
Lecture 4

Number Types I

We will study arbitrary precision integers, rationals, fixed precision floating point numbers, and arbitrary
precision floating point numbers. In later lectures, we willlearn about algebraic expressions and general
algebraic numbers. We start out with a short discussion of arbitrary precision integers and rationals. The
bulk of the lecture will be about floating point numbers.

Floating point numbers are of the form
s·m·2e

wheres is a sign bit (−1 or +1), m is a non-negative number calledmantissaande is an integer called
exponent. The number of digits available for the mantissa is either fixed (all hardware floating point systems)
or arbitrary (most software floating point systems). The exponent either comes from a fixed range (hardware
floating point numbers and some software floating point systems) or is arbitrary (some software floating
point systems). Already the first programmable computer offered floating point numbers. In 1938, Konrad
Zuse completed the ”Z1”, the first programmable computer. Itworked with 22-bit floating-point numbers
having a 7-bit exponent, 15-bit significant (including one implicit bit), and a sign bit. The Z3, completed
in 1941, implemented floating point arithmetic exceptions with representations for plus and minus infinity
and undefined. The first commercial computers offering floating point arithmetic in hardware are Zuse’s Z4
in 1950, followed by the IBM 704 in 1954. The IEEE standard 754-1985 [18] defines single and double
precision floating point arithmetic which is implemented inhardware on all modern processors. Floating
point arithmetic (hardware and software) is the workhorse for all scientific and geometric computations
and therefore we need to study it carefully. The preceding statement concerning the importance of floating
point computations seems to contradict the findings of Lecture ??. It does not. In the preceding lecture, we
showed that a naive substitution of floating point arithmetic for real arithmetic does not work. In the course
we will learn that the wise use of floating point arithmetic isone of cornerstones of reliable and efficient
geometric computing.We will teach you how to draw reliable conclusions from approximate arithmetic.

4.1 Built-In Integers and Arbitrary Precision Integers

Hardware and programming languages provide fixed precisioninteger arithmetic, usually in signed and
unsigned form. Letwbe the word size of the machine and letm= 2w. Most current workstations havew= 32
or w= 64. The unsigned integers consist of the integers between 0 andm−1 (both inclusive) and arithmetic
is modulom. The signed integers form an interval [MININT ,MAXINT]. On most machines signed integers
are represented in two’s complement. ThenMININT = −2w−1 andMAXINT= 2w−1 − 1. An arithmetic

1

2 LECTURE 4. NUMBER TYPES I

operation on signed integers may produce a result outside the range of representable numbers; one says
that the operation underflows or overflows. The treatment of overflow and underflow is not standardized, in
particular, it is not guaranteed that they lead to a runtime error, in fact they usually do not. For example,
the additionMAXINT+ MAXINThas result−2 on the KM’s machine, since adding 011. . .1 to itself yields
11. . .10, which is the representation of−2 in two’s complement.

Arbitrary integers are readily implemented in software, for example, in packages [15] and [19, Class
BigInteger]. The running time of addition and subtraction is linear in the number of digits. All packagesreferences??
implement some form of fast integer multiplication. Depending on the method used, the running time of
multiplication isO(Llog3) or O(L logL log logL), whereL is the number of digits in the operands.

Exercise 0.1: The greatest common divisor of two integersx andy with x≥ y≥ 0 can be computed by the
recursionGCD(x,y) = x if y = 0 andGCD(x,y) = GCD(y,x mody) if y > 0. Prove that the number
of recursive calls is at most proportional to the length ofy. Hint: Assumex > y and letx0 = x and
x1 = y. For i > 1 andxi−1 6= 0 let xi = xi−2 modxi−1. Let xk = 0 be the last element in the sequence
just defined. Relate this sequence to the gcd-algorithm. Show thatxk−1 > 0 andxi−2 ≥ xi−1 + xi for
i < k. Conclude thatxk− j is at least as large as thej-th Fibonacci number. ♦

Exercise 0.2: The standard algorithm for multiplying twoL-bit integers has running timeO(L2). Karat-
suba’s method ([21]) runs in timeO(Llog3). In order to multiply two numbersx and y it writes
x = x1 · 2L/2 + x2 andy = y1 · 2L/2 + y2, wherex1, x2, y1, andy2 haveL/2 bits. Then it computes
z= (x1+x2) · (y1 +y2) and observes thatx·y = x1 ·y1 ·2L +(z−x1y1−x2y2) ·2L/2 +x2y2. In this way
only three multiplications ofL/2-bit integers are needed to multiply twoL-bit integers. The standard
algorithm requires four. ♦

4.2 Rational Numbers

A rational number is the quotient of two integers. Addition and multiplication of rational numbers are exact.
A rational is normalized, if numerator and denominator are relatively prime. Normalization requires to find
the greatest common divisor of numerator and denominator and two divisions to remove it. Normalization
is fairly costly. However, one should be aware that some algorithms lead to non-normalized numbers and re-
quire normalization for efficiency. A prime example is Gaussian elimination. Consider Gaussian elimination
of a 3×3 matrix.

a b e
c d f
g h i

 →

a b e
0 d−b(c/a) f −e(c/a)
0 h−b(g/a) i −e(g/a)

→

a b e
0 (ad−bc)/a (a f −ec)/a)
0 (ah−bg)/a (ai−eg)/a

→

a b e
0 (ad−bc)/a (a f −ec)/a)

0 0 (ai−eg)/a− (ah−bg)/a
(ad−bc)/a(a f −ec)/a

4.3. FLOATING POINT NUMBERS 3

We now have a close look at the element in position(3,3). We have:

(ai−eg)/a− (ah−bg)/a
(ad−bc)/a

(a f −ec)/a =
(ai−eg)(ad−bc)− (ah−bg)(a f −ec)

a(ad−bc)

=
all terms containinga+(egbc−bgec)

a(ad−bc)
,

i.e., numerator and denominator contain the common factora. If common factors are not cleared out in
Gaussian elimination, the length of the numbers grows exponentially in the dimension of the matrix. If
entries are kept in normalized form, Gaussian elimination is polynomial [?].

The use of rational arithmetic is inefficient and should be avoided.

4.3 Floating Point Numbers

We start out with a definition of binary floating point systems. We explain the representation of numbers
and the key properties of floating point arithmetic. We move on to derive error bounds for the evaluation of
expressions. We will use them extensively in the course: foroptimized evaluations of geometric predicates in
this lecture, as the basis for an efficient linear kernel (Lecture??), for the analysis of perturbation techniques
(Lecture??), as the computational basis for the exact evaluation of algebraic expressions (Lecture??) and,
more generally, arithmetic with algebraic numbers (Lecture ??).

