
Algorithms and Programs
Kurt Mehlhorn

Goals of the Talk

better understanding for Informatics (Computer Science)

my fascination for the field and glimpses at my work

a bit entertaining

slides available on my home page

Algorithms and Programs Kurt Mehlhorn 2/28

Outline of Talk

Information Technology has changed the world

Early Fascination
Algorithms and Programs

What is an Algorithm, what is a Program?
Laws of Computation
Connections to Other Fields
Theory and Practice, Mathematics and Engineering

Future

Algorithms and Programs Kurt Mehlhorn 3/28

My first Encounter with Informatics

Informatics was introduced as an area of study in Germany
in 1968; I started to study in 1968.

I had no idea what informatics is about; I had never seen a
computer except on pictures.
The lectures

Math: polished, even difficulty, basement of a tower of
knowledge, instructor had material at his finger tips.
Informatics: rough, uneven difficulty, bits and pieces,
instructor (F. L. Bauer) struggled with content.

Ena and I, 73 F. L. Bauer

Algorithms and Programs Kurt Mehlhorn 4/28

Early Fascination

Formal Languages and Programming Languages
syntax and semantics defined without any ambiguity

programming language = language for specifying
computations

Algol 68: definition finished in Dec. 68; given to read in
Jan. 69

Algorithms and Programs

An algorithm is a
step-by-step procedure for
solving a certain class of
problems.

two examples

Al-Khwarizmi, 780 – 850
The Compendious Book on
Calculation by Completion
and Balancing

Algorithms and Programs Kurt Mehlhorn 5/28

Early Fascination

Formal Languages and Programming Languages
syntax and semantics defined without any ambiguity

programming language = language for specifying
computations

Algol 68: definition finished in Dec. 68; given to read in
Jan. 69

Algorithms and Programs

An algorithm is a
step-by-step procedure for
solving a certain class of
problems.

two examples

Al-Khwarizmi, 780 – 850
The Compendious Book on
Calculation by Completion
and Balancing

Algorithms and Programs Kurt Mehlhorn 5/28

A First Algorithm: Calf’s Liver

1-pound piece calf’s liver, 3/4 pound onions, sliced paper-thin, 4
tablespoons unsalted butter, 1/3 cup water, 1 tablespoon
chopped parsley

1. Rinse liver to remove any traces of blood and discard
membrane and any tough veins. Cut crosswise into
1/8-inch-thick slices.

2. Cook onions in 2 tablespoons butter in a 12-inch heavy
skillet over moderate heat, stirring, 1 minute. Cover skillet
and continue to cook, stirring occasionally, until softened
and golden brown, about 10 minutes. Transfer to a bowl and
keep warm, covered.

3. Pat half of liver slices dry and toss with salt and pepper to
taste. . . .

Algorithms and Programs Kurt Mehlhorn 6/28

A Second Algorithm: Solving a Quadratic Equation

Algorithm Sample Execution

write the equation as x2 + bx + c = 0 x2 + 8x − 9 = 0
move the constant term to the other side x2 + 8x = 9
add (b/2)2 on both sides x2 + 8x + 42 = 9 + 42

write LHS as (x + b/2)2, simplify RHS (x + 4)2 = 25
if RHS is negative, STOP (no solution)
remove 2 on LHS, replace RHS by ±

√
RHS x + 4 = ±

√
25

move constant term from LHS to RHS x = −4±
√

25

Algorithm is in Al-Kwarizmi’s book.

Both algorithms are for human computers,
programs for real computers are much more detailed.

Algorithms and Programs Kurt Mehlhorn 7/28

A Second Algorithm: Solving a Quadratic Equation

Algorithm Sample Execution

write the equation as x2 + bx + c = 0 x2 + 8x − 9 = 0
move the constant term to the other side x2 + 8x = 9
add (b/2)2 on both sides x2 + 8x + 42 = 9 + 42

write LHS as (x + b/2)2, simplify RHS (x + 4)2 = 25
if RHS is negative, STOP (no solution)
remove 2 on LHS, replace RHS by ±

√
RHS x + 4 = ±

√
25

move constant term from LHS to RHS x = −4±
√

25

Algorithm is in Al-Kwarizmi’s book.

