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Basics

Subgraphs, Paths, Cycles

A (simple directed) graph G = (V, E) has no multi-edges or loops. G contains
a graph G' = (V/,E') if V' C V and E' C E. We call G’ a subgraph of G and
denote G’ C G.

> A (directed) path of length k is a graph Px = (V, E) with
V={wvi,...,vikp1} and E = {(vi,vi+1) | i = 1,..., k}, where we require
E = |k|. We call Px a (vi, viy1)-path.

» The extension of Py denoted Ciy1 = (V, E U {(vk+1, 1)}, (Vk+1,v1) € E,
is a (directed) cycle/circle of length k + 1.

» The graphs Px and Cy41 are called simple if |V| = k + 1, i.e., no vertex
appears twice on the path or in the cycle.

» An undirected path or cycle is the corresponding undirected graph. We
also use the name for all directed graphs that result from switching the
direction of arbitrarily many edges.
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Basics

Connected Components

v

v

A graph G = (V/, E) is called strongly connected if it contains a
(v, w)-path and a (w, v)-path, for every pair v,w € V.

G is weakly connected if the symmetric graph G’ = (V, E’) with
E' = EU{(w,v) | (v,w) € E} is strongly connected.

A simple undirected graph is k-connected (k-node connected) if removal
of at most k — 1 arbitrary vertices (and all incident edges) keeps the
resulting graph connected. The graph is k-edge connected if removal of
k — 1 arbitrary edges keeps the resulting graph connected.

For a simple graph, an inclusion-maximal weakly connected (strongly
connected, k-connected, k-edge connected) subgraph is called weakly
(strongly, k-, k-edge) connected component. For weakly connected
component we often simply use connected component.
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DFS Framework

Connected Components

Determining connected components is fundamental in many applications
analyzing the structure of networks. Powerful and fast algorithms for
computing such components can be given as specialization of the following
general framework based on depth-first search (DFS).

The framework uses the following input and data structures:
Input: Directed Graph G = (V, E)

Data Structures: Stack S (for vertices on the DFS path)
Vertex array incoming (for first incoming edge)
Vertex and Edge Markings

In the following, the functions root, traverse and backtrack are implemented
differently depending on the type of component under consideration.
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DFS Framework

Directed Depth-First Search (DFS)

foreach s € V do

if s is unmarked then

mark s, set incoming[s] < nil
push s —+ S

— root(s)

while S not empty do

v + top(S)
if 3 unmarked then

mark e
if w unmarked then
L mark w, set incoming[w] + e

push w — S
| — traverse(v, e, w)

else

w < pop(S)
— backtrack(w, incoming[w], top(S))
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DFS Framework

DFS Numbers

Let vi,..., v, be the sequence in which vertices are marked.
» DFS(v;) =i is the DFS-number of v;

» The DFS-number DFS((v,w)) = DFS(v) of edge (v, w) is the
DFS-number of the vertex from which it was traversed.

» We define the DFS order < on V U E by
DFS(p) < DFS(q) & p=q forallpge VUE
and DFS(p) < DFS(q) <& p=<gq forallp,ge VUE.
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DFS Framework

The edges are classified as follows. If an edge (v, w) is marked, it becomes a
> tree edge if w is unmarked
» back edge if w is marked, w < v and w € S,

> cross edge if w is marked, w < v and w ¢ S, and

v

forward edge if w is marked and v < w.

Example:
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DFS Framework

Example

When replacing the box in the framework by

’e:(v,w)EEore:(w,v)EE‘7

we get undirected DFS where edges are traversed independently of their
direction.
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DFS Framework

Example

When replacing the box in the framework by

’e:(v,w)EEore:(w,v)EE‘7

we get undirected DFS where edges are traversed independently of their
direction.

In undirected DFS there are neither cross nor forward edges.
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Implementations

(Weakly) Connected Components

The following algorithms all use the DFS framework. They can all be
implemented in O(n+ m) time and O(n+ m) space. We thus concentrate only
on the implementation of the missing functions. For (weakly) connected
components, the functions are straightforward.

A component c is represented by the first vertex. The output is a vertex- and
edge array component that points to the representing vertices.

root(s)
L ¢ < s; component[s] < ¢

traverse(v, e, w)
component[e] « ¢
component|[w] < ¢
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Implementations

2-Connected Components

Lemma

For an undirected graph G, edges e, e’ € E are in a 2-connected component if
and only if there is a simple undirected cycle that contains both e and e’. The
set of 2-connected components forms a partition of E.

Proof:

Obviously, if the cycle exists, e and e’ are in a 2-connected component.