Hardware floating point arithmetic is standardized in the IEEE floating point standard [16, 17, 18]. A
floating point number is specified by a signs, a mantissam, and an exponente. The sign is+1 or−1. The
mantissa consists oft bits m1, . . . , mt , ande is an integer in the range[emin,emax]. The range of possible
exponents contains zero andemin = −∞ and/oremax= +∞ is allowed.

TODO: doesemin = −∞ really make sense? ThenF is dense inR at 0. Check that all arguments stay
valid. TODO

The number represented by the triple(s,m,e) is as follows:

• If emin < e≤ emax, the number iss· (1+ ∑1≤i≤t mi2−i) ·2e. This is called anormalizednumber.

• If e= emin then the number iss·∑1≤i≤t mi2−i2emin+1. This is called asubnormalnumber. Observe
that the exponent isemin+ 1. This is to guarantee that the distance of the largest subnormal number
(1−2−t)2emin+1 and the smallest normalized number 12emin+1 is small.

• In addition, there are the special numbers−∞ and+∞ and a symbol NaN which stands for not-a-
number. It is used as an error indicator, e.g., for the resultof a division by zero.

Double precision floating point numbers are represented in 64 bits. One bit is used for the sign, 52 bits for the
mantissa (t = 52) and 11 bits for the exponent. These 11 bits are interpreted as an integerf ∈ [0..211−1] =
[0..2047]. The exponente= f −1023; f = 2047 is used for the special values and henceemin = −1023 and
emax= 1023. The rules forf = 2047 are:

• If all mi are zero andf = 2047 then the number is+∞ or−∞ depending ons.

• In f = 2047 and somemi is non-zero, the triple represents NaN (= not a number).

4 LECTURE 4. NUMBER TYPES I

Let F = F(t,emin,emax) be the set of real numbers (including+∞ and−∞) that can be represented as above.
A number inF is calledrepresentable, a number inR \F is callednon-representable. Observe that for
normalized numbers, the leading 1 is not stored. It is sometimes called the hidden bit. The largest positive
representable number (except for∞) is MAXF = (2−2−t) ·2emax, the smallest positive representable number is
MINF = 2−t ·2emin+1 = 2−t+emin+1, and the smallest positive normalized representable number isMINNORMF =∞????
1·2emin+1 = 2emin+1. We define thenormal rangeof F as

[−MAXF ,−MINNORMF]∪ [MINNORMF ,MAXF]

and thesubnormal rangeas the open interval(−MINNORMF ,+MINNORMF). Observe that 0 lies in the sub-∞???
normal range. Therangeof F is the closed interval[−MAXF ,+MAXF]. We requireMINNORMF ≤ 2−t. This

guaranteesMIN1/2
F ≥ MINNORMF .

Exercise 0.3: Specialize the definitions above to double precision floating point numbers. ♦

4.3.1 Rounding

F is a discrete subset ofR. For any realx, let1 flu(x) be the smallest floating point number greater then or
equal tox and letfld(x) be the largest floating point number smaller than or equal tox, i.e.,

flu(x) = min{z∈ F | x≤ z} and fld(x) = max{z∈ F | z≤ x}.

If x is representable,flu(x) = fld(x) = x. If x > MAXF , flu(x) = +∞ andfld(d) = MAXF , and if 0≤ x≤ MINF ,
flu(x) = MINF andfld(x) = 0.

Rounding a real numberx yields flu(x) or fld(x). There are several rounding modes:Rounding away
from zeroyieldsflu(x) for a nonnegativex andfld(x) for a negativex. Rounding towards zeroyieldsfld(x)
for a nonnegativex andflu(x) for a negativex. Rounding to nearestyields flu(x) or fld(x) depending on
which number is closer tox. If both numbers are equally close, i.e.,x = (flu(x)+fld(x))/2, the result of the
rounding has an even last bit in the mantissa. The latter rulemakes the rounding deterministic; also there
is empirical evidence [?] that “rounding to even” in the case of ties has superior computational properties.
Rounding to nearest is the default rounding mode in the IEEE standard and we follow this convention. We
use fl(x) to denote the result of roundingx to the nearest floating point number. Ifx > MAXF , we define
fl(x) = ∞, and ifx < −MAXF , we define fl(x) = −∞. The following theorem states that rounding of numbers
in the normal range incurs a small relative error.

THEOREM 1. If x ∈ R lies in the normal range,

max(|x−flu(x)| , |x−fld(d)|) ≤ 2−t min(|x| , |fld(x)| , |flu(x)|) (1)

and

|x−fl(x)| ≤ 2−t−1min(|x| , |fl(x)|). (2)

If |x| > MAXF , |x−fl(x)| ≤ 2−t−1 |fl(x)|.
1flu stands for “float-up” andfld stands for “float-down”.

4.3. FLOATING POINT NUMBERS 5

Proof. We may assume thatx is positive. ThenMINNORMF ≤ x≤ MAXF and hencex = m2e for somem and
e with 1≤ m< 2 andemin ≤ e≤ emax. If e= emax, we have in additionm≤ 2−2−t . The distance between
adjacent floating point numbers with exponente is 2−t+e. Also, min(|x| , |fld(x)| , |flu(x)|) ≥ 2e. Thus

max(|x−flu(x)| , |x−fld(d)|) ≤ 2−t+e ≤ 2−t min(|x| , |fld(x)| , |flu(x)|).

The second claim follows from|x−fl(x)| ≤ 2−t−1+e. Finally, if |x| > MAXF , |fl(x)| = ∞ and this implies the
third claim.

For subnormal numbers, the relative error of rounding may bearbitrarily large. For example for,x =
MINF/2 we have fl(x) = 0 and hence|fl(x)−x| = x. Relative tox, the error is 1, and relative to fl(x), the
error in+∞. However, the absolute error is bounded.

LEMMA 2. Let x∈ R be in the subnormal range. Then

|x−fl(x)| ≤ 2−t−1+emin+1 = 2−t−1
MINNORMF .

Proof. The distance between subnormal floating point numbers is 2−t+emin+1.

The quantities 2−t and 2−t−1 are so important that they deserve a name. We callε = 2−t theprecision
of the floating point system andu = 2−t−1 theunit of roundoff.

THEOREM 3 (Quality of Rounding Function).For any real x,

|x−fl(x)| ≤ umax(|fl(x)| ,MINNORMF) (3)

4.3.2 Arithmetic on Floating Point Numbers

Arithmetic on floating point numbers is only approximate; itincurs roundoff error. Although floating point
arithmetic is inherently inexact, the IEEE standard guarantees that the result of any arithmetic operation is
close to the exact result, frequently as close as possible. It is important to distinguish between mathematical
operations and their floating point implementations. We use⊕, ⊖, ⊙, and⊘ for the floating point imple-
mentations of addition, subtraction, multiplication and division, respectively. Only in this lecture, we use
1/2 for the square-root operation and√ for its floating point implementation. Generally, we use ˜◦ for the

floating point implementation of◦. The floating point implementations of the operations+, −, ·, /, and1/2

yield the best possible result.This is an axiom of floating point arithmetic.