Both algorithms are for human computers,
programs for real computers are much more detailed.

Algorithms and Programs Kurt Mehlhorn 7/28

Algorithms and Programs

An algorithm is a step-by-step
procedure for solving a certain
class of problems.

Can be executed mechanically.

Program = algorithm formulated
in a programming language The PERM

Formative Insights
Intellectually demanding tasks can be mechanized.

Computers amplify brain power.

Algorithm design and programming are acts of creation.

Algorithms and Programs Kurt Mehlhorn 8/28

Algorithms and Programs

An algorithm is a step-by-step
procedure for solving a certain
class of problems.

Can be executed mechanically.

Program = algorithm formulated
in a programming language The PERM

Formative Insights
Intellectually demanding tasks can be mechanized.

Computers amplify brain power.

Algorithm design and programming are acts of creation.

Algorithms and Programs Kurt Mehlhorn 8/28

Algorithms and Programs

An algorithm is a step-by-step
procedure for solving a certain
class of problems.

Can be executed mechanically.

Program = algorithm formulated
in a programming language The PERM

Formative Insights
Intellectually demanding tasks can be mechanized.

Computers amplify brain power.

Algorithm design and programming are acts of creation.

Algorithms and Programs Kurt Mehlhorn 8/28

Algorithms and Programs

An algorithm is a step-by-step
procedure for solving a certain
class of problems.

Can be executed mechanically.

Program = algorithm formulated
in a programming language The PERM

Formative Insights
Intellectually demanding tasks can be mechanized.

Computers amplify brain power.

Algorithm design and programming are acts of creation.

Algorithms and Programs Kurt Mehlhorn 8/28

Laws of Computation

Physicists discover laws of nature,
informaticians discover laws of computation,

in particular, limits of efficiency for performing certains tasks.

We measure efficiency in terms of
time (number of elementary steps needed), and

space (number of symbols needed to store intermediate
results).

Algorithms and Programs Kurt Mehlhorn 9/28

Laws of Computation

Physicists discover laws of nature,
informaticians discover laws of computation,

in particular, limits of efficiency for performing certains tasks.

We measure efficiency in terms of
time (number of elementary steps needed), and

space (number of symbols needed to store intermediate
results).

Algorithms and Programs Kurt Mehlhorn 9/28

A Computer Chip (Vintage 1995)

Der MIPS R10K Prozessorchip.

.

The block FP-Mult
multiplies numbers.

It occupies about 3 by 4 mm
of space.

It multiplies numbers in
5 microseconds

Is this good?

Algorithms and Programs Kurt Mehlhorn 10/28

How Hard is it to Multiply Numbers?

Complexity measures

A = area of the circuit
T = execution time

There are many different circuits for multiplication:

circuits that are fast, but also large,
circuits that are small, but also slow.

Is there a circuit that is small and fast?

Algorithms and Programs Kurt Mehlhorn 11/28

Is there a Circuit that is Small and Fast?

NO

Algorithms and Programs Kurt Mehlhorn 12/28

Is there a Circuit that is Small and Fast?

IMPOSSIBLE

small/fast

large/fast

small/slow

POSSIBLE

Time T required for multiplication

Area A of circuit

Any circuit corresponds

to a point in this diagram.

Every combination of A and
T in red region is impossible.

Every combination of A and
T in green region can be re-
alized.

