms rounded
upwards plus the largest index of any monomial term.

Theorem 12 Let f(z1, . . . ,zk) = ∑α faxα be a polynomial of total degree N. Let cf = ∑α max(1, | fα|)
and let mf = |{α : fα 6= 0}| be the number of monomial terms in f . Let M≥ 1 be a power of two and
let z1 to zk be real values with|zi | ≤ M for all i. Then

| f (z1, . . . ,zk)− f̃ (fl(z1), . . . ,fl(zk))| ≤ cf (mf +2N)MN2−L−1,

where f̃ is the floating point version of f , i.e., all operations in f are replaced by their floating point
counterpart.

Proof: We use Theorems 10 and 11. The index is largest if the monomialterms are summed serially.
It is then equal tomf +2N−1. AlsomE ≤ cf MN.

We apply Theorems 11 and 12 to the 2d-orientation predicate.Let a = (ax,ay), b = (bx,by),
c = (cx,cy) be three points in the plane. Then

orient(a,b,c) = sign((bx−ax) · (cy−ay)− (by−ay) · (cx−ax)).

We already determined the index of this expression as 6. Thec- andd-values are as follows. For
any argument, both values are one, forX = bx − ax, we havecX = 2 and degX = 1, for X = (bx−

29



ax) · (cy − ay), we havecX = 4 and degX = 2, and finally for the entire expression we havecX = 8
and degX = 2. We conclude that the roundoff error in evaluatingorient(a,b,c) with floating point
arithmetic is at most

7·u ·8·M2 = 56·u ·M2 = 28M22−L.

whereM is the smallest nonnegative power of two bounding all Cartesian coordinates. If we use the
alternative formulation

orient(a,b,c) = bxcy−bxay−axcy−bycx +byax +aycx

we can apply Theorem 12 withN = 2, mf = 6, andcf = 6. We obtain that the roundoff error is at
most

6(6+4)M2 ·u = 60M2 ·u = 30M22−L.

We close this section with the definition of valid guards and bound predicates.

Theorem 13 Let E be a polynomial expression. Then

GE ≡
(
|Ẽ| > (indE +2)⊙max(mnormF,mE ⊙2−L−1)

)
, BE ≡

(
|E| > (indE +2)cEMdegE2−L)

(9)
and

GE ≡
(
|Ẽ| > (indE +1) ·cE ·MdegE2−L−1

)
, BE ≡

(
|E| > (indE +1)cEMdegE2−L) (10)

define pairs of guard and bound predicate. Here M≥ 1 is a power of two no smaller than the absolute
value of all arguments. This assumes that cEMdegE and(indE +1)ceMdegE2−L−1 are representable.

Proof: We first prove (9). LetK = cEMdegEu and assume|E| > 2(indE + 2)K. By Theorem 10,
|Ẽ−E| ≤ (indE + 2)⊙max(mnormF,mE ⊙ 2−L−1). Thus, if |Ẽ| is larger than the latter quantity,E
andẼ have the same sign. Next observe that max(mnormF,mEu)≤ K sincecE ≥ 1, M ≥ 1, degE ≥ 0
andemin ≤−L−2, and hencecEMdegEu ≥ mnormF and sincemE ≤ K by Theorem 11. Thus

|Ẽ| ≥ |E|− |E− Ẽ| > (2(indE +2)− (indE +1))K = (indE +3)K

≥ (indE +3)max(mnormF,mE ·u) ≥ (indE +2)⊙max(mnormF,mE ⊙u),

where the last inequality is part of Theorem 10.
We turn to (10). LetK = cEMdegEu and |E| > 2(indE + 1)K. By Theorem 11,mE ≤ cEMdegE.

Thus|Ẽ−E| ≤ (indE +1)cEMdegEu. The latter is a floating point number by assumption and if|Ẽ| is
larger than this quantity,E andẼ have the same sign. Finally,

|Ẽ| ≥ |E|− |E− Ẽ| > (2(indE +1)− (indE +1))K = (indE +1)K.

For the orientation predicate (in expression form),orient(a,b,c) = sign((bx − ax) · (cy − ay)−
(by−ay) · (cx−ax)), the second part of Theorem 13 yields the pair

GE ≡
(
|Ẽ| > 28⊙M2⊙2−L

)
BE ≡

(
|E| > 56M22−L

)
. (11)

For the orientation predicate (in polynomial form),orient(a,b,c) = bxcy−bxay−axcy−bycx+byax+
aycx, it yields the pair

GE ≡
(
|Ẽ| > 30⊙M2⊙2−L

)
BE ≡

(
|E| > 60M22−L) . (12)
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