DEFINITION 1. If x,y∈ F and◦ ∈ {+,−, ·,/} then

x ◦̃y = fl(x◦y)

and √
x = fl(x1/2).

As an immediate consequence of this definition and Theorem 3 we obtain:

6 LECTURE 4. NUMBER TYPES I

THEOREM 4 (Error Bound for Single Operations).If x,y∈ F and◦ ∈ {+,−, ·,/} then

|x ◦̃y−x◦y| ≤ umax(|x ◦̃y| ,MINNORMF) (4)

|x◦y| ≤ (1+u)max(|x ◦̃y| ,MINNORMF) (5)
∣

∣

∣

√
x−x1/2

∣

∣

∣
≤ umin(x1/2,

√
x). (6)

x1/2 ≤ (1+u)
√

x. (7)
√

x≤ (1+u)x1/2. (8)

Proof. Inequality (4) follows immediately from Theorem 3 and inequality (5) is a short calculation.

|x◦y| ≤ |x◦y−x ◦̃y|+ |x ◦̃y| ≤ umax(|x ◦̃y| ,MINNORMF)+ |x ◦̃y| ≤ (1+u)max(|x ◦̃y| ,MINNORMF).

Inequality (6) certainly holds ifx = 0 and hencex1/2 =
√

x = 0 or if x = +∞ and hencex1/2 =
√

x = ∞.
If x > 0, and hencex≥ MINF, we havex1/2 ≥ MINNORMF and hence

√
x≥ MINNORMF . Inequality (6) then

follows from (2). Inequalities (7) and (8) are immediate consequences of (6).

Observe that the floating point operations⊕, ⊖, ⊙, ⊘ and√ must return the exact result if this is
representable. This is too much to ask for more complex operation, for example logarithms or exponentials.
There one requires that the implementation either returns the exact result (if representable) or one of the two
adjacent floating point numbers.

We will also need the following properties.

(a) Floating point arithmetic is monotone, i.e., ifa1 ≤ a2 andb1 ≤ b2 then a1 ⊕ a2 ≤ b1 ⊕ b2 and if
0≤ a1 ≤ a2 and 0≤ b1 ≤ b2 thena1⊙a2 ≤ b1⊙b2.

(b) Multiplication by a power of two incurs no roundoff error, i.e., if a∈ F is a power of two,b∈ F and
2a andabare in the range ofF , thena⊕a = 2·a anda⊙b = a·b.

(c) If a+b is representable, thena⊕b = a+b and ifab is representablea⊙b = ab.

(d) If x∈ N, x < 2t+1 andt ≤ e≤ emax, thenx2e is representable.

The IEEE standard also defines the results for “strange” combinations of arguments. Of course, division
by zero yields NaN. Also, if one of the arguments of an addition is NaN or the addition has no defined result,
e.g.,−∞+ ∞, then the result is NaN.

Exercise 0.4: Leta,b∈F with 1
2 ≤ a

b ≤ 2. Show thata⊖b= a−b. This was first observed by Sterbenz [27].
♦

Exercise 0.5: Assume for this exercise that point coordinates are doublesin [1/2,1]. Show

• Orientation(p,q, r) = 0 impliesfloat orient(p,q, r) = 0.

• float orient(p,q, r) 6= 0 impliesOrientation(p,q, r) = float orient(p,q, r).

• What does this mean for a figure such as Figure???

• Can you find examples as in Section?? when point coordinates are restricted to doubles in
[1/2,1]?

♦

4.4. AN OPTIMIZED EVALUATION ORDER FOR THE ORIENTATION PREDICATE 7

4.3.3 Floating Point Integers

We briefly discuss the use of double precision hardware floating point arithmetic for 53-bit integer arith-
metic. Let us call an integer afloating point integerif it belongs to the intervalI := [−(253−1)..253−1].
The numbers inI can be represented as double precision floating point numbers. Consider a non-negative
integerx = ∑0≤i≤53xi2i ∈ I . If x = 0, x is a double. Ifx > 0, let j be maximal such thatx j 6= 0. Then
x = (1+ ∑1≤i≤ j x j−i2−i)2 j and hencex is a double. Double precision floating point arithmetic on numbers
in I is exact.

LEMMA 5. Assume x∈ I, y∈ I and x◦y∈ I where◦ ∈ {+,−, ·}. Then x̃◦y = x◦y.

Lemma 5 is useful if points have integer Cartesian or homogeneous coordinates of bounded size.

LEMMA 6. Assume that points have integral Cartesian coordinates. Then

(bx−ax) · (cy−ay)− (by−ay) · (cx−ax)

is computed without roundoff error if the absolute value of all coordinates is bounded by2L − 1, where
2(L+1)+1≤ 53.

Proof. The absolute value of the expression is strictly bounded by

(2L +2L) · (2L +2L)+ (2L +2L) · (2L +2L) = 22L+3.

Thus if 2L+3≤ 53, the value is inI and hence computed correctly.

Exercise 0.6: Prove an analogous lemma for the orientation predicate and points with integer homogeneous
coordinates and for the side-of-circle predicate and points with integer Cartesian or homogeneous
coordinates. ♦

Built-in 32-bit integer arithmetic can only handle integers whose absolute value is bounded by 231−1.
So it supports the orientation predicate for integer coordinates with at most 14 bits. In contrast, doubles sup-
port the orientation predicate for integer coordinates with up to 25 bits. One may paraphrase this observation
asdoubles are the better ints.

4.4 An Optimized Evaluation Order for the Orientation Predi cate

TODO, Chee’s note are a good source.

4.5 An Error Analysis for Arithmetic Expressions

We study the evaluation of simple arithmetic operations in floating point arithmetic. Any real is an arithmetic
expression and ifA andB are arithmetic expression, then areA+B, A−B, A·B, andA1/2. The latter assumes
that the value ofA is non-negative. For an arithmetic expressionE, let Ẽ the result of evaluatingE with
floating point arithmetic. We want to bound

∣

∣Ẽ−E
∣

∣ .