Algorithms and Programs Kurt Mehlhorn 12/28

Connections to Other Fields

engineering embedded systems, circuit design,
autonomous systems, computer vision

linguistics machine translation, speech recognition,
information retrieval

biology and medicine bioinformatics, computations in nature

economics business processes, game theory,
algorithmic economics

art computer graphics

natural sciences high performance computing

Algorithms and Programs Kurt Mehlhorn 13/28

The Physarum Computer, Nakagaki, Yamada, Tóth, Nature 2000

Physarum,
a slime mold

single cell,
several nuclei

show video

Algorithms and Programs Kurt Mehlhorn 14/28

Mathematical Model (Tero et al., J. Theor. Biology 2007)

Physarum is a network of pipes.

Flow of liquids is determined by
concentration differences and lengths
and diameters of pipes.

Pipes adapt: if flow through a pipe is
high (low) relative to diameter of the
pipe, the diameter grows (shrinks).

Theorem (Bonifaci, KM, Varma, 2012, J. Theor. Biology)

Network converges to shortest path, i.e.,

the diameter of tubes not on the shortest path converges to
zero.

Algorithms and Programs Kurt Mehlhorn 15/28

Mathematical Model (Tero et al., J. Theor. Biology 2007)

Physarum is a network of pipes.

Flow of liquids is determined by
concentration differences and lengths
and diameters of pipes.

Pipes adapt: if flow through a pipe is
high (low) relative to diameter of the
pipe, the diameter grows (shrinks).

Theorem (Bonifaci, KM, Varma, 2012, J. Theor. Biology)

Network converges to shortest path, i.e.,

the diameter of tubes not on the shortest path converges to
zero.

Algorithms and Programs Kurt Mehlhorn 15/28

Mathematician in the Morning,
Engineer in the Afternoon

Mathematician
works on problems of a
fundamental nature that

are intrinsic to the field,
e.g. laws of computation
or new algorithms or

come up in applications
(and are too hard for
engineers)

Engineer
turns algorithms into
programs

designs and builds
systems

turns ideas into working
systems

identifies the needs for
further theory

Algorithms and Programs Kurt Mehlhorn 16/28

Library of Efficient Data Structures and Algorithms
joint work with S. Näher and C. Uhrig

when I asked former students,

Insight (1990): Writing books and articles does not suffice.

Must turn knowledge of the field into software that is

easy-to-use,

correct,

efficient.

started LEDA project in 1990, later CGAL, STXXL, SCIL

in use at thousands of academic and industrial sites
Algorithmic Solutions GmbH

Algorithms and Programs Kurt Mehlhorn 17/28

Library of Efficient Data Structures and Algorithms
joint work with S. Näher and C. Uhrig

when I asked former students,

Insight (1990): Writing books and articles does not suffice.

Must turn knowledge of the field into software that is

easy-to-use,

correct,

efficient.

started LEDA project in 1990, later CGAL, STXXL, SCIL

in use at thousands of academic and industrial sites
Algorithmic Solutions GmbH

Algorithms and Programs Kurt Mehlhorn 17/28

The Project Almost Ruined My Reputation

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however

no scientific basis available for geometric computations.

We and others created a basis over the past 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.

Today, LEDA is a main source of my reputation.

Algorithms and Programs Kurt Mehlhorn 18/28

The Project Almost Ruined My Reputation

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however

no scientific basis available for geometric computations.

We and others created a basis over the past 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.

Today, LEDA is a main source of my reputation.

Algorithms and Programs Kurt Mehlhorn 18/28

The Project Almost Ruined My Reputation

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however

no scientific basis available for geometric computations.

We and others created a basis over the past 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.

Today, LEDA is a main source of my reputation.

Algorithms and Programs Kurt Mehlhorn 18/28

The Project Almost Ruined My Reputation

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however

no scientific basis available for geometric computations.

We and others created a basis over the past 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.

Today, LEDA is a main source of my reputation.

Algorithms and Programs Kurt Mehlhorn 18/28

The Project Almost Ruined My Reputation

Some of our programs were incorrect.

What had gone wrong and what did we do about it?

We had followed the state of the art, however

no scientific basis available for geometric computations.