For the other direction, consider e and €’ and subpartition each by a new
vertex. The resulting component is still 2-connected. The existence of a simple
undirected cycle comes from Menger’s Theorem: In a 2-connected undirected
multigraph with at least two edges there are two vertex-disjoint paths between
every pair of vertices.
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Implementations

Proof (contd)

To show the partition statement, we contradict the maximality of components.
If an edge is in two 2-connected components, the existence of a simple
undirected cycle to each edge from every component implies that there is a
simple cycle for every pair of edges from the union of the components. Thus,
the union of the components is 2-connected as well, which contradicts the
maximality. O
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Implementations

Undirected DFS for 2-Connected Components

We use a stack Sg for edges in unfinished (called “open”) components and
stack C for open components (represented by first edge). Output is array
component pointing to the respresenting edges.

traverse(v, e, w)

if e is loop then
| component[e] « e backtrack(w, e, v)
else if e = top(C) and e # nil then
push e — Sg pop(C)
if e is tree edge then repe?t
| pushe— C e pop(SEl)
if e is back edge then .COII/lponent[e ]« e
while w < top(C) do until e’ = e
| pop(C)
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Implementations

Example

@ Stacks
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Implementations

Example

Stacks after traverse(1,(1,2),2)

(1.2) | (1.2)
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Implementations

Example

Stacks after traverse(2,(2,3),3)

(23) | (23)
(1.2) | (1.2)
c Se
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Example

(3,4) | (3,4)
©) 23) | (23)
(1.2) | (1.2)
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Implementations

Example

@ Stacks after backtrack(4,(3,4),3)

A 23) | 23)
] 12) | (12)
|‘\@ ", C SE
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Implementations

Example

Stacks after traverse(3,(3,1),1)

(3.1)
3
(1,2) | (1,2)
C Se
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Implementations

Example

Stacks after traverse(3,(3,5),5)

e
ey
(35) | (23)
(1,2) | (1,2)
C Se
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Implementations

Example

Stacks after traverse(5,(5,6),6)

|G
e
(56) | (3.1)
(35) | (23)
(12) | (12)
C Se
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Implementations

Example

Stacks after traverse(6,(6,2),2)

(6.2)
(5.6)
(3.5)
(3.1)
(2.3)
(12) | (12)

C Se
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Implementations

Example

Stacks after backtrack(6,(5,6),5)

(6.2)
(5.6)
(3.5)
3.1)
(2:3)
(1,2) | (1,2)

C Se
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Example
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Implementations

Example
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Implementations

Example

Stacks after backtrack(2,(1,2),1)
(...and so on)
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Implementations

Correctness and Running Time

Theorem
The DFS Algorithm computes the 2-connected components of an undirected
graph in time O(n+ m).

Proof:

The DFS framework has linear running time, and for traverse and backtrack in
total we also have linear running time. This follows by the fact every edge is
placed at most once on Sg and C.

For correctness we use induction over the calls of traverse and backtrack. We
call a marked tree edge open if there has been no backtracking over it, all other
edges are closed. At any point, open edges induce a path. For every
2-connected component there is a unique first edge, and a component is
open/closed if the first edge is open/closed.
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Implementations

Correctness Proof

After the first t calls of traverse and backtrack let G; be the subgraph induced
by marked edges. Denote open components, their edge sets and their first
edges by Gt(i), Et(i) and egi), for 1 < i < k¢, in the order in which egi) were
marked. We show the following invariants:

> The edges of a closed component point to their first edge.

» On C we have eil) <. efkt) in this order.

» On Sg we have the edges from Et(l), e Et(k’) in this order.

All conditions are true in the beginning. Assume they hold until t — 1 and
consider step t in two cases.
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Implementations

Correctness Proof

Case 1: (Call of traverse(v, e, w))

>

>

If e is a loop, becomes a separate component.

If e is a tree edge, then w is a vertex of degree 1 in G; and e the only
edge of a new open component.

For these edges the invariants continue to hold.

If e is a back edge but no loop, it closes a simple cycle by traversing tree
edges up to w. All these edges belong to the same 2-connected
component of G;. As all edges e’ with w < €’ are removed from C, the
invariant also holds here.
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Implementations

Correctness Proof

Case 2: (Call of backtrack(w, e, v))

If e=nil, then w is a vertex that was put on S in the outer loop of the DFS.
Thus, all edges of the (weakly) connected component and all 2-connected
components were closed, hence C and Sg are empty.