8 LECTURE 4. NUMBER TYPES I

E condition Ẽ mE dE

a a is non-representable fl(a) max(MINNORMF , |fl(a)|) 1

a a is representable a max(MINNORMF , |a|) 0

A+B Ã⊕ B̃ mA⊕mB 1+max(dA,dB)

A−B Ã⊖ B̃ mA⊕mB 1+max(dA,dB)

A ·B Ã⊙ B̃ max(MINNORMF ,mA⊙mB) 1+dA +dB

A1/2 Ã < umA 0 2(t+1)/2√mA 2+dA

A1/2 Ã≥ umA

√
Ã max(

√
Ã,mA⊘

√
Ã) 2+dA

Table 4.1: The recursive definition ofmE andindE. The first column contains the case distinction according
to the syntactic structure ofE, the second column contains the rule for computingẼ and the third and fourth
columns contain the rules for computingmE andindE; ⊕, ⊖, ⊙, and⊘ denote the floating point implemen-
tations of addition, subtraction, and multiplication, and√ denotes the floating point implementation of the
square-root operation. Observe thatmE = ∞ if either mA = ∞ or mB = ∞.

Such a bound can be used to draw a reliable conclusion about the sign of an expression, because
∣

∣Ẽ−E
∣

∣≤ B and
∣

∣Ẽ
∣

∣ > B implies sign(E) = sign(Ẽ).

This observation is very important. It shows that we may be able to determine the sign of an expression
with floating point arithmetic although it might be impossible to determine its value with floating point
arithmetic.
We will derive a bound of the form

∣

∣E− Ẽ
∣

∣ ≤ B where B = ((1+u)dE −1) ·mE ≤ (dE +2)⊙u⊙mE,

anddE andmE are defined in Table 4.1. The intuitive interpretation is as follows: mE upper bounds̃E and
dE measures the levels of rounding. The operators+, −, and· introduce one additional level of rounding,
the square-root-operator accounts for two levels. In an addition, the arguments contribute the maximum of
their levels, and in a multiplication, the arguments contribute their sum. Each level of rounding increases
the range of uncertainty by a multiplicative factor of 1+ ε . The subtraction of a−1 reflects the fact that we
are interested in the error.

Before we establish the error bound, we will show that((1+u)d −1) is approximately equal todu and
we will also give an example.

LEMMA 7. If d ≤
√

1/u−1 then((1+u)d −1) ≤ (d+1)u. For all d, ((1+u)d −1) ≥ du.

Proof. We have

(1+u)d −1 = ∑
1≤i≤d

(

d
i

)

ui ≤ ∑
i≥1

(d ·u)i = du/(1−du).

Next observe thatdu/(1−du) ≤ (1+d)u iff d/(1−du) ≤ (1+d) iff d ≤ d+1−d2u−du iff d(d+1) ≤
1/u. This is certainly the case when(d+1)2 ≤ u or d ≤

√

1/u−1. The lower bound follows immediately
from the expansion of(1+u)d.

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 9

The conditiond ≤
√

1/u− 1 is hardly constraining. Foru = 2−53, it amounts tod < 226.5. As an
example, we use the orientation predicate for pointsa, b, andc given by their Cartesian coordinates. Then

Orientation(a,b,c) = (bx−ax) · (cy−ay)− (by−ay) · (cx−ax).

We compute thed-value of this expression. The degree of any argument is one,the degree of(bx−ax) is 2,
the degree of(bx−ax) · (cy−ay) is 5 and the degree of the entire expression is 6. We conclude that the error
of evaluatingOrientation(a,b,c) with floating point arithmetic is at most

7·u ·mOrientation(a,b,c).

This bound is worth to be formulated as a Lemma.

LEMMA 8. If points are given by their Cartesian coordinates and the orientation predicate is computed by
the formula above, the roundoff error in a floating point evaluation is bounded by7 ·u ·mOrientation(a,b,c)
(8⊙u⊙mOrientation(a,b,c)).

Lemma 8 leads to the following code for evaluation of the orientation predicate. We assume that the
Cartesian coordinates belong to some number typeNT for which we have exact arithmetic available. We
first convert all coordinates to a floating point number and then evaluate the orientation precision with
floating point arithmetic. If the absolute value of the floating point result is sufficiently big, we return its
result. If it is too small we resort to exact computation.

int orientation(point_2d p, point_2d q, point_2d r){
NT px = p.xcoord(), py = p.ycoord(), qx = q.xcoord(), ;
// evaluation in floating point arithmetic
float pxd = fl(px), pyd = fl(py), qxd = fl(qx),;
float Etilde = (qxd - pxd) * (ryd - pyd) - (qyd - pyd) * (rxd - pxd);
float apxd = abs(pxd), apyd = abs(pyd), aqxd = abs(qxd), ;
float mes = (aqxd + apxd) * (aryd + apyd) + (aqyd + apyd) * (arxd + apxd);
if (abs(Etilde) > 8 * uu * mes) return (sign Etilde);
// exact evaluation
NT E = (qx - px) * (ry - py) - (qy - py) * (rx - px);
return sign E;
}

Exercise 0.7: Assume that a pointp is given by its homogeneous coordinates(px, py, pw). Assuming
sign(aw·bw·cw) = 1, we have

Orientation(a,b,c) = aw· (bx·cy−by·cx)−bw· (ax·cy−ay·cx)+cw· (ax·by−ay·bx).

Compute thed-value of this expression. ♦

Exercise 0.8: Assume that fori, 1≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression((x1 +
x2) · (x3 +x4)) ·x5 +(x6 +x7) ·x8 with double precision floating point arithmetic. Derive a bound for
the maximal difference between the exact result and the computed result. ♦

THEOREM 9 (Error Bound for Arithmetic Expressions).If mE and dE are computed according to Table 4.1
then

mE ≥ MINNORMF and mE ≥
∣

∣Ẽ
∣

∣ and
∣

∣Ẽ−E
∣

∣≤ ((1+u)dE −1) ·mE

10 LECTURE 4. NUMBER TYPES I

Proof. We use induction on the structure of the expressionE. The claimsmE ≥ MINNORMF andmE ≥
∣

∣Ẽ
∣

∣

follow immediately from the table and the monotonicity of floating point arithmetic. For the third claim we
have to work harder. We use induction on the structure ofE and start by observing that the claim is obvious
if mE = ∞. The base case is obvious. IfE = a anda is representable,̃E = E. If a is non-representable we
invoke Theorem 3.

For the induction step we make a case distinction according to the operation combiningA andB. Assume
first thatE = A+B. Then

∣

∣Ẽ−E
∣

∣ =
∣

∣Ã⊕ B̃− (A+B)
∣

∣≤
∣

∣Ã⊕ B̃− (Ã+ B̃)
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣ .

Inequality (4) bounds the first term byumax(
∣

∣Ã⊕ B̃
∣

∣ ,MINNORMF). Next observe that

max(
∣

∣Ã⊕ B̃
∣

∣ ,MINNORMF) ≤ max(mA⊕mB,MINNORMF) = max(mE,MINNORMF) = mE

by monotonicity of floating point arithmetic and sincemE ≥ MINNORMF . For the other two terms we use the
induction hypothesis to conclude

∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣≤ ((1+u)dA −1) ·mA +((1+u)dB −1) ·mB

≤ ((1+u)max(dA,dB)−1) · (mA +mB)

≤ ((1+u)max(dA,dB)−1) · (1+u) ·mE by inequality (5).

Putting the two bounds together we obtain:
∣

∣Ẽ−E
∣

∣≤ [u+((1+u)max(dA,dB)−1) · (1+u)] ·mE

= [(1+u)1+max(dA,dB)−1] ·mE.

Subtractions are treated completely analogously.
We turn to multiplications,E = A ·B. We have

∣

∣Ẽ−E
∣

∣ =
∣

∣Ã⊙ B̃−A ·B
∣

∣≤
∣

∣Ã⊙ B̃− Ã· B̃
∣

∣+
∣

∣Ã· B̃−A · B̃
∣

∣+
∣

∣A · B̃−A ·B
∣

∣ .

Inequality (4) and monotonicity of floating point arithmetic bound the first term by

umax(
∣

∣Ã⊙ B̃
∣

∣ ,MINNORMF) ≤ umax(mA⊙mB,MINNORMF) = umE.

For the second term we use the induction hypothesis to conclude
∣

∣Ã· B̃−A · B̃
∣

∣ =
∣

∣Ã−A
∣

∣ ·
∣

∣B̃
∣

∣

≤ ((1+u)dA −1) ·mA ·mB

≤ ((1+u)dA −1) · (1+u) ·max(mA⊙mB,MINNORMF) by inequality (5)

= ((1+u)dA −1) · (1+u) ·mE,

and for the third term we conclude similarly
∣

∣A · B̃−A ·B
∣

∣ = |A| ·
∣

∣B̃−B
∣

∣

≤ (
∣

∣Ã
∣

∣+
∣

∣Ã−A
∣

∣) ·
∣

∣B̃−B
∣

∣

≤ (1+u)dA ·mA · ((1+u)dB −1) ·mB

≤ (1+u)1+dA · ((1+u)dB −1) ·max(mA⊙mB,MINNORMF) by inequality (5)

= (1+u)1+dA · ((1+u)dB −1) ·mE

4.5. AN ERROR ANALYSIS FOR ARITHMETIC EXPRESSIONS 11

Putting the three bounds together, we obtain
∣

∣Ẽ−E
∣

∣≤ (u+(1+u) · ((1+u)dA −1)+ (1+u)1+dA · ((1+u)dB −1))mE

= (u+(1+u)dA+1−1−u+(1+u)1+dA+dB − (1+u)1+dA)mE

= ((1+u)1+dA+dB −1)mE

and the induction step is completed for the case of multiplications.
We finally come to square roots,E = A1/2. We distinguish cases according to the relative size ofÃ and

mA. Assume first that̃A is tiny compared tomA, formally, Ã < u ·mA. We setẼ = 0. Then
∣

∣

∣
Ẽ−A1/2

∣

∣

∣
=

∣

∣

∣
A1/2

∣

∣

∣

≤ (
∣

∣Ã
∣

∣+
∣

∣Ã−A
∣

∣)1/2

≤ (u ·mA+((1+u)dA −1) ·mA)1/2

≤ (u+((1+u)dA −1))1/2(1+u) ·√mA by inequality (7)

≤ ((1+u)dA+2−1) ·√mAu−1/2,

where the last inequality uses

(u+((1+u)dA −1))1/2(1+u) = [(u+((1+u)dA −1))(1+u)2]1/2

≤ ((1+u)dA+2−1)1/2

≤ (u(dA +3))1/2

≤ (u(dA +2))u−1/2

≤ ((1+u)dA+2−1)u−1/2.

Assume next that̃A≥ u ·mA. Then
∣

∣

∣

√

Ã−A1/2
∣

∣

∣ ≤
∣

∣

∣

√

Ã− Ã1/2
∣

∣

∣+
∣

∣

∣Ã1/2−A1/2
∣

∣

∣

≤ u ·
√

Ã+

∣

∣Ã−A
∣

∣

Ã1/2 +A1/2
by inequality (6)

≤ u ·
√

Ã+
((1+u)dA −1) ·mA

Ã1/2

≤ u ·
√

Ã+((1+u)dA −1)(1+u) · mA√
Ã

by inequality (8)

≤ u ·
√

Ã+((1+u)dA −1)(1+u)2 ·max(mA⊘
√

Ã,MINNORMF) by inequality (5)

≤ (u+((1+u)dA −1)(1+u)2) ·max(mA⊘
√

Ã,
√

Ã,MINNORMF)

= ((1+u)dA+2−1) ·max(mA⊘
√

Ã,
√

Ã),

where the last inequality follows from̃A> 0 and hence
√

Ã≥ MINNORMF . This completes the induction step
for the case of square roots.

THEOREM 10. If dE ≤
√

1/u−1 then
∣

∣E− Ẽ
∣

∣ ≤ (dE +1) ·u ·mE ≤ (dE +2)⊙mE ⊙u.

12 LECTURE 4. NUMBER TYPES I

X X̃ cX kX dX

a fl(a) 1 1 1

A+B Ã⊕ B̃ cA +cB max(kA,kB) 1+max(dA,dB)

A−B Ã⊖ B̃ cA +cB max(kA,kB) 1+max(dA,dB)

A ·B Ã⊙ B̃ cAcB kA +kB 1+dA +dB

Table 4.2: The recursive definition ofcX, kX anddX . The first column contains the case distinction according
to the syntactic structure ofX, the second column contains the rule for computingX̃ and the third to fifth
columns contain the rules for computingcX, kX, anddX .

Proof. Follows immediately from Theorem 9 and Lemma 7.

Exercise 0.9: Consider the computation ofmE according to Table 4.1. Show that the rule for square roots
cannot lead to overflow (ifemax> t +1). Give examples, where the rules for addition, subtraction, and
multiplication overflow.