We and others created a basis over the past 20 years.

we made mistakes and wrote incorrect programs.

Adopted new design principle: certifying algorithms.

Today, LEDA is a main source of my reputation.

Algorithms and Programs Kurt Mehlhorn 18/28

The Problem

x program

for a certain task

y

A user feeds x to the program, the program returns y .

How can the user be sure that, indeed,
y is the correct output for input x?

The user has no way to know.

analogy: construction company

Algorithms and Programs Kurt Mehlhorn 19/28

The Proposal

Programs must justify (prove) their answers in a
way that is easily checked by their users.

Algorithms and Programs Kurt Mehlhorn 20/28

Certifying Algorithms

Certifying
program Checker C

x
x y

w

accept y

reject

On input x , a certifying algorithm computes
the function value y and

a witness w . (convincing evidence that y is the correct output for x)

w is inspected by either the human user of the certifying
program

or more elegantly by a checker program C.

Algorithms and Programs Kurt Mehlhorn 21/28

Certifying Algorithms

Certifying
program Checker C

x
x y

w

accept y

reject

On input x , a certifying algorithm computes
the function value y and

a witness w . (convincing evidence that y is the correct output for x)

w is inspected by either the human user of the certifying
program

or more elegantly by a checker program C.

Algorithms and Programs Kurt Mehlhorn 21/28

Certifying Algorithms

Certifying
program Checker C

x
x y

w

accept y

reject

On input x , a certifying algorithm computes
the function value y and

a witness w . (convincing evidence that y is the correct output for x)

w is inspected by either the human user of the certifying
program

or more elegantly by a checker program C.

Algorithms and Programs Kurt Mehlhorn 21/28

Example: Planarity Test

Planar Graph
A graph is planar if it can be drawn in the plane without edge
crossings.

K3,3

planar drawing planar graph nonplanar graphs

K5

Fact: Every non-planar graph contains a Kuratowski graph.

Story and Demo

Algorithms and Programs Kurt Mehlhorn 22/28

History

I do not claim that I invented the concept; it is rather an old
concept

al-Kwarizmi (780 – 850): multiplication
extended Euclid (≈ 1700): gcd
primal-dual algorithms in combinatorial optimization
Blum et al.: Programs that check their work

I do claim that Stefan Näher and I were the first (1995) to
adopt the concept as the design principle for a software
project:

LEDA (Library of Efficient Data Types and Algo-
rithms)

McConnell/M/Näher/Schweitzer (2010): 80 page survey

Algorithms and Programs Kurt Mehlhorn 23/28

Who Checks the Checker?

Certifying
program Checker C

x
x y

w

accept y

reject

Answer till 2011: checkers are simple programs and hence we
get them correct.

Today’s answer: checkers are simple programs and hence we
can prove their correctness using formal mathematics.

Algorithms and Programs Kurt Mehlhorn 24/28

Who Checks the Checker?

Certifying
program Checker C

x
x y

w

accept y

reject

Answer till 2011: checkers are simple programs and hence we
get them correct.

Today’s answer: checkers are simple programs and hence we
can prove their correctness using formal mathematics.

Algorithms and Programs Kurt Mehlhorn 24/28

Who Checks the Checker?

Certifying
program Checker C

x
x y

w

accept y

reject

Answer till 2011: checkers are simple programs and hence we
get them correct.

Today’s answer: checkers are simple programs and hence we
can prove their correctness using formal mathematics.

Algorithms and Programs Kurt Mehlhorn 24/28

Formal Mathematics
Mathematics is
carried in a formal
language without
any ambiguities.

Proofs are
machine-checked.