Otherwise edge e becomes closed. For C containing the representative edges, e
is the first edge of the open component with highest index if and only if it is on
top of C. As there are no cross or forward edges in undirected DFS, the

component cannot grow and is therefore closed. For Sg containing the edges of
the component, the repeat-loop deletes the correct edges from the stack. (]
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Implementations

Undirected DFS for 2-Edge Connected Components

We use a stack Sy for vertices in open components and stack C for open

components (represented by first vertex). Output is array component pointing
to the respresenting vertices.

root(s)
push s — Sy
| pushs— C backtrack(w, e, v)
if w = top(C) then
traverse(v, e, w)

if e is tree edge then f:gé;i)
L push w — Sy u <+ pop(Sv)
push w — C component|u] < w
while w < top(C) do
L | pop(C)
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Implementations

Example

Stacks after root(1)
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Implementations

Example

Stacks after traverse(1,(1,2),2)

2 2
1 1
C | Sv
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Implementations

Example

Stacks after traverse(2,(2,3),3)

33

2] 2

ENES
C | Sv
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Implementations

Example

Stacks after traverse(3,(3,4),4)

EiES
3 3

© DIES
1 1
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Implementations

Example

Stacks after traverse(4,(4,1),1)
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Implementations

Example

Stacks after traverse(4,(4,2),2)
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Implementations

Example

Stacks after backtrack(4,(3,4),3)
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Example

Stacks after traverse(3,(3,5),5)
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Example

Stacks after traverse(5,(5,6),6)

e
© ER
N

6 3
= BN
B
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Example

Stacks after traverse(6,(6,2),2)

e
© ER
N

3
= e
B
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Implementations

Example

Stacks after backtrack(6,(5,6),5)

e
© ER
N

3
= e
B
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Implementations

Example

Stacks after traverse(5,(5,7),7)
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Implementations

Example

Stacks after backtrack(7,(5,7),6)
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Example

Stacks after backtrack(5,(3,5),3)
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Example

Stacks after backtrack(3,(2,3),2)

22/26



Implementations

Example

Stacks after backtrack(2,(1,2),1)
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Implementations

Example

Stacks after backtrack(1,nil,nil)
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Implementations

Correctness

Lemma

For an undirected graph G, two nodes u,v € V are in a 2-edge connected
component if and only if there is a closed sequence (cycle with repetition of
vertices) of edges that contains both. The set of 2-edge connected components
forms a partition of V.

Theorem

The DFS Algorithm computes the 2-edge connected components of an
undirected graph in time O(n+ m).

The proof of the theorem is left as an exercise.
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Implementations

Directed DFS for Strongly Connected Components

The methods are very similar to the ones for 2-edge connected components.

This time, however, we use the framework for directed DFG and change the
term in the box as shown below.

root(s)
push s — Sy
| pushs— C
traverse(v, e, w) bacl;ftrjvcli(v:(; e(,g then
if e is tree edge then - Cp
push w — Sy pop( t)
push w — C repea(_ d
u< an
if | e is back edge component|u] + w
‘or e is cross edge with w € Sy ‘ until u = w
then
while w < top(C) do
| pop(C)
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Implementations

Example

Stacks after root(1)
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Implementations

Example

Stacks after traverse(1,(1,2),2)

2 2
1 1
C | Sv
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Implementations

Example

Stacks after traverse(2,(2,3),3)

2
1 1
C
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Example

@
e N
4]
© EIE
2]
1
o —

Stacks after traverse(3,(3.4),4)

25/26



Implementations

Example

(D
©
e 3
®

Stacks after traverse(4,(4,1),1)
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e 3
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Stacks after backtrack(4,(3.4),3)
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Stacks after backtrack(3,(2,3),2)

25/26



Implementations

Example

(D
(2
e 3
O

Stacks after traverse(2,(2,4),4)
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Example

Stacks after traverse(2,(2,5),5)

5
1 1
C
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Example

Stacks after traverse(5,(5,6),6)

N
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Stacks after traverse(6,(6,3),3)

‘ o
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Example

Stacks after traverse(6,(6,7),7)

‘ o
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Stacks after backtrack(7,(6,7),6)
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Stacks after backtrack(6,(5,6),5)
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Example

Stacks after backtrack(5,(2,5),2)
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Stacks after backtrack(2,(1,2),1)
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Implementations

Example

Stacks after backtrack(1,nil,nil)

C | Sv
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Implementations

Correctness

Lemma

For a directed graph G, two nodes u,v € V are in an SCC if and only if there
is a closed directed sequence (cycle with repetition of vertices) of edges that
contains both. The set of SCCs forms a partition of V.

Theorem
The DFS Algorithm computes the strongly connected components of a graph
in time O(n+ m).

The proof of the theorem is left as an exercise. We have to show, in particular,
that cross and forward edges are treated correctly.
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