Answer: We havemA < (2−1/2t)2emax. There are two rules for computingE = mA1/2. If Ã < umA,
we definemE = 2(t+1)/2 ⊙√

mA. The square-root operation cannot overflow; if the multiplication
overflows we certainly have

√
mA > 2emax−(t+1)/2 or mA > 22emax−(t+1) > 2emax, a contradiction. If

Ã≥ umA, we definemE = max(
√

Ã,mA⊘
√

Ã). SinceÃ≤mA, the computation of
√

Ãcannot overflow.
Also, sinceÃ≥ umA,

√
Ã≥ u1/2√mA and hence

mA⊘
√

Ã) ≤ mA⊘u1/2√mA ≤ 2(t+1)/2(1+u)3√mA

and we already shown that the latter quantity does not overflow. ♦

4.6 A Simplified Error Analysis for Polynomial Expressions

The error bounds of the preceding section are for machine consumption and not for human consumption.
They should be used to filter the evaluation of geometric predicates. For the analysis of perturbation methods
in Lecture??a weaker and simpler bound suffices. We next derive such a bound for polynomial expressions,
i.e., expressions using only additions, subtractions, andmultiplications. We show that

∣

∣Ẽ−E
∣

∣≤ ((1+u)dE −1)cEMkE ,

wheredE, cE andkE are defined as in Table 4.2 andM is the smallest power of two such that

M ≥ max(1,max{lf (|a|) | a is an operand inE}).

Exercise 0.10: ProveM ≥ flu(|a|) for all operandsa in E. ♦

THEOREM 11. Let M be defined as above. Then for every subexpression X of E,

cX ≥ 1 and kX ≥ 0 and
∣

∣X̃−X
∣

∣≤ ((1+u)dX −1)cXMkX ,

4.6. A SIMPLIFIED ERROR ANALYSIS FOR POLYNOMIAL EXPRESSIONS 13

where cX, kX and dX are defined as in Table 4.2. This assumes that cXMkX is representable2 for all X. The
latter assumption also guarantees that the computation of no mX overflows.

Proof. We use structural induction. Observe that the rules fordX are the same as in Theorem 9. It therefore
suffices to prove

mX ≤ cXMkX

for all X. This is clear for operands. IfX = a∈ R, mX = max(MINNORMF ,fl(a)) ≤ M. Consider an addition
or subtraction next. Then

mX = mA⊕mB ≤ cAMkA ⊕cBMkB ≤ caMkX ⊕cBMkX = (cA +cB)MkX = cXMkX ,

where the next to last equality follows from the assumption thatcXMkX is representable. Finally, we come
to a multiplication. IfmX = MINNORMF , the claim is obvious sinceM ≥ 1, kX ≥ 0 andcX ≥ 1. So assume
mX = mA⊙mB. Then

mX = mA⊙mB ≤ cAMkA ⊙cBMkB = (cAcB)MkX = cXmkX ,

where again the next to last equality follows from our assumption thatcXMkX is representable.
Finally, since 0≤ mX ≤ cXMkX and the latter quantity is assumed to be representable, the computation

of mX does not overflow.

We continue our discussion of the orientation predicate forpointsa, b, andc given by their Cartesian
coordinates. Then

Orientation(a,b,c) = sign((bx−ax) · (cy−ay)− (by−ay) · (cx−ax)).

We already determined the degree of this expression as 6. Thec- and k-values are as follows. For any
argument, both values are one, forX = bx−ax, we havecX = 2 andkX = 1, for X = (bx−ax) · (cy−ay), we
havecX = 4 andkX = 2, and finally for the entire expression we havecX = 8 andkX = 2. We conclude that
the roundoff error in evaluatingOrientation(a,b,c) with floating point arithmetic is at most

7·u ·8·M2 = 56·u ·M2.

whereM is the smallest non-negative power of two bounding all Cartesian coordinates. In particular, ifM =
210 and double precision arithmetic is used, the error is at most54·2−53 ·220≤ 2−27. Next recall that the ex-
pression underlyingOrientation is twice the signed area of the triangle∆(a,b,c). Thus, if coordinates are at
most 210 and the (unsigned) area of∆(a,b,c) is at least 2−26, thenfloat orient(a,b,c) = Orientation(a,b,c).
Sofloat orient errs only for very skinny triangles. Figure?? suggested this, but now we know for sure. We
will exploit the correctness offloat orient for non-skinny triangles in Lecture??.

Exercise 0.11: Redo the analysis above for points given by their homogeneous coordinates. We continue
our discussion of the orientation predicate for points given by their homogeneous coordinates. As-
suming sign(aw,bw,cw) = 1, we have

Orientation(a,b,c) = aw· (bx·cy−by·cx)−bw· (ax·cy−ay·cx)+cw· (ax·by−ay·bx).

2This is certainly the case ifcX ≤ 2t+1 andMkX ≤ 2emax.

14 LECTURE 4. NUMBER TYPES I

We already determined the degree of this expression as 8. Thec- andk-values are as follows. For any
argument, both values are one, forX = bx·cy, we havecX = 1 andkX = 2, for X = (bx·cy−by·cx),
we havecX = 2 andkX = 2, for X = aw·(bx·cy−by·cx) we havecX = 2 andkX = 3, for X = aw·(bx·
cy−by·cx)−bw· (ax· cy−ay· cx) we havecX = 4 andkX = 3, and finally for the entire expression
we havecX = 6 andkX = 3. We conclude that the roundoff error in evaluatingOrientation(p,q, r)
with floating point arithmetic is at most

9·u ·6·M3 = 54·u ·M3.

whereM is the smallest non-negative power of two bounding the absolute value of all arguments. In
particular, ifM = 210 and double precision arithmetic is used, the error is at most54·2−53·230≤ 2−17.
If, we increase mantissa length to 99, the error bound becomes 2−64. ♦

Exercise 0.12: Assume that fori, 1≤ i ≤ 8, xi is an integer with|xi | ≤ 220. Evaluate the expression((x1 +
x2) · (x3 +x4)) ·x5 +(x6 +x7) ·x8 with double precision floating point arithmetic. Derive a bound for
the maximal difference between the exact result and the computed result. ♦

Exercise 0.13: Extend Theorem?? to include square-roots. This requires to extend Table?? and the proof
of the theorem. We do not have a satisfactory answer for this exercise. ♦

4.7 A More Precise Error Analysis∗

[[I will probably move this section to the chapter on deciding the sign of algebraic expressions.]]

Consider the expression
E = (a+b)−a

whena≫ b. The error analysis of Section 4.5 assumes that the error in the subtraction may be as large as

umE ≈ u(2a+b).

However, the actual error is approximately

u · Ẽ ≈ u ·b,

which is much smaller. Can we improve our error analysis? Recall our formulae for estimating the error in
additions (subtractions) and multiplications. We useerrE to denoteẼ−E. ForE = A+B, we have

errE =
∣

∣Ã⊕ B̃− (A+B)
∣

∣≤
∣

∣Ã⊕ B̃− (Ã+ B̃)
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣

≤ u
∣

∣Ã⊕ B̃
∣

∣+
∣

∣Ã−A
∣

∣+
∣

∣B̃−B
∣

∣ ≤ u⊙
∣

∣Ẽ
∣

∣+errA +errB).

and forE = A ·B, we have

|errE| =
∣

∣Ã⊙ B̃−A ·B
∣

∣ =
∣

∣Ã⊙ B̃− Ã· B̃+ Ã· B̃−A · B̃+A · B̃−A ·B
∣

∣

≤ u
∣

∣Ã⊙ B̃
∣

∣+
∣

∣Ã−A
∣

∣ ·
∣

∣B̃
∣

∣+ |A|
∣

∣B̃−B
∣

∣

≤ u
∣

∣Ẽ
∣

∣+ |errA| ·
∣

∣B̃
∣

∣+ |A| · |errB|

These error bounds are more costly to evaluate than the bounds in Section 4.5. We will use them in Chap-
ter ??.