Isabelle/HOL
(L. Paulson/T. Nip-
kow)

definition disjoint-edges :: (α, β) pre-graph ⇒ β ⇒ β ⇒ bool where
disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ∧ start G e1 6= target G e2 ∧
target G e1 6= start G e2 ∧ target G e1 6= target G e2)

definition matching :: (α, β) pre-graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ edges G ∧
(∀e1 ∈ M. ∀e2 ∈ M. e1 6= e2 −→ disjoint-edges G e1 e2))

definition edge as set :: β ⇒ α set where
edge as set e ≡ {tail G e, head G e}

lemma matching disjointness:
assumes matching G M
assumes e1 ∈ M assumes e2 ∈ M assumes e1 6= e2
shows edge as set e1 ∩ edge as set e2 = {}
using assms
by (auto simp add: edge as set def disjoint arcs def matching def)

We formally verify
the witness property (e.g., Kuratowski→ non-planarity),

termination of the checker program, and

correctness of the checker program.

Algorithms and Programs Kurt Mehlhorn 25/28

Formal Mathematics
Mathematics is
carried in a formal
language without
any ambiguities.

Proofs are
machine-checked.

Isabelle/HOL
(L. Paulson/T. Nip-
kow)

definition disjoint-edges :: (α, β) pre-graph ⇒ β ⇒ β ⇒ bool where
disjoint-edges G e1 e2 = (

start G e1 6= start G e2 ∧ start G e1 6= target G e2 ∧
target G e1 6= start G e2 ∧ target G e1 6= target G e2)

definition matching :: (α, β) pre-graph ⇒ β set ⇒ bool where
matching G M = (

M ⊆ edges G ∧
(∀e1 ∈ M. ∀e2 ∈ M. e1 6= e2 −→ disjoint-edges G e1 e2))

definition edge as set :: β ⇒ α set where
edge as set e ≡ {tail G e, head G e}

lemma matching disjointness:
assumes matching G M
assumes e1 ∈ M assumes e2 ∈ M assumes e1 6= e2
shows edge as set e1 ∩ edge as set e2 = {}
using assms
by (auto simp add: edge as set def disjoint arcs def matching def)

We formally verify
the witness property (e.g., Kuratowski→ non-planarity),

termination of the checker program, and

correctness of the checker program.

Algorithms and Programs Kurt Mehlhorn 25/28

Formal Verification: Summary

Formal Instance Correctness
If a formally verified checker accepts a triple (x , y ,w),

we have a formal proof that y is the correct output for input x .

highest achievable trust (only Isabelle kernel to be trusted)

a way to build large libraries of trusted algorithms

Alkassar/Böhme/M/Rizkallah: Verification of Certifying Computations, JAR 2014

Noshinski/Rizkallah/M: Verification of Certifying Computations through AutoCor-
res and Simpl, NASA Formal Methods Symposium 2014

Algorithms and Programs Kurt Mehlhorn 26/28

Trends

from information to knowledge

big data and machine learning

autonomous systems

security, privacy, and accountability

Algorithms and Programs Kurt Mehlhorn 27/28

Ideas of Informatics

an introduction to informatics for
non-specialists (Studium Generale)

goal: informatics litteracy
presents concepts and their
applications, e.g.,

cryptography and electronic banking
shortest path algs and

navigation systems
machine learning and

automatic translation

in WS 14/15: (internal) online-course

in WS 15/16: public on-line course
(Iversity) with credit points.

Wa
s is
t In
for
ma
tik
?

Wi
e f
un
kti
on
ier
t d
as
Int
ern
et?

Wi
e l
ös
en
 Al
go
rith
me
n P
rob
lem
e?

Vo
rle
su
ng
 +
 Ü
bu
ng
, W
S 2
01
2/2
01
3,
5 E
CT
S c
red
its

Be
gin
n:
Mo
 15
.10
. 1
6:0
0-1
8:0
0 U
hr,
 G
eb
 E1
.3
HS
 2

Thank You

Algorithms and Programs Kurt Mehlhorn 28/28

	Intro
	Early Fascination
	Algs and Programs
	Laws of Computation
	Connection to Other Fields
	Math and Engineering
	Future

