1 Some Definitions and Examples

Uniform Matroid (S,T) with S set of n elements, Z family of all subsets of elements with cardinality at most
k, for some given k € N.

Graphic Matroid (S,Z) with S set of edges of a undirected connected graph G, I family of all cycle-free
subsets of edges (= forests).

Basis:

e Independent set I € T of maximum cardinality.
e Uniform matroid: Subset of size exactly k.

e Graphic matroid: Max-cardinality forest, spanning tree in G.
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Dual matroid:
e T* contains all sets J C S such that there is basis Be Z with BC S — J.

o Uniform matroid: All sets J of cardinality at most n — k, i.e., at least k elements remain in S —J (dual
matroid is also a uniform matroid).

o Graphic matroid: All edge sets E’ s.t. removal of E’ keeps G connected, i.e., there is spanning tree of
GinE-FE
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Acceptable coloring (B, R):
e BeZ, ReI*, BNR=10.

e Uniform matroid: B has at most k elements, R at most n —

k elements

e Graphic matroid: B is forest. R is such that removal of it keeps G connected.

Total extension of acceptable coloring (B, R):
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o Acceptable coloring (B’,R’) such that BC B', RC R'and BUR = 8S.

e Uniform matroid: In (B’, R’) there are exactly k blue elements and n — k red elements, all blue elements

in B are still blue, all red elements in R are still red.

e Graphic matroid: In (B’, R’) every edge is colored, B’ is spanning tree, R’ all edges except B’. All

blue edges in B are still blue, all red edges in R are still red.
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Cycle and cut in a matroid:

e Cycle: Inclusion-minimal dependent set; Cut: Inclusion-minimal set that intersects all bases.

o Uniform matroid: Cycles are subsets of exactly k + 1 elements, cuts are subsets of exactly n — k +1

elements.

e Graphic matroid: Cycles are simple cycles in G, cuts are inclusion-minimal cuts in G that every

spanning tree must cross.
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Fundamental cycle:
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e Let B Z, BU{z} € Z, so BU {z} is dependent. The fundamental cycle C C B U {z} is the

inclusion-minimal dependent subset.

e Uniform matroid: B U {z} must have cardinality exactly k + 1, so C = B U {z}, since every smaller

set is in Z.

o Graphic matroid: Let B be forest and B U {z} not. BU{z} is dependent set, it contains a cycle of the
graph. There is a unique inclusion-minimal set C C B U {z} that is dependent, it is the unique cycle

in G closed when z is added to B.
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Fundamental cut:

o Let R € T*, RU{z} ¢ I*. Then R U {z} is dependent in the dual matroid. The fundamental cut
C C R U {z} is the inclusion-minimal dependent set of the dual matroid.

e Uniform matroid: |R U {z}| > n — k + 1, since otherwise upon removal we would leave a basis of &
elements. The fundamental cut C = R U {z} since every smaller set is in Z*.

e Graphic matroid: Let R be a set of edges that upon removal keeps G connected, and suppose that
R U {z} cuts the graph in several pieces. Then there is a unique inclusion-minimal set C C R U {z}
that cuts the graph in several pieces.
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