4.8. ARBITRARY PRECISION FLOATING POINT NUMBERS 15

4.8 Arbitrary Precision Floating Point Numbers

In Section 4.3, we introduced the floating point systemF(t,emin,emax). Software floating point systems are
usually more flexible. They allow the user to changet during the computation, either by setting it to a fixed
value at the beginning of the computation or by changing it freely during a computation. For some value,
one wants a mantissa length of 1000 bits, and for another value, one wants 2000 bits, and for another value,
one wants no rounding3 Exponents are arbitrary integer, i.e.,emin = −∞ andemax= +∞. The systems also
support the different rounding modes of the IEEE standard. The mode can either be chosen for the entire
computation or for a single operation.

As an example, consider the following LEDA program snippet computing an approximation of Euler’s
numbere≈ 2.71. Letm be an integer. Our goal is to compute a bigfloatz such that|z−e| ≤ 2−m. Euler’s
number is defined as the value of the infinite series∑n≥01/n!. The simplest strategy to approximatee is to
sum a sufficiently large initial fragment of this sum with a sufficiently long mantissa, so as to keep the total
effect of the rounding errors under control. Assume that we compute the sum of the firstn0 terms with a
mantissa length oft bits for still to be determined values ofn0 andt, i.e., we execute the following program.

bigfloat::set_rounding_mode(TOZERO);
bigfloat::set_precision(t);
bigfloat z = 2; integer fac = 2; int n = 2;
while (n < n0)

{ // fac = n! and z approximates 1/0! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;

}

Let z0 be the final value ofz. Thenz0 is the value of∑n<n0
1/n! computed with bigfloat arithmetic with

a mantissa length oft binary places. We have incurred two kinds of errors in this computation: a truncation
error since we summed only an initial segment of an infinite series and a rounding error since we used
floating point arithmetic to sum the initial segment. Thus,

|e−z0| ≤
∣

∣

∣

∣

∣

e− ∑
n<n0

1/n!

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∑
n<n0

1/n! −z0

∣

∣

∣

∣

∣

= ∑
n≥n0

1/n! +

∣

∣

∣

∣

∣

∑
n<n0

1/n! −z0

∣

∣

∣

∣

∣

The first term is certainly bounded by 2/n0! since, for alln≥ n0, n! = n0! · (n0 +1) · . . . ·n≥ n0! ·2n−n0 and
hence∑n≥n0

1/n! ≤ 1/n0! · (1+1/2+1/4+ . . .) ≤ 2/n0!. What can we say about the total rounding error?
We observe that we use one floating point division and one floating point addition per iteration and that there
aren0−2 iterations. Also, since we set the rounding mode to rounding-to-zero, the value ofz always stays
below e and hence stays bounded by 3. Thus, the results of all bigfloatoperations are bounded by 3 and
hence each bigfloat operation incurs a rounding error of at most 3·2−t . Thus

|e−z0| ≤ 2/n0! +2n0 ·3·2−t .

3Additions, subtractions, and multiplications are exact ifno rounding is performed and mantissas are allowed to have arbitrary
length.

16 LECTURE 4. NUMBER TYPES I

We want the right-hand side to be less than 2−m−1; it will become clear in a short while why we want
the error to be bounded by 2−m−1 and not just 2−m. This can be achieved by making both terms less than
2−m−2. For the first term this amounts to 2/n0! ≤ 2−m−2. We choosen0 minimal with this property and
observe that if we use the expressionfac.length()| < m+ 3 as the condition of our while loop then this
n0 will be the final value ofn; fac.length() returns the number of bits in the binary representation offac.
From n0! ≥ 2n0 and the fact thatn0 is minimal with 2/n0! ≤ 2−m−2 we concluden0 ≤ m+ 3 and hence
6n02−t ≤ 6(m+3) ·2−t ≤ 2−m−2 if t ≥ 2m; actually,t ≥m+ log(m+3)+5 suffices. The following program
implements this strategy and computesz0 with |e−z0| ≤ 2−m−1.

We could outputz0, but z0 is a number with 2m binary places and hence suggests a quality of approxi-
mation which we are not guaranteeing. Therefore, we roundz0 to the nearest number with a mantissa length
of m+3 bits. Sincez0 ≤ 3 this will introduce an additional error of at most 3·2−m−3 ≤ 2−m−1. We conclude
that the program below computes the desired approximation of Euler’s number.

bigfloat::set_precision(2 * m);
bigfloat::set_rounding_mode(TOZERO);
bigfloat z = 2; integer fac = 2; int n = 2;
while (fac.length() < m + 3)

{ // fac = n! and z approximates 1/0! + 1/1! + ... + 1/(n-1)!
z = z + 1/bigfloat(fac);
n++; fac = fac * n;

}
// |z - e| <= 2ˆ{m-1} at this point

z = round(z,m+3,TONEAREST);
}

Exercise 0.14: Show how to computeπ with an error less than 2−200. ♦

4.9 Notes

In notes we do historical notes, implementation notes, and pointers to additional material.
Error analysis for floating point computations was pioneered by Wilkinson [?]. Most books on numerical

analysis contain a section on error analysis. Detailed discussions can be found in [?]. The analysis presented
here is based on [12, 22, 23, 14].

The optimal choice of pivot in the orientation test is discussed in [13].
Error bounds similar to the ones derived in this lecture are used as floating point filters in the linear

kernels of LEDA and CGAL. We discuss linear kernels in the next lecture.
Arbitrary precision integer and floating point arithmetic is provided by several software packages. Pop-

ular packages are the GNU Multiple Precision Arithmetic Library [15] and and the Java [19] classes BigIn-
teger and BigDecimal. The former package is the most comprehensive.

The orientation test and the side-of-circle test amount to computing the sign of a determinant. In low
dimensions, it is easy and efficient to expand the determinant into an arithmetic formula. In higher dimen-
sions, this becomes infeasible. An obvious method for computing the sign of a determinant is to compute
the value of the determinant and then take its sign. Better algorithms are discussed in [9, 1, 3].

4.10. MATERIAL FOR THE LECTURE 17

The following sentence is from the LEDA book. We need a similar sentence in the introduction. Based
on the bad experiences made by us and many others, we and others laid the theoretical foundations for correct
and efficient implementations of geometric algorithms [20,12, 11, 8, 29, 9, 22, 7, 6, 5, 4, 24, 10, 2, 30, 25, 3].

4.10 Material for the Lecture

It is not clear yet, where the following remarks should go.
Dynamic filters are more costly but also more precise than semi-dynamic filters. Observe that the com-

putation oferrE in the case of an addition requires two additions and two multiplications. The computation
of mE requires only one addition. We concluded from our experiments in [22] that the additional cost is not
warranted for the rational kernel.

We do use dynamic filters in the number type —real—, see Section ??, since the cost of exact computa-
tion is very high for —reals— and hence a higher computation time for the filter is justified.

However, the necessary conditional branching could impairperformance significantly. If one is willing
to invest that time, one could also think of using an exact implementation scheme based on floating-point
filter techniques, e.g. [12, 26], see [28] for results of an experimental comparison. Further details are beyond
the scope of this paper.

18 LECTURE 4. NUMBER TYPES I

Bibliography

[1] F. Avnaim, J.-D. Boissonnat, O. Devillers, and F. Preparata. Evaluating signs of determinants with
floating point arithmetic.Algorithmica, 17(2):111–132, 1997.

[2] R. Banerjee and J. Rossignac. Topologically exact evaluation of polyhedra defined in CSG with loose
primitives. Computer Graphics Forum, 15(4):205–217, 1996. ISSN 0167-7055.

[3] H. Brönnimann, I. Emiris, V. Pan, and S. Pion. Computingexact geometric predicates using modular
arithmetic with single precision. InProceedings of 13th Annual ACM Symposium on Computational
Geometry (SCG’97), pages 174–182, 1997.

[4] C. Burnikel, R. Fleischer, K. Mehlhorn, and S. Schirra. Astrong and easily computable separation
bound for arithmetic expressions involving square roots. In Proceedings of the 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’97), pages 702–709, 1997.www.mpi-sb.mpg.de/

˜ mehlhorn/ftp/sepbound.ps .

[5] C. Burnikel, S. Funke, and M. Seel. Exact arithmetic using cascaded computation. InProceedings of
the 14th Annual Symposium on Computational Geometry (SCG’98), pages 175–183, 1998.

[6] C. Burnikel, K. Mehlhorn, and S. Schirra. How to compute the Voronoi diagram of line segments:
Theoretical and experimenta l results. InProceedings of the 2nd Annual European Symposium on
Algorithms - ESA’94, volume 855 of Lecture Notes in Computer Science, pages 227–239. Springer,
1994.

[7] C. Burnikel, K. Mehlhorn, and S. Schirra. On degeneracy in geometric computations. InProceedings
of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms(SODA’94), pages 16–23, 1994.

[8] J. Canny, B. Donald, and G. Ressler. A rational rotation method for robust geometric algorithms. In
A.-S. ACM-SIGGRAPH, editor,Proceedings of the 8th Annual ACM Symposium on Computational
Geometry (SCG ’92), pages 251–260, 1992.

[9] K. L. Clarkson. Safe and effective determinant evaluation. IEEE Foundations of Computer Sci.,
33:387–395, 1992.

[10] O. Devillers, G. Liotta, F. Preparata, and R. Tamassia.Checking the convexity of polytopes and the
planarity of subdivisions. Technical report, Center for Geometric Computing, Department of Computer
Science, Brown Universi ty, 1997.

[11] S. Fortune. Robustness issues in geometric algorithms. In Proceedings of the 1st Workshop on Ap-
plied Computational Geometry: Towards Geometric Engineering (WACG’96), volume 1148 of Lecture
Notes in Computer Science, pages 9–13, 1996.

19

20 BIBLIOGRAPHY

[12] S. Fortune and C. van Wyk. Static analysis yields efficient exact integer arithmetic for computational
geometry.ACM Transactions on Graphics, 15:223–248, 1996. preliminary version in ACM Confer-
ence on Computational Geometry 1993.

[13] S. J. Fortune. Numerical stability of algorithms for 2dDelaunay triangulations.Int’l. J. Comput.
Geometry and Appl., 5(1):193–213, 1995.

[14] S. Funke. Exact arithmetic using cascaded computation. Master’s thesis, Fachbereich Informatik,
Universität des Saarlandes, Saarbrücken, 1997.

[15] GMP (GNU Multiple Precision Arithmetic Library).http://gmplib.org/ .

[16] D. Goldberg. What every computer scientist should knowabout floating-point arithmetic.ACM Com-
puting Surveys, 23(1):5–48, 1990.

[17] D. Goldberg. Corrigendum: “What every computer scientist should know about floating-point arith-
metic”. ACM Computing Surveys, 23(3):413–413, 1991.

[18] IEEE standard 754-1985 for binary floating-point arithmetic, 1987.

[19] Java.http://www.java.com/en/ .

[20] M. Jünger, G. Reinelt, and D. Zepf. Computing correct Delaunay triangulations.Computing, 47:43–49,
1991.

[21] A. Karatsuba and Y. Ofman. Multiplication of multidigit numbers on automata.Soviet Physics Dok-
lady, 7(7):595–596, 1963.

[22] K. Mehlhorn and S. Näher. The implementation of geometric algorithms. InProceedings of the
13th IFIP World Computer Congress, volume 1, pages 223–231. Elsevier Science B.V. North-Holland,
Amsterdam, 1994.www.mpi-sb.mpg.de/ ˜ mehlhorn/ftp/ifip94.ps .

[23] K. Mehlhorn and S. Näher.The LEDA Platform for Combinatorial and Geometric Computing. Cam-
bridge University Press, 1999.

[24] K. Mehlhorn, S. Näher, M. Seel, R. Seidel, T. Schilz, S.Schirra, and C. Uhrig. Checking geometric
programs or verification of geometric structures.Computational Geometry, 12(1-2):85–103, 1999.

[25] S. Schirra. Robustness and precision issues in geometric computation. to appear, preliminary version
available as MPI report.

[26] J. Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric predicates.Dis-
crete & Computational Geometry, 18:305–363, 1997.

[27] P. Sterbenz.Floating Point Computation. Prentice Hall, 1974.

[28] J. Tusch and S. Schirra. Experimental comparison of thecost of approximate and exact convex hull
computation in the plane. InCCCG, 2006.

[29] C. Yap. Towards exact geometric computation. InProceedings of the 5th Canadian Conference on
Computational Geometry (CCCG’93), pages 405–419, 1993.

BIBLIOGRAPHY 21

[30] C. Yap and T. Dube. The exact computation paradigm. InComputing in Euclidean Geometry II. World
Scientific Press, 1995.

